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Abstract
The functional and the algebraic routing problem
are generalizations of the shortest path problem.
This paper shows that both problems are equiva-
lent with respect to the concept of profile searches
known from time-dependent routing. Because of
this, it is possible to apply various shortest path al-
gorithms to these routing problems. This is demon-
strated using contraction hierarchies as an example.
Furthermore, we show how to use Cousots’ concept
of abstract interpretation on these routing prob-
lems generalizing the idea of routing approxima-
tions, which can be used to find approximative so-
lutions and even to improve the performance of ex-
act queries.
The focus of this paper lies on vehicle routing while
both the functional and algebraic routing models
were introduced in the context of internet routing.
Due to our formal combination of both fields, new
algorithms abound for various specialized vehicle
routing problems. We consider two major exam-
ples, namely the time-dependent routing problem
for public transportation and the energy-efficient
routing problem for electric vehicles.

1 Introduction
Vehicle routing and internet routing have certain similarities,
which allows some techniques from one field to be applied to
the other. First, in the context of internet routing there have
been various approaches to generalize the shortest path prob-
lem. Two families of those generalizations are considered
here, namely the functional approach and the slightly more
restricted algebraic approach [Griffin and Gurney, 2008].
The former is based on weighting edges with functions (see
for example [Sobrinho, 2005]), the latter is based on algebraic
structures with binary operations usually but not necessarily
forming a semiring. Concerning the algebraic approach, we
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consider two examples, namely incline algebras [Cao et al.,
1984] and bounded dioids [Gondran and Minoux, 1984].

In the context of vehicle routing, the functional approach
was introduced as time-dependent routing where edges are
labeled with travel time functions [Delling et al., 2009]: The
problem is to find the earliest arrival time for a given depar-
ture time (time query) or to find earliest arrival times for all
possible departure times (profile search). We show, that pro-
file searches are algebraic routing problems. Similar to that,
the energy-efficient routing problem is the problem of finding
the most energy conserving path for electric vehicles. This is
done by labeling edges with functions mapping battery charge
levels to energy costs [Sachenbacher et al., 2011].

There is a large variety on shortest path algorithms, see
[Bast et al., 2014] for a current overview. One technique,
namely contraction hierarchies by [Geisberger et al., 2012],
has caught a lot of attention because of its simplicity and ef-
ficiency. It is a bidirectional search on a graph augmented
by shortcuts, which drastically reduce the search space. It
has also been applied to the time-dependent routing problem
[Delling and Wagner, 2009] and to the energy-efficient rout-
ing problem [Eisner et al., 2011]. However, in both cases
the profile search necessary for the backward search has been
identified as the bottleneck, which is why approximations are
used to further reduce the search space of profile queries for
the time-dependent routing problem [Batz et al., 2010].

In this paper we apply the functional and the algebraic per-
spective on internet routing problems to vehicle routing prob-
lems. We show that especially profile searches form a direct
connection between both approaches. Furthermore, we show
how to apply formal abstractions known from abstract inter-
pretation to routing problems, which generalizes the idea of
routing approximations. Finally, we consider contraction hi-
erarchies as an example for adapting shortest path algorithms
and explain how to apply this technique to the algebraic rout-
ing problems. An examination of the complexity heavily de-
pends on the underlying structure. Applications are consid-
ered for the time-dependent and the energy-efficient routing
problem.

The aim is to solve complex routing problems including
multiple criteria, e.g. time-dependency for public transporta-
tion, congestion in road networks, battery constraints for elec-
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tric vehicles, uncertainty due to driving behavior and so on.
This is achieved by generalizing routing models and routing
approximations while preserving the applicability of sophis-
ticated routing algorithms.

2 Routing Models
Routing models are generalizations of the well-known short-
est path problem. We first revise the time-dependent rout-
ing problem, which serves as a running example through-
out this paper. Two approaches to generalizations of the
shortest path problem are presented, namely the functional
and the algebraic approach. We show that profile searches
known from time-dependent routing connects the functional
approach with the algebraic approach.

For both routing models we use the usual definition of
semilattices (S,⊕,≤), where ⊕ is an idempotent, associa-
tive and commutative operation denoting the unique greatest
lower bound of two elements and≤ denoting the induced par-
tial order, i.e. a ≤ b if and only if a = a ⊕ b for a, b ∈ S.
By using a semilattice, the following routing models cover a
large variety on routing problems.

2.1 Time-Dependent Road Network
In a road network we can define time-dependency by labeling
edges with travel time functions. The following definition is
based on a paper by Batz et al.:

Definition 1 (Time-Dependent Routing [2010]). Given a
directed graph G = (V,E) and edge weights of the form
f : R→ R+

0 specifying the travel time f(t) at departure time
t needed to traverse an edge, we require the FIFO-property,
i.e. t+ f(t) ≤ t′ + f(t′) for all t, t′ ∈ R with t ≤ t′.

A time-query is to find the earliest arrival time starting in
x ∈ V and going to y ∈ V at an initial departure time t ∈ R.
A profile search is to find the earliest arrival times for all
initial departure times.

The travel time functions may be linked by (f ? g)(t) :=
g(f(t)+t)+f(t) to describe concatenated edges and merged
by (min(f, g))(t) := min(f(t), g(t)) to describe alternative
paths.

We distinguish travel time functions f : R → R̄+
0 and de-

parture arrival functions g : R → R with g(t) = f(t) + t.
It is easy to see, that linking travel time functions is func-
tional composition of their corresponding departure arrival
functions. Merging departure arrival functions is equivalently
computed pointwise.

2.2 Functional Routing
Generalizing the idea of time-dependency leads to the follow-
ing definition of functional routing, where functions describ-
ing variable edge costs are defined on a semilattice (S,⊕,≤).
The crucial difference here is the use of a partial order (in-
stead of a total order) induced by the underlying semilattice.

In the following definition adapted from the work of So-
brinho, we assume function spaces F ⊆ S → S to be closed
under composition ◦ and under pointwise application of ⊕.

Definition 2 (Functional Routing [Sobrinho, 2005]). A
functional routing network is a tuple (G,S, F,W ) where

• G = (V,E) is a directed graph,

• (S,⊕,≤) is a semilattice,

• F ⊆ S → S is a function space, and

• W : E → F is a weighting of edges with functions.

Given two vertices x, y ∈ V and an initial value s ∈ S, the
functional routing problem is to determine the value⊕

(e1,...,ek)∈Πx,y

(W (ek) ◦ . . . ◦W (e1))(s),

where Πx,y denotes the set of all finite paths from x to y in G
and the big ⊕ denotes the greatest lower bound.

Notice, that the ordering of functional composition is in-
verted (it goes from right to left), because it is defined as
(f ◦g)(s) = f(g(s)). The neutral element of functional com-
position is the identity function idS .

Since the set of all paths Πx,y from x to y may be infinite
(when containing cycles) or empty (when y is not reachable
from x), there may not be a unique solution to the functional
routing problem. Notice also, that we only consider finite
graphs. Obviously, if (S,⊕,≤) is a complete lattice, such
that any subset of S has a greatest lower bound, then there is
a unique solution. Usually, one considers only simple paths
(not containing any cycles) and strongly connected graphs to
avoid that problem. This way, the search space would be finite
and non-empty, so that there is always a unique solution to the
problem. Another way is to require cycles to be inefficient, in
a way that they do not contribute to any solution.

A slightly more restrictive way to ensure unique solutions
is to make weights non-negative. This and some other inter-
esting properties of edge weight functions are described in
the following definition.

Definition 3. Let F ⊆ S → S be a function space on a
semilattice (S,⊕,≤). A function f ∈ F is called

a) extensive, if s ≤ f(s) for all s ∈ S, that is idS ≤ f ,

b) isotonic, if s ≤ t→ f(s) ≤ f(t) for all s, t ∈ S.

c) homomorphic, if f(s⊕ t) = f(s)⊕f(t) for all s, t ∈ S,

d) right-inclining, if g(s) ≤ f(g(s)) for all s ∈ S and all
g ∈ F , that is g ≤ f ◦ g for all g ∈ F ,

e) left-inclining, if f(s) ≤ f(g(s)) for all s ∈ S and all
g ∈ F , that is f ≤ f ◦ g for all g ∈ F , and

f) distributive, if f(g(s)⊕ h(s)) = f(g(s))⊕ f(h(s)) for
all s ∈ S and all g, h ∈ F , that is f ◦ (g ⊕ h) = (f ◦
g)⊕ (f ◦ h) for all g, h ∈ F .

Notice, that extensive functions are also called increasing,
non-negative or inflationary, and isotonic functions are also
called order-preserving or said to fulfill the FIFO-property.
We avoid the term monotonic, because monotonicity some-
times refers to extensivity and sometimes to isotonicity. If a
function is both left- and right-inclining, we say it is inclining.
The first three properties are called local properties, because
they do not depend on other functions in the function space.

All of these properties are preserved under pointwise ap-
plication of ⊕, while only a), b) and c) are preserved under
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functional composition. If F is closed under functional com-
position, then all properties except for left-inclining are pre-
served under functional composition.

There are some relations between these properties eventu-
ally leading to a bridge between the functional approach and
the algebraic approach explained in the next section.
Lemma 4. If F ⊆ S → S is a function space on a semilattice
(S,⊕,≤), then for functions in F holds:

1. Homomorphic functions are distributive.
2. Extensive functions are right-inclining.
3. Isotonic functions are left-inclining, if all functions in F

are extensive.
4. If all function in F are extensive and isotonic, then all

functions in F are left- and right-inclining.
5. If idS ∈ F , then right-inclining is equivalent to exten-

sivity.
6. If F contains appropriate waiting functions, that is for

all s ∈ S there is a function fs ∈ F such that for all
s′ ∈ S we have fs(s′) = s for s′ ≤ s, then
• Left-inclining functions are isotonic.
• Distributive functions are homomorphic.

Proof. The first four statements can be easily verified. For
the fifth, assume that F contains waiting functions fs as de-
fined in the lemma. If a function f is left-inclining, then for
all t ∈ S with s ≤ t there is a waiting function ft ∈ F ,
such that f(s) ≤ f(ft(s)) = f(t), which is the definition of
isotonicity.

If f is homomorphic, then for all s and t there are waiting
functions fs and ft such that f(s⊕ t) = f(fs(s⊕ t)⊕ft(s⊕
t)) = f(fs(s ⊕ t)) ⊕ f(ft(s ⊕ t)) = f(s) ⊕ f(t) because
s⊕ t ≤ s, t.

As an example, a time-dependent road network is a func-
tional routing network on the semilattice (R,min,≤) using
the common ordering on real numbers, such that all depar-
ture arrival functions of the function space are extensive (non-
negative edge costs) and isotonic (FIFO-property). The time-
query then is the functional routing problem. Of course, we
can also adapt the idea of profile searches to functional rout-
ing, this is done in Section 2.4.

2.3 Algebraic Routing
Algebraic routing is another way to generalize the shortest
path problem. The basic structure for algebraic routing is a
semilattice (S,⊕,≤) with an induced a partial order com-
bined with an associative multiplication ⊗ on S. Probably
the weakest variant of such a structure that may still be used
for routing are the incline algebras, introduced by [Cao et al.,
1984]. A slightly stronger variant is the so called dioid, a
semiring with idempotent addition introduced by [Gondran
and Minoux, 1984]. We adapt their definitions:
Definition 5 (Incline Algebra [Cao et al., 1984]). The struc-
ture (S,⊕,⊗,≤) is an incline algebra if
• ⊕,⊗ are binary and closed operations on S,
• (S,⊕,≤) is a semilattice,

• ⊗ is associative and distributes over ⊕, and

• a ≤ a⊗ b and b ≤ a⊗ b for all a, b ∈ S.

Definition 6 (Dioid [Gondran and Minoux, 1984]). The
structure (S,⊕,⊗,≤, 0, 1) is a dioid, if

• (S,⊕,⊗, 0, 1) is a semiring, where

– ⊕ and ⊗ are binary and closed operations on S,
– ⊕ is associative and commutative with a neutral

element 0,
– ⊗ is associative with a neutral element 1,
– ⊗ distributes over ⊕,
– 0 absorbs ⊗, i.e. a⊗ 0 = 0⊗ a = 0,

• ⊕ is idempotent, i.e. a⊕ a = a for all a ∈ S, and

• ≤ is the induced partial order of the semilattice (S,⊕).

The dioid is bounded if 1 absorbs ⊕ (i.e. 1⊕ a = a⊕ 1 = 1).

Notice, that (S,⊕) in Definition 6 is indeed a semilattice
with an induced partial order, because associativity and com-
mutativity is given by the semiring structure and idempotency
is given by the definition directly.

The binary operation ⊗ does not refer to the dual lattice
operation of ⊕, instead it is the multiplication of the underly-
ing semiring. For brevity we sometimes write ab instead of
a⊗ b with precedence over ⊕.

An important property of bounded dioids is given by the
following lemma, which implies that bounded dioids are in-
cline algebras.

Lemma 7. If (S,⊕,⊗,≤, 0, 1) is a bounded dioid, then a ≤
a⊗ b and b ≤ a⊗ b for all a, b ∈ S.

Proof. We have a ⊕ ab = a1 ⊕ ab = a(1 ⊕ b) = a1 = a,
therefore a ≤ ab. Furthermore, we have b⊕ ab = 1b⊕ ab =
(1⊕ a)b = 1b = b, therefore b ≤ ab.

We can now define the algebraic routing problem:

Definition 8 (Algebraic Routing). Let (S,⊕,⊗) be an in-
cline algebra or a bounded dioid, then an algebraic rout-
ing network is a tuple (G,S,W ), where G = (V,E) is a
directed graph, S is the underlying algebraic structure and
W : E → S is a weighting, which maps edges to values.
Given two vertices x, y ∈ V , the algebraic routing problem is
to determine the value⊕

(e1,...,ek)∈Πx,y

W (e1)⊗ . . .⊗W (ek).

It is easy to see, that incline algebras (and thus also
bounded dioids) can be embedded into function space rout-
ing. This is done using Cayley’s left-representation associat-
ing a function fa(b) = a ⊗ b to each a ∈ F and adding an
artificial neutral element as an initial value as it was described
by [Griffin and Gurney, 2008].

The other way around is more difficult but also possible, if
we define the set S to be the disjoint union of values S and
functions F then we can define the operation⊗ to apply func-
tions to values, i.e. s⊗f = f(s) for all s ∈ S and f ∈ F . We
may extend this definition to functional composition using
f ⊗ g = g ◦ f for all f, g ∈ F . The order changes because f
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is applied before g. It is easy to see, that forward searches can
be done on values, while backward searches are only possible
on functions using functional composition. This is described
in more detail in the following section.

2.4 Profile Search
The term profile search originates from the field of time-
dependent routing, where the objective is to find optimal
paths for all departure times. This problem can be directly
adapted to functional routing networks as follows:

Definition 9 (Profile Search). The problem of finding solu-
tions to the functional routing problem for all initial values is
called profile search.

The following theorem captures the essence of profile
searches on functional routing networks as an individual rout-
ing problem.

Lemma 10. Let F ⊆ S → S be a function space on a semi-
lattice (S,⊕,≤) closed under pointwise ⊕ and functional
composition ◦, then the following two propositions are equiv-
alent:

a) F is a set of inclining and distributive functions.

b) (F,⊕, ◦,≤) is an incline algebra.

If the semilattice is bounded by a maximal element ∞ ∈ S
and if there are functions 0, 1 ∈ F with 0(s) = ∞ and
1(s) = s for all s ∈ S, then the following two propositions
are equivalent:

c) F is a set of extensive, inclining and distributive func-
tions.

d) (F,⊕, ◦,≤, 0, 1) is a bounded dioid.

Proof. For the former two propositions (a and b) use Lemma
4, for the latter two propositions (c and d):

⇒ Due to inclining and distribute properties, we know that
(F,⊕, ◦,≤) is an incline algebra. It remains to show the
properties of 0 and 1.
Neutral elements: 0 is neutral to ⊕ because s ≤ ∞
(maximal element) and thus f(s) ≤ 0(s) for all s ∈ S,
i.e. f ≤ 0 and therefore f = f⊕0 = 0⊕f . The identity
function 1 is neutral to functional composition.
Absorbing elements: 0 absorbs ◦ because since f is ex-
tensive we have (0 ◦ f)(s) = f(0(s)) = f(∞) = ∞
and (f ◦0)(s) = 0(f(s)) =∞. Finally, 1 absorbs⊕ be-
cause f is extensive and thus 1(s) + f(s) = s+ f(s) =
s = 1(s).

⇐ Since bounded dioids are incline algebras due to Lemma
7, we only need to show extensivity, which is implied by
right-inclining because 1 = idS ∈ F , see Lemma 4 (5).

Theorem 11. The profile searches on functional routing net-
works with inclining and distributive functions are algebraic
routing problems.

Proof. Comparing the Definitions 2 and 8 shows, that any so-
lution to the algebraic routing problem on the function space
with elementwise addition operation and functional compo-
sition as multiplicative operation yields a function describ-
ing mapping initial values to their respective solutions of
the functional routing problem. With Lemma 10 we further
know, that if the function space contains only inclining and
distributive function the induced algebra is an incline alge-
bra, so that the profile search actually is an algebraic routing
problem.

By Lemma 4 (6) we further know that bounded dioids on
functions spaces including waiting functions (which we usu-
ally do in practice) require the functions to be extensive, iso-
tonic and homomorphic. These are all local properties of
functions, which is easier to handle and allows to apply ab-
stractions as described in the following section.

3 Abstractions
We aim to use abstractions because linking and merging oper-
ations may be expensive in running time and space consump-
tion. Of course, the result may not be exact if we only use
the abstraction, but exact algorithms can benefit from such an
abstraction by reducing the search space. This idea was in-
troduced for time-dependent networks by [Batz et al., 2010]
using piecewise linear travel-time functions.

3.1 Abstract Interpretation
The following definition of abstractions was adapted from
Cousot and Cousot, which is an established technique in static
analysis of computer programs.
Definition 12 (Abstraction [Cousot and Cousot, 1977]).
Let (S,v) and (S̄, v̄) be two partially ordered sets, then a
pair of isotonic functions (α : S → S̄, γ : S̄ → S), is an
abstraction if

s = α(γ(s)) and s v γ(α(s)) for all s ∈ S.
A function f̄ : S̄ → S̄ is a valid abstraction of an isotonic
function f : S → S if (for all s̄ ∈ S̄ or resp. s ∈ S)

f(γ(s̄)) v γ(f̄(s̄)) or equivalently α(f(s)) v̄ f̄(α(s)).

For details about abstractions we refer to the respective pa-
per, which also states that f ≤ γ ◦ f ′ ◦ α. Notice, that func-
tions are required to be isotonic, but as described for profile
searches we usually require an inclining property which is
close to isotonicity anyway (see Lemma 4). It is well-known
that Galois connections are abstractions, but not all abstrac-
tions are Galois connections [Cousot and Cousot, 1992].

3.2 Power Set Abstraction for Functional Routing
There are various approaches to apply abstract interpretation
to functional routing. It is tempting to examine power sets of
possible values, just as it was done by [Cousot and Cousot,
1977] for the static analysis of computer programs. The cor-
responding order would be the subset relation, which is not
necessarily correlated to the ordering of the underlying semi-
lattice. Trying to extend the partial order ≤ to subsets of the
semilattice will lead to M ≤ N for M,N ⊆ S if and only if

∀m ∈M ∃n ∈ N : m ≤ n ∧ ∀n ∈ N ∃m ∈M : m ≤ n.
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Because this is actually a closure operator, we have a Galois
connection and thus a solid abstraction. In practice however,
this seems to be unnecessarily complicated. Instead, we are
going to use abstractions for lower and upper bounds to form
intervals, a special case of power set abstractions which is
more practicable and nearly as powerful.

3.3 Routing Abstraction with Intervals
Abstract interpretation gives an upper bound, that is an over
approximation of the desired value. In the context of routing
problems a lower bound can be just as interesting, which is an
abstraction with respect to the inverted partial order (S,≥).
In the following, we will denote a lower bound abstraction
by (α↓, γ↓) and an upper bound abstraction by (α↑, γ↑), see
Figure 1 for an example.

Lemma 13. Let G = (V,E) be a directed graph and
let (α, γ) be an abstraction from semilattice (S,⊕,≤) to
(S,⊕,≤).

If F : S → S and W : E → F form a functional routing
network on G and if τ : F → (S → S) maps edge weight
functions to valid abstractions, then any solution to the func-
tional routing problem is approximated by the solutions of the
functional routing problem on the function space τ(F ) with
edge weighting W (e) = τ(W (e)).

Proof. Let x, y ∈ V and s ∈ S. We need to show, that any
solution s′ on the original problem is less than or equal to the
concretization γ(s′) of any solution on the abstract routing
problem starting with α(s).

Let π = (e1, . . . , ek) ∈ Πx,y be an arbitrary path from x
to y in G. We write W (π) to denote W (ek) ◦ . . . ◦W (e1).
Because τ(W (e)) is a valid abstraction of W (e) for all edges
e ∈ E, we know that α(W (e)(s)) ≤ τ(W (e)(α(s)) and also
for functional composition due to the order-preserving (iso-
tonic) properties: α(W (π)(s)) ≤ τ(W (π))(α(s)).

Because s′ is a greatest lower bound of the set of all
W (π)(s) with π ∈ Πx,y, we have s′ ≤W (π)(s) and because
α is order-preserving we have α(s′) ≤ α(W (π)(s)). There-
fore α(s′) is a lower bound of any solution s′ to the abstract
functional routing problem with the initial value α(s).

Theorem 14. Routing abstractions yield valid lower and up-
per bounds on functional routing problems with isotonic func-
tions.

Using Theorem 11 routing abstraction may also be applied
to the algebraic routing problem, if the the corresponding
unary (curried) functions fb mapping a ∈ S to a ⊗ b are
isotonic.

4 Algorithms
There is a large variety on shortest path algorithms, [Bast et
al., 2014] gives an overview on current techniques. We want
to ensure their applicability to the routing models presented
in the previous sections. This is done by examining the ba-
sic building blocks of shortest path algorithms, especially for
contraction hierarchies, which were proposed by [Geisberger
et al., 2012]. Throughout this section we will focus on the al-
gebraic routing problem. As stated in Theorem 11, the profile

0.434 1

0.7 ≤ 0.74 ≤ 27 2

α↓(a) = b10ac α↑(a) = dae

+0.31 +1+3

γ↑(a) = aγ↓(a) = a
10

Figure 1: Let (R+
0 ,min,≤) be the semilattice of non-negative

reals. The value is 0.43 is mapped by a function +0.31 to the
value 0.74. Let (N0,min,≤) be the semilattice of natural
numbers, then (α↑, γ↑) is an abstraction and +3 is a valid ab-
straction of +0.31. Furthermore, (α↓, γ↓) is also an abstrac-
tion with respect to the inverted ordering and +1 is a valid
abstraction of +0.31.

searches of functional routing problems are algebraic routing
problems.

4.1 Dijkstra’s Algorithm
Probably the most important building block for any sophis-
ticated shortest path algorithm is Dijkstra’s algorithm. Each
vertex is labeled with a tentative shortest path distance and
a predecessor, which are updated using an edge relaxation
procedure: If the sum of the tentative distance of the current
vertex and the current edge costs are less than the tentative
distance of the successive vertex, then this value is updated
and the predecessor is set appropriately. The edge costs are
required to be non-negative in order to get correct results [Di-
jkstra, 1959].

From time-dependent routing, we know that Dijkstra’s al-
gorithm can be applied to functional routing if all functions
are extensive and isotonic and the underlying semilattice is
selective (a ⊕ b ∈ {a, b} for all a, b ∈ S), i.e. the induced
order is total. Dijkstra’s algorithm can be generalized to par-
tial orders, see for instance [Hansen, 1980]. In the context of
functional routing we would require functions to be extensive,
isotonic and homomorphic. However, inclining and distribu-
tive functions have the same effect for all occuring values,
these properties are sufficient.

An extension of Dijkstra’s algorithm is A?, which uses a
lower bound on remaining distances in order to stall relax-
ations of non-promising edges. Such heuristics are also avail-
able both in functional and algebraic routing, where heuristic
values may be taken from the underlying semilattice.

The crucial difference between functional and algebraic
routing is, that bidirectional searches can only be applied to
algebraic routing, because backward searches would require
the final value in the first place.

4.2 Contraction Hierarchies
Contraction hierarchies introduced by [Geisberger et al.,
2012] augment a graph with shortcuts in order to greatly re-
duce the search space. Vertices are contracted one by one
such that shortcuts between neighboring vertices are added,
if the contracted vertex can not be shown to be irrelevant to
the shortest path between those neighboring vertices.
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In the case of algebraic routing, we can apply contraction
hierarchies in the same way, where linking edges is replaced
by the multiplicative operation and merging is replaced by
the additive operation of the semilattice. The proof of cor-
rectness may be done by structural induction starting from
the correctness of contraction hierarchies for time-dependent
routing. We can therefore state:
Theorem 15. Bidirectional searches on contraction hierar-
chies yield correct results to algebraic routing problems.

There is, however, a special case that needs to be consid-
ered. Contraction hierarchies on algebraic routing networks
with bounded dioids behave exactly like on time-dependent
routing networks, but the more general approach on an in-
cline algebra does not imply optimal substructure. Therefore
using incline algebras, shortcuts may also be loops.

In the context of time-dependency, approximations can be
used to drastically reduce the search space even when query-
ing for exact results [Batz et al., 2010]. Due to Theorem 14
this technique can also be applied to the bidirectional search
on contraction hierarchies for algebraic routing problems.

4.3 Complexity
An examination of the time- and space complexity heavily
depends on the underlying operations, i.e. the semilattice op-
eration ⊕ as well as the functions F or the multiplication ⊗.

For time-dependency we usually use piecewise linear func-
tions, which can be evaluated in linear time (or even logarith-
mic when using binary search), so that the functional rout-
ing problem is efficiently solved in theory by Dijkstra’s algo-
rithm. In practice, the query times are still not satisfying, so
that precomputation techniques like contraction hierarchies
are applied to the network in order to greatly reduce query
times in practice. In order to that, the profile search is consid-
ered to get the structure of an algebraic routing problem. The
problem is that merging and linking piecewise linear func-
tions greatly increases the descriptive complexity (space con-
sumption) of resulting functions. See [Delling et al., 2009]
for instance.

One approach to overcome the increasing descriptive com-
plexity is to use approximations [Batz et al., 2010], which
corresponds to the routing abstractions described in the pre-
vious section.

5 Applications
The routing models discussed in this paper have various ap-
plications. Besides the running example of time-dependent
routing, we furthermore discuss energy-efficient routing for
electric vehicles by considering battery constraints and po-
tential energy levels.

5.1 Time-Dependent Routing
As we have already seen, the time-dependent routing prob-
lem is an example of the functional routing problem using
the semilattice (R,min,≤) and requiring all departure arrival
function to be extensive and isotonic.

The corresponding profile search forms an incline alge-
bra on the set S of all departure arrival functions, such that
(S,min,≤) is a semilattice and multiplication is given by

linking those functions. If we add a neutral element ∞ to
the set of reals, then we may also add 1(x) =∞ and (x) = x
in order to get a bounded dioid. Then we may apply any tech-
nique for algebraic routing problems.

There are two useful abstractions for departure arrival
functions introduced by [Batz et al., 2010] using piecewise-
linear functions. One is the interval search, where functions
are approximated with the least and maximal costs. This
corresponds to two distinct abstractions, both on the semi-
lattice (R,min,+). The lower bound considering the least
costs of a function is an abstraction with respect to the in-
verted relation ≥ and the upper bound considering the max-
imal costs of a function is an abstraction with respect to
≤. Actually, these two abstracted routing problems may be
merged by defining (a, b) ⊕ (c, d) = (min(a, c),min(b, d))
and (a, b)⊗(c, d) = (a+c, b+d) for a, b, c, d ∈ R. The other
abstraction is an interesting technique to reduce the number
of points of the piecewise-linear functions accepting a certain
relative error.

5.2 Energy-Efficient Routing
Battery constraints are modelled using values from an inter-
val [0,K], where K is the capacity of an electric vehicles
battery, this was introduced by [Sachenbacher et al., 2011].
By traversing an edge there are three cases:
• The battery may run empty, because costs are higher

than the remaining battery energy.
• Because the costs may be negative in case of recupera-

tion of energy, the battery may get fully charged up to its
capacity K.
• Otherwise, the costs are just subtracted from the current

battery charge.
This is similar to the piecewise linear functions of time-

dependent routing, but linking those functions does not in-
crease the descriptive complexity. Even though, merging
may increase the descriptive complexity, experimental results
have shown that contraction hierarchies are suitable to solve
the corresponding routing problem efficiently [Eisner et al.,
2011]. The profile search – that is, finding the most energy-
efficient paths for all initial battery charges – is also interest-
ing and was examined further in [Schönfelder et al., 2014].
We aim to increase the efficiency and the quality of these re-
sults even more by applying the theoretical results presented
in this paper.

6 Conclusions
This paper discussed two generalizations of the shortest path
problem, the functional and the algebraic routing problem,
that are closely related by the concept of profile searches.
The functional routing problem is suitable for modelling var-
ious practical routing problems, such as the time-dependent
routing and the energy-efficient routing problem. The prob-
lem is, that many sophisticated shortest path algorithms can
not directly be applied to functional routing, mainly because
backward searches are not available.

Theorem 11 states that the profile search of functional rout-
ing problems form algebraic routing problems. With Theo-
rem 14 routing abstractions can be applied to get lower and
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upper bounds, which can also be used to narrow down the
search space for exact queries greatly reducing query times
in practice, as it was described by [Batz et al., 2010]. Finally,
Theorem 15 is given as an illustrating example of how to ap-
ply shortest path algorithms to the algebraic routing problem.

In the future, we aim to use routing abstractions and con-
traction hierarchies for the energy-efficient routing problem
and also for probabilistic routing problems taking into ac-
count inaccuracies, traffic congestion, driving behavior and
other probabilistic factors.
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