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Abstract
Core-guided algorithms proved to be effective on
industrial instances of MaxSAT, the optimization
variant of the satisfiability problem for proposi-
tional formulas. These algorithms work by iter-
atively checking satisfiability of a formula that is
relaxed at each step by using the information pro-
vided by unsatisfiable cores. The paper introduces
a new core-guided algorithm that adds cardinality
constraints for each detected core, but also limits
the number of literals in each constraint in order to
control the number of refutations in subsequent sat-
isfiability checks. The performance gain of the new
algorithm is assessed on the industrial instances of
the 2014 MaxSAT Evaluation.

1 Introduction
MaxSAT is the optimization variant of the satisfiability prob-
lem for propositional formulas. In its most general formula-
tion, also known as Weighted Partial MaxSAT [Cha et al.,
1997], the input formula is partitioned into hard and soft
clauses, where soft clauses are associated with a weight.
Hard clauses must necessarily be satisfied, while soft clauses
should be possibly satisfied. In fact, the goal is to find an
assignment satisfying hard clauses and minimizing the total
weight of unsatisfied soft clauses. The research in this field is
active as many industrial instances, originated by real-world
problems [Morgado et al., 2013] such as routing [Xu et al.,
2003] and reasoning over biological networks [Guerra and
Lynce, 2012], still represent a challenge for modern solvers
[Argelich et al., 2014]. Several MaxSAT algorithms were
proposed, also in terms of broader frameworks [Bacchus et
al., 2014; Marques-Silva and Janota, 2014]. Nowadays, the
most promising algorithms work by iteratively checking sat-
isfiability of a formula that is properly modified during the
search until a satisfying assignment is found, which eventu-
ally results in an optimum solution. In more detail, the check
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does not distinguish between hard and soft clauses, and each
inconsistency is associated with a set of unsatisfiable clauses,
referred to as unsatisfiable core in the literature. Soft clauses
in an unsatisfiable core are thus relaxed by adding fresh vari-
ables. Clauses or cardinality constraints are also introduced
in order to minimize the effect of the relaxation.

Several core-guided strategies were proposed for imple-
menting such a relaxation step. Among them are approaches
that introduce a cardinality constraint, possibly encoded in
clauses [Eén and Sörensson, 2006; Roussel and Manquinho,
2009], and those that add clauses resulting from MaxSAT res-
olution [Larrosa and Heras, 2005]. Two prominent examples
of algorithms based on these strategies are OLL [Andres et
al., 2012] and PMRES [Narodytska and Bacchus, 2014], im-
plemented in solvers that had excellent results in the 2014
MaxSAT Evaluation [Argelich et al., 2014]. In particular,
OLL is used by CLASP and MSCG [Morgado et al., 2014],
and PMRES is implemented by EVA. However, besides pros
there are also cons, as will be clarified soon.

OLL introduces a cardinality constraint for enforcing that
at most one soft clause in the core can be unsatisfied in a so-
lution. If such a constraint cannot be satisfied then a core
containing the new constraint is detected. In this case, the
algorithm introduces another constraint for enforcing that at
most two soft clauses in the first core can be unsatisfied in a
solution, and so on. Hence, a first drawback of OLL is that it
may introduce several constraints for handling one core, pos-
sibly slowing down the propagation. Such a drawback was
overcome by MSCG thanks to a smart translation into a sorting
network that compactly represents all constraints possibly in-
troduced by OLL for handling one core. However, even within
this smart encoding, adding cardinality constraints may in-
crease exponentially the number of refutations in subsequent
checks [Bacchus and Narodytska, 2014].

PMRES introduces clauses of bounded size resulting from
MaxSAT resolution. Essentially, two soft clauses are replaced
by two new soft formulas being the disjunction and the con-
junction of the original clauses. The conjunction is encoded
in clauses, and the variable associated with its satisfaction
is resolved with another soft clause in the core, so that the
process is repeated hierarchically for all clauses in the core.
However, even if on the one hand this process inhibits the ex-
ponential grow up on the number of refutations, on the other
hand several variables introduced by PMRES for processing a
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core can jointly be part of a new core, and this event is influ-
enced by the order in which soft clauses are processed.

A new algorithm for processing unsatisfiable cores, namely
ONE, is introduced in this paper. ONE is inspired by OLL
but has the advantage of introducing exactly one cardinality
constraint for each detected core, which also means that it is
simpler to implement. In fact, while new constraints must be
added by OLL when a previously introduced constraint be-
longs to some unsatisfiable core, the constraint added by the
new algorithm does not require special treatments in subse-
quent satisfiability checks. Actually, this is also the case for
the variant of OLL using sorting networks, as implemented
in MSCG, but the algorithm presented here does not interdict
the use of native pseudo-Boolean solvers, which may be an
advantage for sufficiently small constraints.

The generalization of ONE, called K, is motivated by the
exponential grow up on the number of refutations due to the
addition of cardinality constraint. In this second form, a pa-
rameter bounds the size of cardinality constraints introduced
for handling cores. The processed core is indeed partitioned
in sets of bounded size, and each partition is associated with
a cardinality constraint. It is interesting to observe that K
also generalizes PMRES, which is obtained for the smallest
allowed value of the parameter.

ONE and K have been implemented in a new pseudo-
Boolean solver extending GLUCOSE [Audemard and Simon,
2009], and their performance have been assessed on the in-
dustrial instances of the 2014 MaxSAT Evaluation. Sev-
eral values of the parameter bounding the size of cardinality
constraints were tested, many of which resulted in a perfor-
mance comparable with state-of-the-art solvers such as EVA
and MSCG. Actually, when constraints are bound to contain at
most 48 literals, MAXINO solves 12 instances more than EVA
and 17 more than MSCG. Also the average execution time
benefits of the new algorithm on many tested instances. Pro-
totype and formal proofs are available online at the following
link: http://alviano.net/software/maxino/.

2 Background
Let V be a countable set of propositional variables. A cost
function w is a function w : V → N associating each variable
x with its cost w(x). A literal is either a variable x, or its
negation ¬x. The complement of a literal ` is denoted `, i.e.,
x = ¬x and ¬x = x for all x ∈ V . A pseudo-Boolean
constraint, or simply constraint, is of the following form:

a1`1 + · · ·+ an`n ≥ k (1)

where n ≥ 1, k ≥ 0, ai ≥ 1 and `i is a literal, for all
i ∈ [1..n]. If a1 = · · · = an = 1 then (1) is a cardinality
constraint. If in addition k = 1 then (1) is also called clause
and possibly denoted as a disjunction `1 ∨ · · · ∨ `n, or as an
implication `1∧· · ·∧`n−1 → `n. A propositional theory φ is
a set of constraints. If all constraints in φ are clauses, φ is also
called propositional formula. The set of variables occurring
in φ is denoted vars(φ).

An interpretation I is a function I : V → {T,F} associat-
ing each variable x with a Boolean truth value I(x). An in-
terpretation I is also denoted as the set {x ∈ V | I(x) = T}.

Algorithm 1: Core-guided MaxSAT algorithm
Input : A consistent formula φ, a cost function w(·)
Output: An optimum model I of φ, and its cost

1 begin
2 lower bound := 0;
3 (sat , I, C) := Solve(φ∪{x ∈ vars(φ) | w(x)≥1});
4 if sat then return (I, lower bound);
5 lower bound := lower bound +minx∈C w(x);
6 for x ∈ C do w(x) := w(x)−minx∈C w(x);
7 φ = ProcessCore(φ,w,C);
8 goto 3;

Two sets S, S′ of interpretations are equivalent with respect
to a context V ⊆ V , denoted S ≡V S′, if {I ∩ V | I ∈
S} = {I ∩ V | I ∈ S′}. Relation |= is inductively defined as
follows: For a variable x ∈ V , I |= x if x ∈ I , and I |= ¬x
if x /∈ I . For a constraint c of the form (1), I |= c if the
following inequality is satisfied:∑

i∈[1..n], I|=`i

ai ≥ k. (2)

For a theory φ, I |= φ if I |= c for all c ∈ φ. If I |= φ then I
is a model of φ. The cost of I is defined as follows:

w(I) :=
∑
x∈V\I

w(x). (3)

A theory φ is consistent if φ has at least one model, otherwise
φ is inconsistent and each subset C of φ being inconsistent is
called an unsatisfiable core of φ. A model I of φ is optimum
with respect to a cost function w if there is no J ⊆ V such
that J |= φ and w(J) < w(I). The set of optimum models
of φ with respect to w is denoted O(φ,w).

The relaxation of a clause c, denoted relax (c), is the clause
c∨¬rc, where rc is a fresh variable, i.e., a variable not occur-
ring elsewhere. The computational problem analyzed in this
paper is Weighted Partial MaxSAT (WPMS): Given a formula
φh∪φs, and a function ws : φs → N+, compute an optimum
model of φh∪{relax (c) | c ∈ φs}with respect to a cost func-
tion w such that w(rc) = ws(c) for all c ∈ φs, and w(x) = 0
for all other variables. If ws(c) = 1 for all c ∈ φs then the
computational problem is called Partial MaxSAT (PMS), and
if in addition φh = ∅ then it is referred to as MaxSAT (MS).

3 Core-guided Algorithm
Algorithms for computing solutions of the computational
problems introduced in the previous section are presented
here. To simplify the presentation, algorithms will be given
for an input comprising a formula φ and a cost function
w : V → N, obtained as described in the previous section
and with the additional assumption that φ is consistent.

3.1 The Basic Algorithm ONE

An abstract procedure for computing an optimum model of φ
is reported in Algorithm 1. It uses an external function Solve
for searching a model or an unsatisfiable core of a formula
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Function ProcessCore(φ,w,C)
1 begin
2 Let C = {x0, . . . , xn}, where n ≥ 0;
3 Let r1, . . . , rn be fresh variables;
4 for i ∈ [1..n] do w(ri) := minx∈C w(x);
5 φ := φ ∪ {x0 + · · ·+ xn + ¬r1 + · · ·+ ¬rn ≥ n};
6 for i ∈ [1..n− 1] do φ := φ ∪ {ri → ri+1};

φ′ obtained by extending φ with unary clauses of the form
x, where x is a variable with positive cost (line 3). In more
detail, the output of Solve(φ′) is either (T, I,−) in case I |=
φ′, or (F,−, C) if there is an unsatisfiable core φ′′ of φ′ such
that φ′′ ∩ {x ∈ vars(φ) | w(x) ≥ 1} = C.

In case function Solve returns (F,−, C), the minimum
cost associated with variables in C is computed, i.e.,
minx∈C w(x). The core actually provides evidence that the
cost of any model of φ must be greater or equal to this value.
Hence, a lower bound is stored and updated during the execu-
tion of the algorithm. Initially, its value is 0 (line 2), and it is
increased by minx∈C w(x) whenever function Solve returns
an unsatisfiable core C (line 5). Quantity minx∈C w(x) is
then removed from the cost of all variables in C (line 6), and
a total cost of (|C| − 1) ·minx∈C w(x) is equally distributed
to |C| − 1 new variables r1, . . . , rn by function ProcessCore
(line 4 of the function). Such a function can implement one
of several strategies. The one reported here is new and uses
a constraint to enforce the satisfaction of as many as possi-
ble variables in the set C = {x0, . . . , xn} (line 5). If n of
these variables can be assigned T in a model of φ, then all
new variables r1, . . . , rn can be assigned T as well. On the
other hand, if only n− 1 variables in {x0, . . . , xn} can be as-
signed T in a model of φ, then one variable among r1, . . . , rn
must be assigned F in order to satisfy the constraint. Actu-
ally, clauses of the form ri → ri+1 ensure that such a variable
must be r1 (line 6). By generalizing the previous argument,
formalized later in Lemma 1, it is possible to conclude that
if only m ∈ [0..n − 1] variables in {x0, . . . , xn} can be as-
signed T in a model of φ, then variables r1, . . . , rn−m must
be assigned F in order to satisfy the constraint.

The algorithm then continues to search for an optimum
model, processing unsatisfiable cores as they are identified
and incrementing the lower bound accordingly. Finally, when
a model I is returned by function Solve, the algorithm termi-
nates, and outputs I and the current lower bound.

Example 1. Let φ be a formula equivalent to the theory
{¬a + ¬b + ¬c + ¬d ≥ 2}, and let w be such that w(a) =
w(b) = 1 and w(c) = w(d) = 2. Algorithm 1 searches
for a model or an unsatisfiable core of φ ∪ {a, b, c, d}. Func-
tion Solve returns (F,−, {a, c, d}), and set {a, c, d} is pro-
cessed: The lower bound is increased to 1, fresh variables
r1, r2 are introduced, constraint a+ c+ d+ ¬r1 + ¬r2 ≥ 2
and clause r1 → r2 are added to φ, andw becomesw(a) = 0,
w(b) = w(c) = w(d) = w(r1) = w(r2) = 1. Function
Solve is now invoked for φ ∪ {b, c, d, r1, r2}, and a new un-
satisfiable core {b, c, d} is found and processed: The lower
bound is increased to 2, fresh variables r3, r4 are introduced,

Function k-ProcessCore(φ,w,C)
1 begin // use constraints of size 2 · (k+1)
2 Let C = {x0, . . . , xn·k}, where n ≥ 0;
3 Let r1, . . . , rn·k be fresh variables;
4 for i ∈ [1..n · k] do w(ri) := minx∈C w(x);
5 Let c0 = x0, and c1, . . . , cn be fresh variables;
6 for i ∈ [1..n] do
7 φ := φ ∪ {ci−1 + x(i−1)k+1 + · · ·+ xi·k +

¬ci+¬r(i−1)k+1+· · ·+¬ri·k ≥ k+1};
8 φ := φ ∪ {ci → r(i−1)k+1};
9 for j ∈ [1..k − 1] do

10 φ := φ ∪ {r(i−1)k+j → r(i−1)k+j+1};

constraint b + c + d + ¬r3 + ¬r4 ≥ 2 and clause r3 → r4
are added to φ, and w becomes w(a) = w(b) = w(c) =
w(d) = 0, w(r1) = w(r2) = w(r3) = w(r4) = 1. Theory
φ ∪ {r1, r2, r3, r4} is now satisfiable, and function Solve re-
turns (T, {c, d, r1, r2, r3, r4},−). It is an optimum model of
the original formula, and its cost is 2. �

3.2 The Parametrized Algorithm K
A drawback of core-guided algorithms making use of cardi-
nality constraints was reported in [Bacchus and Narodytska,
2014]. Actually, each ri introduced by function ProcessCore
is associated with several assignments, which may become
computationally expensive to refute in subsequent calls to
function Solve when the cost of some ri is decreased to 0. In
particular, note that in x0 + · · ·+xn+¬r1 + · · ·+¬rn ≥ n,
variable r1 is associated with the satisfaction of x0 + · · · +
xn = n, which is the case for n + 1 different interpretations
of variables x0, . . . , xn. Similarly, r2 is associated with the
satisfaction of x0 + · · ·+ xn = n− 1, i.e., with

(
n+1
2

)
differ-

ent interpretations. For a generic i ∈ [1..n], ri is associated
with x0 + · · · + xn = i, i.e.,

(
n+1
i

)
interpretations, which is

an exponential number in general.
A different strategy for processing unsatisfiable cores, re-

ferred to as PMRES [Narodytska and Bacchus, 2014], intro-
duces clauses of two and three literals instead of cardinal-
ity constraints. In fact, for a core {x0, . . . , xn}, PMRES pro-
duces, for all i ∈ [1..n], the following clauses:
ci−1 ∨ xi ∨ ¬ri ci−1 ∧ xi → ci ci → ci−1 ci → xi

where c0 = x0 and c1, . . . , cn are fresh variables with cost
0, and r1, . . . , rn are as in function ProcessCore. In a nut-
shell, the above clauses enforce the satisfaction of as many as
possible of the following formulas: x0 ∨ x1, (x0 ∧ x1) ∨ x2,
(x0 ∧ x1 ∧ x2)∨ x3, and so on, where conjunctions are com-
pactly represented by variables c1, . . . , cn. Actually, variable
cn is not really introduced, but it is left here to simplify the
presentation. Moreover, correctness of PMRES can be proved
also if clauses of the form ci−1 ∧ xi → ci are replaced by
clauses of the form ci → ri, as will be proved later.

By elaborating on the previous observations, a new char-
acterization of PMRES in terms of cardinality constraints is
provided below:

ci−1 + xi + ¬ci + ¬ri ≥ 2 ci → ri
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for all i ∈ [1..n]. In fact, the truth of ci implies the truth of
ri because of ci → ri, and therefore also of ci−1 and xi be-
cause of the constraint. It is now evident that PMRES limits
the exponential blow up on the number of refutations asso-
ciated with new variables by limiting the size of constraints
to a small, fixed constant. A natural question is thus whether
the above formulation of PMRES can be combined somehow
with the constraints and clauses introduced by function Pro-
cessCore as presented in the previous section, in order to re-
lax the limit on the size of constraints. A positive answer to
this question is provided by function k-ProcessCore, where
parameter k limits the size of cardinality constraints to be at
most 2 · (k + 1). To simplify the presentation, the function
is presented for a set C of exactly n · k + 1 variables, where
n ≥ 0. Such an assumption does not limit anyhow the gen-
erality of the algorithm because any set of variables can be
properly padded with fresh variables to reach the required car-
dinality, or more pragmatically the last added constraint may
be properly modified for containing less literals. An example
should better clarify how unsatisfiable cores are processed by
the new function.
Example 2. Let C = {a, b, c, d, e}. Function ProcessCore
would introduce a constraint of the form a+ b+ c+ d+ e+
¬r1 +¬r2 +¬r3 +¬r4 ≥ 4, and clauses r1 → r2, r2 → r3,
r3 → r4. On the other hand, function 2-ProcessCore would
introduce two constraints, a+ b+ c+ ¬c1 + ¬r1 + ¬r2 ≥ 3
and c1+ d+ e+¬c2+¬r3+¬r4 ≥ 3, and clauses c1 → r1,
r1 → r2, c2 → r3 and r3 → r4. If instead C = {a, b, c, d},
the last constraint would be c1 + d+ ¬c2 + ¬r3 ≥ 2. �

Note that PMRES is essentially function 1-ProcessCore,
while function ProcessCore is obtained for unbounded k, or
more precisely for k >

∑
x∈V w(x).

3.3 Correctness
In order to prove the correctness of Algorithm 1, the argument
reported in Section 3.1 is first formalized.
Lemma 1. Let φ be a propositional theory, w be a cost
function, and {x0, . . . , xn} ⊆ V be such that n ≥ 0 and
w(xi) ≥ 1 for all i ∈ [0..n]. Let m = mini∈[0..n] w(xi), and
r0, . . . , rn be fresh variables. Define φ′ and w′ as follows:

φ′ := φ ∪{x0 + · · ·+ xn + ¬r0 + · · ·+ ¬rn≥n+ 1}
∪{ri → ri+1 | i ∈ [0..n− 1]}

(4)

w′(x) :=

{
w(x)−m if x ∈ {x0, . . . , xn}
m if x ∈ {r0, . . . , rn}
w(x) otherwise.

(5)

The following relation holds: O(φ,w) ≡vars(φ) O(φ′, w′).
Correctness of the algorithm using function ProcessCore

easily follows by noting that if set C = {x0, . . . , xn} is re-
turned by function Solve, then x0 + · · · + xn = n + 1 can-
not be satisfied, and therefore r0 must be assigned F in all
models of the theory φ. Similarly, correctness when func-
tion k-ProcessCore is used can be established by iteratively
applying Lemma 1 on chunks of set C. In more detail, if
C = {x0, . . . , xn·k}, then the constraint and clauses added
for i = 1 preserve optimum models. Moreover, variable r0
in Lemma 1 is variable c1 in the function, and it is essentially

equivalent to the conjunction x0 ∧ · · · ∧ xn. This variable
is then used in the subsequent constraint, following the idea
of PMRES, and Lemma 1 can be applied again to prove that
optimum models are preserved for all i ∈ [1..n]. As for Pro-
cessCore, the unsatisfiable core returned by function Solve
guarantees that at least one variable among x0, . . . , xn·k, and
therefore cn, must be assigned F in any model of φ.

Theorem 1. Algorithm 1 is correct, that is, for any consistent
formula φ and cost function w, it outputs a pair (I, w(I)),
where I ∈ O(φ,w). Correctness holds also if function k-
ProcessCore is used, for all k ≥ 1.

Since 1-ProcessCore is essentially PMRES, the following is
a corollary of the above theorem:

Corollary 1. PMRES is correct also if clauses of the form
ci−1 ∧ xi → ci are replaced by clauses of the form ci → ri.

4 Implementation and Evaluation
ONE and K have been implemented in MAXINO, a new
pseudo-Boolean solver extending the single-thread version
of GLUCOSE 4 [Audemard and Simon, 2009], and featur-
ing additional evaluation techniques such as disjoint core
analysis and, for weighted instances, stratification, hardening
and Boolean multilevel optimization [Ansótegui et al., 2009;
2013; Argelich et al., 2009]. To ease a comparison with state-
of-the-art solvers, PMRES has been implemented as well ac-
cording to [Narodytska and Bacchus, 2014].

The performance of MAXINO was assessed on the indus-
trial instances of the 2014 MaxSAT Evaluation [Argelich
et al., 2014], which includes three tracks, namely MaxSAT
(MS; 55 instances), Partial MaxSAT (PMS; 568 instances)
and Weighted Partial MaxSAT (WPMS; 410 instances). The
experiment was run on an Intel Xeon CPU 2.4 GHz with 16
GB of RAM. CPU and memory usage were limited to 1,800
seconds and 8 GB, respectively. MAXINO was compared with
the (non-portfolio) solvers that better performed on industrial
instances of the 2014 MaxSAT Evaluation, namely EVA 500a
[Narodytska and Bacchus, 2014], OPENWBO 1.3.0 [Martins
et al., 2014], MSCG [Ignatiev et al., 2014; Morgado et al.,
2014] and CLASP 3.1.1 [Andres et al., 2012] (with options
--opt-strategy=usc,1 --opt-sat --configuration=trendy). The
comparison with EVA, CLASP and MSCG is of particular in-
terest. In fact, EVA implements PMRES, while OLL is used by
CLASP, and also by MSCG on weighted instances.

A summary of the result is reported in Table 1, where the
best performance overall and in each track is emphasized in
bold. In the table, PMRES is MAXINO running PMRES, ONE
is MAXINO running ONE, and Kn is MAXINO running K with
constraints of size at most n. As a general comment, it can be
observed that MAXINO does not reach performance of state-
of-the-art solvers neither with PMRES nor by ONE, which re-
spectively solve 4 and 22 instances less than EVA. On the
other hand, MAXINO has a performance boost when K is used,
and in fact the tested versions solve at least 4 instances more
than EVA, with a peak of 12 for K48. Comparing with the
other solvers, K48 solves 17, 38 and 55 more instances than
MSCG, OPENWBO and CLASP, respectively. The same rank-
ing is obtained if memory is limited to 3.5 GB as in the Evalu-
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PMRES K16 K24 K32 K48 K64 K128 ONE CLASP EVA MSCG OPENWBO
Track sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t

MS 41 148.1 46 148.5 45 119.0 44 107.1 45 122.8 44 95.7 46 128.0 40 185.9 41 95.6 40 159.2 44 98.9 45 70.5
PMS 469 99.1 474 62.8 478 65.8 480 70.4 481 68.9 476 58.8 473 55.2 453 43.2 458 73.4 474 121.4 470 102.8 476 81.4

WPMS 368 18.4 366 10.2 368 12.8 366 8.6 368 11.1 367 8.1 368 14.3 367 10.6 340 48.9 368 54.4 363 18.7 335 30.0
Total 878 67.5 886 45.5 891 46.6 890 46.8 894 47.8 887 39.7 887 42.0 860 35.9 839 64.6 882 95.2 877 67.8 856 60.7

Table 1: Number of solved instances and average execution time in seconds of MAXINO (left) and state-of-the-art solvers (right).
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Figure 1: Cactus plots (a)–(e) and scatter plots (f) comparing the performance of MAXINO with state-of-the-art solvers.
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ation, as the difference is of 4 instances for MSCG, 1 instance
for CLASP and OPENWBO, and 2 instances for MAXINO.

Figure 1(a) is a cactus plot of the tested versions of MAX-
INO. Recall that a cactus plot reports for each solver the num-
ber of solved instances in a given time, producing an aggre-
gated view of its overall performance. The performance of
ONE is the first that deteriorate, followed by PMRES, while
the several Kn can solve more instances and always in less
time. Even if approximately the same good performance is
achieved for all tested parameters, the line of K48 clearly indi-
cate a leader in this group. It is also interesting to observe that
the performance of MAXINO improves by 8 instances when
PMRES is replaced with K16, and even more instances are
solved when the parameter is further increased, until a point
in which the overall performance starts to deteriorate and is
expected to align with ONE. Indeed, the benchmark was also
run for K256, K512 and K1,024, which are not reported in the
table, and the expected trend was observed as 880, 875 and
870 instances were solved, respectively.

Further comparisons with state-of-the-art solvers are
shown in Figure 1. In particular, Figure 1(b) highlights that
the overall performance of PMRES, EVA and MSCG are com-
parable, and are all overcome by K48. The remaining cactus
plots report the results track by track. Concerning MS, re-
ported in Figure 1(c), the performance of K48 is overcome by
OPENWBO, which solves the same number of instances but
in less time. However, it is also true that K128 solves 1 in-
stance more than K48 and OPENWBO, which can be explained
by the fact that huge cores of up to 500,000 relaxing variables
are detected for instances in this track. For such instances it
seems to be preferable to introduce larger constraints, so that
less constraints have to be added for processing a single core.
Concerning PMS, K48 solves 5, 7, 11 and 23 instances more
than OPENWBO, EVA, MSCG and CLASP, respectively. Fig-
ure 1(d) also shows that K48 is usually faster than EVA, MSCG
and CLASP, while OPENWBO is more comparable in speed.
Concerning WPMS, PMRES, K24, K48, K128 and EVA have the
best performance in terms of solved instances, but Figure 1(e)
highlights that K48 is around 5 time faster than EVA.

An instance by instance comparison of K48 with EVA and
MSCG, the state-of-the-art solvers that best performed, is re-
ported in the scatter plots in Figure 1(f). In these plots a point
(x, y) is reported for each instance, where x is the running
time of EVA or MSCG, and y is the running time of K48. It can
be observed that K48 is generally much faster than EVA and
MSCG, as the majority of points is located below the diagonal.
In fact, K48 is faster than EVA and MSCG in respectively 758
and 672 instances, and slower only 133 and 198 times.

5 Related Work
The first core-guided algorithm for MaxSAT was introduced
in the seminal work of [Fu and Malik, 2006], which orig-
inated the MSU family of algorithms [Marques-Silva and
Manquinho, 2008; Marques-Silva and Planes, 2008], even-
tually extended to solve weighted instances [Manquinho et
al., 2009; Ansótegui et al., 2009]. The paper follows this
line of research, and introduces two core-guided algorithms,
namely ONE and K. ONE is inspired by OLL [Andres et

al., 2012]. Intuitively, for an unsatisfiable core {x0, . . . , xn}
(n ≥ 0), OLL introduces a cardinality constraint of the form
x0 + · · · + xn + n · ¬r1 ≥ n, where r1 is a fresh variable
whose weight is set to mini∈[0..n] w(xi). The idea here is that
at least one variable in {x0, . . . , xn} must be assigned F, but
there are still chances that n of them can be assigned T. If this
is not the case and an unsatisfiable core containing variable r1
is detected, a new constraint x0 + · · ·+xn+n · ¬r2 ≥ n− 1
is introduced in addition to the one associated with the new
core. Hence, the weighted variable r2 is associated with the
satisfaction of at least n−1 variables in {x0, . . . , xn}. There-
fore, in general OLL may introduce n different constraints for
a core of n − 1 variables. ONE instead always adds a sin-
gle constraint for each detected core. A similar strategy was
implemented in MSCG [Morgado et al., 2014], where a sort-
ing network with input {x0, . . . , xn} and output {r1, . . . , rn}
smartly encodes all constraints introduced by OLL.

K, instead, is inspired by PMRES [Narodytska and Bac-
chus, 2014], an algorithm based on MaxSAT resolution [Lar-
rosa and Heras, 2005] overcoming the drawback associated
with the exponential number of refutations that current al-
gorithms based on cardinality constraints must face. In-
deed, as discussed in Section 3.2, PMRES handles cores by
means of clauses of two and three literals. However, by
restating PMRES in terms of cardinality constraints, a more
general algorithm emerges, which eventually results in the
parametrized K. Actually, K combines the strengths of both
PMRES and OLL. In fact, by bounding the size of constraints
as in PMRES, K is not affected by the exponential increase
of the number of refutations. Moreover, it can be observed
empirically that OLL and ONE usually discover smaller cores
than PMRES, which is due to the fact that several variables in-
troduced by PMRES for processing a core can possibly be part
of a new core, while this cannot happen for OLL and ONE.

6 Conclusion
ONE and K extend and generalize two successful core-guided
algorithms, namely OLL and PMRES. ONE and K are imple-
mented in MAXINO, a pseudo-Boolean solver extending GLU-
COSE. Even if the solver itself is new, and therefore it does
not have the maturity of state-of-the-art systems, it performed
well on the industrial instances of the 2014 MaxSAT Evalu-
ation. In fact, while the unbounded ONE performed worse
than CLASP running OLL on unweighted instances, and the
implementation of PMRES solved a few instances less than
EVA, sensible performance gains have been observed for the
parametrized K. It is interesting to note that such performance
gains are obtained for several values of the parameter, which
is an insight that usually the performance of OLL and simi-
lar algorithms deteriorates because of a few, huge cores. This
may suggest, as a future work, a dynamic implementation of
K, where the parameter is not fixed a priori but set on a per-
core basis, according to a function taking into account the size
of the core. Configuration techniques such as those used by
ISAC+ [Ansótegui et al., 2014] may be also considered for
this purpose. Finally, ONE and K will be extended to Answer
Set Programming and implemented in the ASP solver WASP
[Alviano et al., 2013; 2014].
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