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Abstract
Query answering under existential rules — impli-
cations with existential quantifiers in the head —
is known to be decidable when imposing restric-
tions on the rule bodies such as frontier-guardedness
[Baget et al., 2010; 2011a]. Query answering
is also decidable for description logics [Baader,
2003], which further allow disjunction and func-
tionality constraints (assert that certain relations are
functions); however, they are focused on ER-type
schemas, where relations have arity two.
This work investigates how to get the best of both
worlds: having decidable existential rules on arbi-
trary arity relations, while allowing rich descrip-
tion logics, including functionality constraints, on
arity-two relations. We first show negative results
on combining such decidable languages. Second,
we introduce an expressive set of existential rules
(frontier-one rules with a certain restriction) which
can be combined with powerful constraints on arity-
two relations (e.g. GC2,ALCQIb) while retaining
decidable query answering. Further, we provide
conditions to add functionality constraints on the
higher-arity relations.

1 Introduction
Recent years have seen an explosion of techniques for solving
the query answering problem: given a query q, a conjunc-
tion F of atoms, and a set of logical constraints Σ, determine
whether q follows from F and Σ. In databases this is called
querying under constraints or the certain answer problem, see-
ing F as an incomplete database, and Σ as restrictions on the
possible completions. For researchers working on description
logics, F is referred to as the A-box and Σ the T-box. In both
communities q is usually a conjunctive query, an existential
quantification of conjunctions of atoms, equivalent to a basic
SQL SELECT. We will make this assumption throughout this
work, referring for simplicity to the problem as just “query
answering” (QA).

QA is undecidable when Σ ranges over arbitrary first-order
logic constraints. This motivates the search for restricted con-
straint languages with decidable QA. Within the description

logic community, powerful such languages were developed to
express constraints on vocabularies of arity two. The unary
relations are referred to as concepts while the binary ones are
the roles. The languages can build new concepts and roles
from basic ones via Boolean operations and (limited) quantifi-
cation, and many of them, such as DL-Lite [Calvanese et al.,
2005] orALCQIb [Tobies, 2001], may restrict the input roles
R(x,y) to be functional – for all x there is at most one y such
that R(x,y). Functionality constraints are crucial to faithfully
model many real-world relationships: the relationship of a
person to their birthdate, the relationship of an event to its
starting time, etc. Hence, description logics are very powerful
languages for arity-two vocabularies.

In parallel, the AI and database communities have devel-
oped rich constraint languages on arbitrary arity via existential
rules or tuple-generating dependencies (TGDs). Existential
rules are constraints of the form ∀x (φ(x) → ∃y ψ(x′,y))
where x′ ⊆ x and φ and ψ are conjunctions of atoms. They
generalize the well-known inclusion dependencies or refer-
ential constraints in databases [Abiteboul et al., 1995], and
can also express mapping relationships used in data exchange
[Fagin et al., 2005] and data integration [Lenzerini, 2002].
Although QA over general rules is undecidable, important
subclasses are decidable. First, decidability holds whenever
the chase procedure [Abiteboul et al., 1995] is guaranteed to
terminate, which is ensured by a number of conditions on the
rules, e.g., weak acyclicity [Fagin et al., 2005], joint acyclicity
[Krötzsch and Rudolph, 2011], or the very restricted class of
source-to-target TGDs. See [Grau et al., 2013] for a survey and
[Baget et al., 2014] for a recent study. A second class of tame
constraints are those that admit bounded-treewidth models.
There are several such classes, such as guarded TGDs [Calì
et al., 2012a], frontier-guarded TGDs [Baget et al., 2010], or
the more general greedy bounded-treewidth sets [Baget et al.,
2011b]. However, many features of description logics, such as
disjunction or functionality restrictions, cannot be expressed
by existential rules.

Could we then enjoy the best of both worlds, by allowing
both description logic constraints and existential rules, while
maintaining the decidability of QA? This paper studies to what
extent both paradigms can be combined, by looking for classes
of constraints with decidable QA over relational schemas of
arbitrary arity that can 1. express non-trivial existential rules
over any relation in the schema and 2. assert expressive con-
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straints (e.g., in ALCQIb) on the arity-two subschema — the
subset of the relations of arity one and two within the schema

Our first results (Section 3) are negative: we show that arity-
two languages featuring functionality constraints on the arity-
two subschema may lead to undecidable QA when combined
with even very simple acyclic rules (source-to-target TGDs,
S2T), or with the simplest existential rules that export two
variables (frontier-two inclusion dependencies, ID[2]). More
surprisingly, undecidability can occur with rules exporting
only a single variable, the class of frontier-one dependencies
FR[1] of [Baget et al., 2009]. We say the existential rule
languages S2T, ID[2], FR[1] are destructive of arity-two QA.

We then show (Section 4) that by restricting FR[1] slightly,
imposing that the head of the rules have a certain tree shape
(denoted “non-looping”), we can obtain a class of existential
rules that can be combined with expressive constraints on the
arity-two schema while maintaining decidable QA (we call
this not destructive). The reduction proceeds in two steps.
We first handle rules with tree-shaped bodies, via a direct
rewriting technique to constraints on an arity-two encoding
of the schema. Second, we handle rules with non-tree-shaped
bodies, showing that the bodies can be soundly replaced by a
tree-shaped approximation. Soundness is proven by extending
the technique of “treeification” used previously in many modal
and guarded logics (e.g., [Bárány et al., 2014]), showing that
models of the constraints can be “unraveled” to be tree-shaped.

We go on to study (Section 5) the addition of functional
dependencies (FDs), a well-known generalization of descrip-
tion logic functionality constraints to arbitrary arity. QA with
existential rules and FDs is generally undecidable unless their
interaction with the existential rules is controlled, e.g., by
imposing the non-conflicting condition [Calì et al., 2012b].
We show that FDs can be added to our existential rules while
maintaining decidable QA with the arity-two constraints, as
long as the non-conflicting condition is satisfied. As in the
standard non-conflicting setting, we show that the FDs can
always be satisfied unless the initial facts violate them. We
prove this by modifying the unraveling argument.

Our results have the advantage that QA for our combined
constraints reduces to QA on an arity-two schema; hence,
existing QA algorithms for rich description logics could be ex-
tended to arbitrary arity signatures with expressive constraints.

Related work. A great deal of research has centered around
the integration of DLs with Datalog-style rules, including work
as early as the 1990’s, when the languages AL-Log [Donini
et al., 1991] and CARIN [Levy and Rousset, 1998] were
introduced. AL-Log links Horn rules with concepts from a
description logic terminology, while the later language CARIN
provides a broader framework allowing both concepts and
roles from a terminology to appear in rules. [Levy and Rousset,
1998] provides both entailment algorithms for CARIN and
undecidability results exploring the borderline for combining
rules and DLs.

Datalog rules, however, unlike the existential rules that we
consider in this work, do not allow existential quantification
in the head, so they cannot assert the existence of higher-arity
facts on fresh elements.

Another approach to combination are description logics

that support higher-arity relations directly. Languages such as
DLRreg [Calvanese et al., 2008] give some support for higher
arity while retaining a DL-style syntax. Unlike them, we
support existential rules with cyclic bodies that cannot be en-
coded in DLRreg, as well as arbitrary higher-arity functional
dependencies that go beyond DL-expressible functionality as-
sertions. On the other hand, we do not support some features
of DLRreg, such as regular expression on role paths. Indeed,
we do not consider the interaction of rules with DLs support-
ing transitivity and other recursion mechanisms [Glimm et
al., 2008], focusing instead only on first-order-expressible
constraints given by decidable DLs and existential rules.

2 Preliminaries

Signatures, facts, queries. A signature σ consists of relation
names (e.g. R) and an associated arity (e.g. |R|). We write σ

as σ≤2tσ>2, containing respectively the relations of arity≤ 2
and the higher-arity relations with arity > 2. An atom R(x)
consists of a relation name R and an |R|-tuple x of variables.
A σ -fact (or just fact when σ is clear from context) is a con-
junction of atoms using relations in σ . A Boolean conjunctive
query (or CQ) is an existentially quantified conjunction of
atoms. In this paper we assume for simplicity that CQs are
Boolean, i.e., have no free variables, and we disallow constants.
This is without loss of generality: for non-Boolean queries we
can enumerate all possible assignments, and constants can be
encoded with fresh unary relations.

Constraints, QA. We consider constraints that are formu-
lae in function-free and constant-free first-order logic (FO), on
the signature σ . A σ -interpretation I (or just interpretation)
consists of a domain dom(I) and an interpretation function
·I mapping each relation R of σ to a set RI of |R|-tuples
of dom(I). The definition of I satisfying a FO formula φ ,
written I |= φ , is standard. A witnessW of F in I is an inter-
pretation that maps each relation R to the tuples in RI obtained
by substituting the atoms of F using some variable binding w
such that I |= F(w).

We study the query answering problem (QA): given a fact F ,
a set of constraints Σ, and a CQ q, decide the validity of
∀x (F(x)∧Σ→ q); that is, whether F and Σ entail q. In this
case, we write F ∧Σ |= q. The combined complexity of QA,
for a fixed class of constraints, is the complexity of deciding
it when all of F , Σ (in the constraint class) and q are given as
input. If we assume that Σ and q are fixed, and only F is given
as input, then we define instead the data complexity.

The QA problem above allows arbitrary FO constraint
classes. Below we present two kinds of integrity constraints
that are known to enjoy decidable QA.

Existential rules. An existential rule (or tuple-generating
dependency, or TGD) is a logical constraint of the form
∀x (φ(x)→∃y ψ(x′,y)), with x′ ⊆ x, where the body φ and
head ψ are conjunctions of atoms. Equality atoms and con-
stants are disallowed. For brevity, in rules we often omit
the quantification on x and write ‘∧’ as a comma. A rule is
single-head if its head consists of only one atom.

QA is undecidable for general rules (following from [Beeri
and Vardi, 1981]). One class of rules with decidable QA are
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those satisfying acyclicity conditions. We will show negative
results for one of the most restrictive classes, the class S2T of
source-to-target TGDs, where σ is partitioned as σ = σStσT,
the bodies of all rules only use relations in σS, and the heads
only use relations in σT. Our results on S2T extend to more
permissive acyclicity conditions, such as those mentioned in
the introduction.

A second class of decidable rules guarantees that it suffices
to consider bounded-treewidth interpretations, usually because
of constraints on the rule bodies. We focus on the class FR[1]
of frontier-one rules, following [Baget et al., 2009]: the fron-
tier of a rule is the set x′ of variables that occur both in the
body and the head, and a rule is frontier-one if |x′|= 1. The
class of inclusion dependencies ID imposes that the head and
body are single atoms where each variable is used only once
and that the frontier is not empty, and we will focus on the
class ID[2] of the inclusion dependencies with frontier size 2.
QA is decidable for FR[1] [Baget et al., 2009]. For ID it is
decidable and has PTIME data complexity [Calì et al., 2003b].

Existential rules can be augmented with functional depen-
dencies (FDs), which are variants of existential rules that im-
pose equalities. Writing ∀x = ∀x1 · · ·∀xn and similarly for y,
an FD on the relation R is of the form:
∀xy (R(x1, . . . ,xn)∧R(y1, . . . ,yn)∧

∧
l∈L xl = yl)→ xr = yr

for some 1≤ r ≤ |R| and some subset L⊆ {1, . . . , |R|} which
we call the determiner of the FD. QA is undecidable when
combining existential rules and arbitrary FDs, for instance it
is undecidable for ID[2] and FDs [Calì et al., 2003a].

Arity-two constraints. The second kind of tame con-
straints are arity-two constraints, which are only defined
on σ≤2. The most general such language that we study is
the two-variable guarded fragment with counting quantifiers,
GC2 [Kazakov, 2004]. GC2 is the smallest class of constant-
free FO formulae with at most two variables, containing all
atoms for σ≤2 relations, closed under Boolean connectives, un-
der guarded universal and existential quantification, and under
number quantifications: if φ(x,y) is a GC2 formula and A(x,y)
is an arity-two atom with two free variables (the guard), then
∃≥ny A(x,y)∧φ(x,y) and ∃<ny A(x,y)∧φ(x,y) are formulae,
where n is an integer. QA for GC2 is decidable and its data
complexity is in co-NP [Pratt-Hartmann, 2009].

Description logics (DLs) are arity-two constraint languages.
Examples of DLs are DL-Lite [Calvanese et al., 2005], a
lightweight DL often used in the context of ontology-based
data access, and ALCQIb [Tobies, 2001], a more expressive
DL that can make full use of number restrictions, a useful
feature in practice. Both DL-Lite and ALCQIb can assert
concept inclusions like C vC′, where C and C′ are concepts
(arity 1 relations), meaning that C′ holds whenever C does;
and functionality assertions funct(R), where R is a role (an
arity 2 relation), corresponding to ∀x ∃≤1y R(x,y) in GC2, or
to the FD: ∀x1x2y1y2 R(x1,x2)∧R(y1,y2)∧x1 = y1→ x2 = y2.
Despite its expressiveness, ALCQIb can still, as DL-Lite, be
captured by GC2, which implies decidable QA.

Roles and concepts can be atomic (i.e., from σ≤2) or defined
using constructors; we give some examples from ALCQIb.
The inverse R− of an atomic role R is such that R−(b,a) holds
whenever R(a,b) does. An intersection of roles, which is

written R1u·· ·uRn, holds for (a,b) whenever Ri(a,b) holds
for all 1 ≤ i ≤ n. > and ⊥ are the true and false concepts.
The intersection of concepts C1, . . . ,Cn, written C1u·· ·uCn,
holds whenever each of the Ci does. The negation ¬C of a
concept C holds for elements where C does not hold. An
existential concept ∃R.C for a role R and concept C holds
for every element a such that ∃b R(a,b)∧C(b) does. Note
that many of these features (e.g., functionality assertions and
negation) cannot be expressed as existential rules.

Combining constraint classes. For any class CL of exis-
tential rules, we call CL non-destructive (of arity-two QA)
if QA is decidable for the class CL∧GC2 of conjunctions of
constraints of CL (on σ ) and of constraints of GC2 (on σ≤2).
Otherwise, we call CL destructive.

3 Negative Results for Combination
We now present classes of existential rules which have de-
cidable QA but are destructive. First, we observe that even
the simplest class of rules that ensures decidability based on
chase termination, the class S2T of source-to-target TGDs,
is destructive. This is not so surprising, since the arbitrary
constraints on the arity-two signature may add dependencies
that are not source-to-target.

Theorem 3.1. S2T is destructive of arity-two QA, even when
the whole σ has arity two and there is no query (i.e., this
is just the satisfiability problem asking whether the fact and
constraints are satisfiable).

Thus we move on to classes of existential rules that are
decidable because of guardedness assumptions.

We first observe that the class ID[2] of frontier-two inclusion
dependencies is destructive of arity-two QA. In fact, function-
ality assertions on the binary relations are sufficient to get
undecidability, because they can be lifted to functionality as-
sertions on higher-arity relations using ID[2]. Thus, following
a standard reduction from QA to entailment of dependencies
as in [Calì et al., 2003a], we can use the undecidability of
entailment for ID[2] and FDs (Theorem 2 of [Mitchell, 1983],
which we adapt slightly) and prove the following:

Theorem 3.2. ID[2] is destructive of arity-two QA. In partic-
ular, QA is undecidable for ID[2]∧D, for any DL D (such as
DL-Lite) featuring functionality assertions.

More surprisingly, frontier-one rules FR[1] are destructive
of arity-two QA, even though they can only export a single
variable, and this holds even when the whole σ has arity two.
The reason is that FR[1] may be more expressive than GC2 as
it can disobey the two-variable restriction.

Theorem 3.3. FR[1] is destructive of arity-two QA, even when
the whole σ has arity two and there is no query.

This motivates the search for more restricted existential rule
classes which could be non-destructive of arity-two QA.

4 From Existential Rules to Arity-Two
We will focus on the subclass of frontier-one rules whose
heads do not contain non-trivial Berge cycles [Fagin, 1983].
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Definition 4.1. A Berge cycle in a conjunction of atoms Ψ is
a sequence A1,x1,A2,x2, . . . ,An,xn of length n > 1 where the
xi are pairwise distinct variables, the Ai are pairwise distinct
atoms of Ψ, and every xi occurs in atoms Ai and Ai+1 (with
addition modulo n, so xn occurs in A1).

We say Ψ is non-looping if there is no Berge cycle of length
above 2, and no Berge cycle that contains an atom of σ>2.

We define the head-non-looping FR[1]Hnl subclass of FR[1]
rules whose heads are non-looping. In particular, single-head
FR[1] rules are always head-non-looping.
Example 4.2. Rules A(x)→ ∃yz R(x,y),S(y,z),T (z,x) and
B(y)→ ∃yz R(x,y),U(x,y,z) are not in FR[1]Hnl. However,
A(x)→ ∃y V (x,x,y,y) and B(x)→ ∃y R(x,y),S(x,y),R(y,x)
are in FR[1]Hnl.

We claim that head-non-looping rules are non-destructive,
in contrast with general frontier-one rules (Theorem 3.3):
Theorem 4.3. FR[1]Hnl is not destructive of arity-two QA.

Of course, this means that QA is decidable for FR[1]Hnl∧D,
for any DL D expressible in GC2, such as ALCQIb. The rest
of this section proves the theorem and addresses complexity.

Shredding. Our proof of Theorem 4.3 translates the
FR[1]Hnl rules to arity-two constraints, using a common way
to represent general relational databases in a binary relational
store, which we call shredding: we represent an n-ary relation
by a set of binary relations giving the link from each tuple
(materialized as an element) to its attributes. We present first
the translation of the signature σ to its shredded arity-two sig-
nature σS, and the constraints imposed on σS-interpretations
to ensure that they can be decoded back to σ -interpretations.
Second, we explain how to shred facts and CQs.
Definition 4.4. The shredded signature σS of a signature σ

consists of σ≤2, a unary relation Elt, and, for each R ∈ σ>2, a
unary relation AR and binary relations Ri for 1≤ i≤ |R|.

The well-formedness constraints of σS, written wf(σS), are
the following DL constraints (they are ALCQIb-expressible):
• C v Elt for every unary relation C of σ≤2
• ∃R.>v Elt and ∃R−.>v Elt for all binary R of σ≤2

and the following, where R 6= S are in σ>2 and 1≤ i≤ |R|:
• ∃Ri.>v AR and ∃R−i .>v Elt
• EltuAR v⊥ and ARuAS v⊥
• AR v ∃Ri.> and funct(Ri)

The shredding SHR(F) of a σ -fact F is the σS-fact ob-
tained by adding the atom Elt(x) for each variable x of F and
replacing each atom R(x) of F when R ∈ σ>2 by the atoms
AR(t) and Ri(t,xi) for 1≤ i≤ |R|, for t a fresh variable. The
shredding SHR(q) of a CQ q is similarly defined.
Example 4.5. Considering CQ q : ∃xyz U(x),R(x,y),S(z,z,x),
we define SHR(q) as: ∃xyzt Elt(x),Elt(y),Elt(z),U(x),
R(x,y),AR(t),S1(t,z),S2(t,z),S3(t,x).

Fully-non-looping. The interesting part is to define the
shredding of FR[1]Hnl rules. We first restrict to the class of
fully-non-looping rules, FR[1]Fnl, whose head and body are
non-looping. We show that FR[1]Fnl can be directly shredded
to GC2. We will later move from FR[1]Fnl to FR[1]Hnl.

For any existential rule τ : ∀x φ(x) → ∃y ψ(x′,y) with
x⊆ x′, we define its shredding SHR(τ) as the existential rule

∀xt (SHR(φ(x)))→∃yt′ (SHR(ψ(x′,y))), where t and t′ are
the fresh elements introduced in the shredding of φ and ψ

respectively. We claim the following:
Lemma 4.6. For any FR[1]Fnl rule τ , SHR(τ) can be trans-
lated in PTIME to a GC2 sentence on σS.
Example 4.7. For brevity, this example ignores the Elt and
AR atoms when shredding. Consider the FR[1]Fnl rule:
U(u),T (u,x),S(x)→∃yz T (x,y),U(y),R(x,x,z,z)
Its shredding is expressible in GC2 (and even in ALCQIb):
(∃T−.U)uSv (∃T.U)u (∃(R−1 uR−2 ).(∃(R3uR4).>))

By contrast, consider the following rule in FR[1]\FR[1]Hnl:
U(x)→∃yz R(x,y),S(x,y,z)
Its shredding is as follows; it is not GC2-expressible:
U(x)→∃yzt R(x,y),S1(t,x),S2(t,y),S3(t,z)

In the general case, the GC2 rewriting of Lemma 4.6 is
obtained in PTIME by seeing the body and head of SHR(τ)
as a tree, which is possible because τ is fully-non-looping.

It is now easy to show the following general result:
Proposition 4.8 (Shredding). For any fact F, GC2 con-
straints Σ, existential rules ∆ and CQ q, the following are
equivalent:
• F ∧Σ∧∆ |= q;
• SHR(F)∧Σ∧SHR(∆)∧wf(σS) |= SHR(q).
Thus, from Lemma 4.6, as SHR(F), SHR(∆), σS, wf(σS),

and SHR(q) can be computed in PTIME following their defi-
nition, we deduce the following, in the case of FR[1]Fnl:
Corollary 4.9. QA for GC2 and FR[1]Fnl constraints can be re-
duced to QA for GC2 in PTIME; further, when the constraints
and query are fixed in the input, they also are in the output, so
data complexity bounds for GC2 QA are preserved.

This concludes the proof of Theorem 4.3 for FR[1]Fnl con-
straints. It further implies that QA for GC2 and FR[1]Fnl has
co-NP-complete data complexity, like GC2, [Pratt-Hartmann,
2009], and the combined complexity is the same as for GC2.

Note that, although QA for GC2 is decidable, we know of
no realistic implementations. Our translation could however
reduce instead to arity-two QA with constraints in DLs such as
ALCQIb, if we impose impose additional minor restrictions
on the FR[1]Fnl rules (e.g., no atom of the form S(x,x)). For
simplicity, however, we focus in the sequel on reductions to
decidable QA on arity-two (i.e., translating to GC2) rather than
investigating which restrictions would ensure that the output
of our translations can be expressed in particular DLs.

Head-non-looping. We now extend the claim to FR[1]Hnl

rather than FR[1]Fnl. The idea is that we rewrite FR[1]Hnl rules
to FR[1]Fnl by treeifying them, considering all possible fully-
non-looping rules that they imply, and all possible ways that
they can match on the parts of the interpretations that satisfy
the fact. To formalize this, we assume that we have added to
the fact F one atom Px(x) for each variable x of F , where each
Px is a fresh unary relation. We then define:
Definition 4.10. The treeification on fact F of a FR[1]Hnl

rule τ : ∀x (φ(x)→∃y ψ(xf,y)), where xf ∈ x is the frontier
variable, is the conjunction TRF(τ) of FR[1]Fnl rules defined
as follows:
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• consider every mapping f from x to itself, and let f (τ)
be obtained from τ by renaming all variables in x with f ;
• for every such f (τ), consider every x′ ⊆ x and every

mapping g from x′ to the variables of F, and construct
g( f (τ)) by replacing every occurrence of each x ∈ x′ in
φ(x) by fresh variables x1, . . . ,xn, and adding the facts
Pg(x)(xi) for all x ∈ x′ and all i (if xf ∈ x′, also replace xf
in ψ(xf,y) by one of its copies);
• if g( f (τ)) is fully-non-looping, add it to TRF(τ).

Example 4.11. Consider a fact F and the following rule τ:
R(x,y),S(y,z),T (z,w),U(w,x)→ A(x)
The treeification TRF(τ) contains the rule:
R(x,y),S(y,z),T (z,y),U(y,x)→ A(x).

Consider the rule τ ′ : R(x,y),S(y,x,x)→ A(x), and a fact F
containing variable z. Then TRF(τ

′) contains:
R(x1,y),S(y,x2,x3),Pz(x1),Pz(x2),Pz(x3)→ A(x1)

We now claim:
Proposition 4.12. For any fact F, GC2 constraints Σ,
FR[1]Hnl rules ∆ and CQ q, the following are equivalent:
• F ∧Σ∧∆ |= q;
• F ∧Σ∧TRF(∆) |= q.
This proposition implies that QA for FR[1]Hnl and GC2 can

be reduced to QA for FR[1]Fnl and GC2, which is decidable by
the Shredding Proposition, proving Theorem 4.3.

To prove Proposition 4.12, for the first direction, if F ∧
Σ∧ ∆ 6|= q, one can show that all of the fresh unary rela-
tions Px in an interpretation of F ∧ Σ ∧ ∆ ∧ ¬q can be as-
sumed to be interpreted by one tuple. One then shows that
∆ implies TRF(∆) on such interpretations. For the other di-
rection, assuming that F ∧Σ∧TRF(∆) 6|= q, the Shredding
Proposition implies that there is a σS-interpretation J of
Θ ··= Σ∧SHR(TRF(∆))∧wf(σS), ¬q′ ··= ¬SHR(q), and the
existential closure of F ′ ··= SHR(F). We apply an unraveling
argument to show that J can be made cycle-free:
Definition 4.13. The Gaifman graph G(I) of an interpreta-
tion I is the undirected graph on dom(I) connecting any two
elements co-occurring in a tuple of I . Given a fact F, an inter-
pretation I is cycle-free except for F if F has a witnessW in I
such that any cycle of G(I) is only on elements of dom(W).
Lemma 4.14 (Unraveling). For any σS-fact F ′, GC2 con-
straints Θ, and CQ q′, if (∃xt F ′(x, t))∧Θ∧¬q′ is satisfiable
then it has an interpretation which is cycle-free except for F ′.

Letting J ′ be the unraveling of our interpretation J (ob-
tained by the Unraveling Lemma), we can then “unshred” J ′
back to a σ -interpretation I:
Definition 4.15. The unshredding I of a σS-interpretation
J |= wf(σS) is obtained by setting RI ··= RJ for R ∈ σ≤2,
and, for all R ∈ σ>2 and t ∈ AJ

R , creating the tuple a ∈ RI

such that (t,ai) ∈ RJ
i for all 1≤ i≤ |R|.

As in the proof of the Shredding Proposition, we can show
that the unshredding I is well-defined and satisfies the un-
shredded constraints (∃x F(x))∧Σ∧TRF(∆)∧¬q. Further,
we show that it satisfies ∆ and not just TRF(∆), because a
match of a FR[1]Hnl rule τ in I must be a match of TRF(τ);
otherwise the match would witness that J ′ was not cycle-free:

Lemma 4.16 (Soundness). For a σ -fact F, FR[1]Hnl rule τ

and σS-interpretation J , if J satisfies SHR(TRF(τ)) and is
cycle-free except for SHR(F), then the unshredding I of J
satisfies τ .

We conclude by sketching the proof of the Unraveling
Lemma, which follows [Kazakov, 2004; Pratt-Hartmann,
2009]. From an interpretation J of (∃xt F ′(x, t))∧Θ∧¬q′,
for all u 6= v in dom(J ) co-occurring in some tuple of J , we
call a bag the interpretation with domain {u,v} consisting of
the tuples of J mentioning only u,v. We build a graph G
over the bags by connecting bags whose domain shares one
element. We pick a witnessW of F ′ in J and merge in the
fact bag all bags whose domain is included in dom(W).

An unraveling is a tree T of bags obtained by unfolding G
starting at the fact bag, which is preserved as-is. Each bag b
of T except the fact bag has a domain containing two elements:
one of them occurs exactly in b, its siblings and its parent; the
other occurs exactly in b and its children (it is introduced in b).
We see T as an interpretation formed of the union of its bags.

We construct T from G inductively. For any bag b in T
corresponding to a bag b′ in G, construct the children of b as
follows. For each bag b′′ adjacent to b′ in G, if b′ and b′′ share
the element corresponding to the element u introduced in b,
create an isomorphic copy of b′′ as a child of b in T , whose
domain is u plus a fresh element, and perform the unraveling
process recursively on the children.

It can be shown that the unraveling operation preserves GC2

constraints, the fact F ′, and the negated CQ ¬q′. As T is a
tree, the interpretation it describes is cycle-free (except for the
witnessW , because we copied the fact bag as-is).

Complexity. Proposition 4.12 gives a reduction from
FR[1]Hnl and GC2 QA to FR[1]Fnl to GC2 QA, but its out-
put is of exponential size in the input, because of treeification.
Hence, letting f(n) bound the size of the output of our re-
duction given an input of size n, and letting g(n) bound the
combined complexity of GC2 QA, we have shown an upper
bound of g(f(n)) for QA for FR[1]Hnl and GC2.

Further, treeification rewrites the rules in a fact-dependent
way, so, unlike the previous case of FR[1]Fnl and GC2 QA, data
complexity bounds for GC2 QA do not imply data complexity
bounds for FR[1]Hnl and GC2 QA.

5 Adding Functional Dependencies
The previous section showed that the language of head-non-
looping frontier-one rules is not destructive of GC2 QA. How-
ever, another kind of rules that we would want to support on
higher-arity relations are functional dependencies (FDs).

It is well-known that QA is undecidable for, e.g., ID[2]
and arbitrary FDs [Calì et al., 2003a], so such constraints are
trivially destructive. As it turns out, undecidability also holds
for FR[1]Hnl rules and FDs; in fact, even for single-head FR[1]
rules and FDs:

Theorem 5.1. QA is undecidable for FDs and single-head
frontier-one rules, even if all FDs have a determiner of size 1.

However, for certain kinds of existential rules and FDs,
QA is known to be decidable: this is in particular the case of
non-conflicting rules and FDs [Calì et al., 2012b]:
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Definition 5.2. We say that a single-head existential rule τ

is non-conflicting with respect to a set of FDs Φ if, letting
A = R(z) be the head atom of τ , letting S be the subset of
{1, . . . , |R|} such that zi is a frontier variable iff i ∈ S:
• No strict subset of S is the determiner of an FD in Φ;
• If S is exactly the determiner of an FD of Φ, then all

existentially quantified variables in A occur only once.
Note that this requires rules to be single-head, and thus

head-non-looping. Our result with respect to adding FDs is:
Theorem 5.3. Non-conflicting frontier-one rules and FDs are
non-destructive of arity-two QA.

In particular, single-head frontier-one rules and FDs are
non-destructive of arity-two QA if all variables in the head
atom of rules are assumed to have only one occurrence, as
this simple sufficient condition implies the non-conflicting
condition.

To prove the theorem, we assume without loss of generality
that we only have FDs on higher-arity relations, as we can
write them in GC2 otherwise. We cannot shred the FDs, as
they would translate to a functionality assertion for the path,
e.g., R−i ◦R j, which is not expressible in GC2 (and not even
in expressive DLs such as SROIQ [Horrocks et al., 2006]).
However, we can show that, thanks to the non-conflicting re-
quirement, FDs can always be made to hold on interpretations,
as long as they hold on a witness of the fact.
Proposition 5.4. For any GC2 constraints Σ, non-conflicting
frontier-one rules ∆, FDs Φ on σ>2, σ -fact F, and CQ q, if
there is an interpretation I satisfying Θ ··= (∃x F(x))∧Σ∧
∆∧¬q and there is a witnessW of F in I satisfying Φ, then
Θ∧Φ is satisfiable.

We first prove Proposition 5.4. As in Section 4, con-
sider the treeification TRF(∆): it is still non-conflicting as
treeification only affects rule bodies. Use the Shredding
Proposition to obtain an interpretation J of ¬q′ ··= ¬SHR(q),
Θ ··= Σ∧SHR(TRF(∆))∧wf(σS), and the existential closure
of F ′ ··= SHR(F). By our hypothesis about the existence of a
witness, we can assume that J has a witnessW of F ′ whose
unshredding satisfies Φ.

In the previous section, we used the Unraveling Lemma to
show that J could be assumed to be cycle-free. We now mod-
ify the lemma to additionally ensure the following property
on J , which will forbid FD violations in its unshredding:
Definition 5.5. Given a set of FDs Φ on σ>2, a σS-
interpretation J , and a witness W of a fact in J , we call
J FD-safe except for W if for every a ∈ dom(J ), for any
R ∈ σ>2 and FD determiner P of R in Φ, considering each
t ∈ dom(J ) such that (t,a) ∈ RJ

i for every i ∈ P, either there
is at most one such t or all are in dom(W).

FD-safety is useful for the following reason:
Lemma 5.6. For any set of FDs Φ on σ>2, for any σS-
interpretation J which is cycle-free and FD-safe except for
a witness W , if the unshredding of W satisfies Φ, then the
unshredding of J satisfies Φ.

We now claim a variant of the Unraveling Lemma:
Lemma 5.7 (FD-aware unraveling). Let Σ be a GC2 con-
straint, F a σ -fact, q a CQ, ∆ non-conflicting frontier-one

rules and Φ a set of FDs on σ>2. Let J be an interpretation
satisfying Θ ··= (∃xt SHR(F)(x, t)) ∧ Σ ∧ SHR(TRF(∆)) ∧
wf(σS)∧¬SHR(q), andW a witness of SHR(F) in J . Then
there is an interpretation J ′ satisfying Θ such that W is a
witness of SHR(F) in J ′, and J ′ is cycle-free and FD-safe
except forW .

We prove the lemma by tweaking the unraveling process
to ensure FD-safety: when creating children of each bag b in
the unraveling T for neighbors of its corresponding bag b′ in
the bag graph G, omit some neighbors that contain shreddings
of higher-arity tuples if the shared element u occurs in a strict
superset of an FD determiner of Φ, and unravel differently the
neighbors where u occurs exactly at a determiner. This unrav-
eling still satisfies Σ, ¬q′, and the existential closure of F ′, and
satisfies SHR(TRF(∆)): the non-conflicting condition ensures
that the omitted facts were not required by a rule.

We then apply the FD-aware Unraveling Lemma to J and
consider the unshredding I of the result; it satisfies all neces-
sary constraints as in Section 4, including Φ by Lemma 5.6.
This proves Proposition 5.4.

We conclude by proving Theorem 5.3. We first observe that
the results of Section 4 extend to a more general notion of
fact that allows inequality axioms (x 6= y); indeed, inequalities
in the fact are preserved by shredding and unshredding, and
by unraveling. So Theorem 4.3 holds for such facts with in-
equalities, with the same complexity. Second, we enumerate
all possible equalities between variables of the fact F , and
for each possibility, consider the fact F= where variables are
merged following the equalities, and inequalities are asserted
between the remaining variables. Proposition 5.4 implies that
our original entailment holds iff all the derived entailments
hold where F is replaced by some F= whose canonical inter-
pretation satisfies Φ (this can be tested in PTIME for each F=).
Thus we have reduced to QA for FR[1]Fnl and GC2.

In terms of complexity, as GC2 QA is EXPTIME-hard in
combined complexity (because satisfiability for the usual two-
variable guarded fragment is EXPTIME-hard [Grädel, 1999]),
the additional exponential factor (from all possible F=) has no
impact, so the bounds of Section 4 also apply to QA for GC2

and non-conflicting frontier-one rules and FDs.

6 Conclusion
In this paper, we have studied the impact of existential rules
on the decidability of query answering for classes of arity-two
constraints. We also explained (in proving Theorem 5.3) how
the decidability extends when inequalities are allowed in facts.

We have limited our arbitrary arity constraints to rules, i.e.,
dependencies. In future work we will study how to extend
our results to arbitrary arity constraint languages with more
features, e.g., disjunction. We will also study what happens in
the presence of constants (or nominals), which are disallowed
in GC2 (and in the rule languages we consider), but are known
not to break decidability in arity-two contexts [Rudolph and
Glimm, 2010; Calvanese et al., 2009]. This, however, would
probably require different techniques, as unraveling may create
multiple copies of constants. Another question that would
probably require specific tools is the study of finite QA, i.e.,
QA restricted to finite interpretations.
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