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Abstract
The adoption of a generic contrariness notion in
ASPIC+ substantially enhances its expressiveness
with respect to other formalisms for structured ar-
gumentation. In particular, it opens the way to
novel investigation directions, like the use of mul-
tivalued logics in the construction of arguments.
This paper points out however that in the current
version of ASPIC+ a serious technical difficulty re-
lated with generic contrariness is present. With the
aim of preserving the same level of generality, the
paper provides a solution based on a novel notion
of closure of the contrariness relation at the level
of sets of formulas and an abstract representation
of conflicts between sets of arguments. The pro-
posed solution is shown to satisfy the same rational-
ity postulates as ASPIC+ and represents a starting
point for further technical and conceptual develop-
ments in structured argumentation.

1 Introduction
Research on structured argumentation has witnessed an in-
creasing interest in formalisms lying at an intermediate
level of abstraction between specific argumentation systems
and Dung’s argumentation frameworks (AF s) [Dung, 1995].
Among these formalisms, a preminent role is played by
ASPIC+, presented in [Prakken, 2010] “as a general abstract
model of argumentation with structured arguments” and de-
veloped in [Modgil and Prakken, 2013]. ASPIC+ is an ex-
tension of ASPIC [Amgoud et al., 2006], able to satisfy the
same rationality postulates [Caminada and Amgoud, 2007]
while offering a more general account of structured argumen-
tation. Indeed, in [Modgil and Prakken, 2013] ASPIC+ is
shown to capture a variety of existing argumentation systems.
A key aspect in this respect is the adoption of a generic, pos-
sibly asymmetric, relation of contrariness between formulas
while ASPIC assumes standard negation, i.e. a binary and
symmetric contrariness relation. While in [Prakken, 2010;
Modgil and Prakken, 2013] it is mainly emphasized that
generic contrariness is useful to encompass a larger variety
of more specific literature proposals, it can be observed that
this notion also opens the way to novel investigation direc-
tions, like the use of multivalued logics in the construction of

arguments (see [Baroni et al., 2015] for an initial analysis on
this issue). Consider for instance a logic encompassing three
truth values, namely T, F, U, standing for true, false, and un-
known (or, better, unknowable like in [Baroni et al., 2015]).
In this context, an argument concluding that the truth value of
a proposition P is F is not just in conflict with any argument
concluding that the truth value of P is T, but also with any
argument concluding that the truth value of P is U and so on.

As to the evaluation of argument acceptance, both ASPIC
and ASPIC+ rely on AF s. The rationality postulates pre-
scribe that the outcomes of this evaluation respect some clo-
sure and consistency properties when mapped back at the
instantiated level. Both in ASPIC and in ASPIC+ postulate
satisfaction is ensured on the basis of some well-formedness
assumptions, including some closure properties of the set of
strict rules. However, we show that the combination of a
generic contrariness relation and rule closure may give rise to
counterintuitive results. To solve this problem while preserv-
ing the generality of ASPIC+, we propose a modified version
of the formalism based on two main standpoints:

• a notion of closure of the contrariness relation, involving
sets of formulas rather than individual ones;

• an abstract representation for the evaluation of argument
acceptance using sets of arguments and their conflicts.

On the technical side, the proposed formalism is shown to
satisfy the rationality postulates of [Caminada and Amgoud,
2007], as a first and essential soundness requirement. On the
conceptual side, being based on a non-binary notion of argu-
ment conflict and being oriented to making the actual roots
of conflicts explicit, the formalism turns out to provide an
alternative approach to the representation and management
of articulated conflicts (like the tandem example in [Baroni
et al., 2011]) also with standard negation. Further, since it
shares several intuitions with the formalism of Abstract Argu-
mentation Systems (AASs) [Vreeswijk, 1997], our proposal
provides original formal tools enabling novel investigations
about the relationships between AASs, AF s, and ASPIC+.

The paper is organized as follows. Section 2 provides the
necessary background and Section 3 points out a problem-
atic aspect of ASPIC+. Section 4 introduces the proposed
modifications to the formalism and Section 5 deals with the
satisfaction of the rationality postulates. Section 6 provides
an example and, finally, Section 7 concludes the paper.
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2 Background
The following definition gives the minimal elements of
Dung’s theory of AF s used in this paper. The reader is re-
ferred to [Dung, 1995; Baroni et al., 2011] for more details.
We recall the definition of complete extension only since
many literature semantics (grounded, stable, preferred, semi-
stable, ideal) are complete-based (their extensions are a sub-
set of the complete extensions) and the results proved in this
paper directly carry over to any complete-based semantics.

Definition 1 An AF is a pair F = 〈A,→〉 where A is a set
of arguments and→⊆ A×A describes their attack relation,
so that (α, β) ∈→ (denoted α → β) indicates that α attacks
β. For a set S ⊆ A, the attackers of S are defined as S− =
{α ∈ A | ∃β ∈ S : α → β} and the attackees of S are
defined as S+ = {α ∈ A | ∃β ∈ S : β → α}. A set S ⊆ A
is conflict-free iff S ∩ S+ = ∅. S defends an argument α
iff {α}− ⊆ S+. The set of arguments defended by S in F
is denoted as DF (S). A set S is a complete extension of F ,
denoted S ∈ ECO(F), iff S is conflict-free and S = DF (S).

We recall in the sequel the essentials of the definition of
the ASPIC+ argumentation system, omitting some details not
required by the present paper.

Definition 2 An argumentation system is a tuple AS =
(L, ,̄R, n) where:

1. L is a logical language
2. ¯ is a contrariness function from L to 2L such that: (i) ϕ

is a contrary of ψ if ϕ ∈ ψ, ψ /∈ ϕ; (ii) ϕ is a contradic-
tory of ψ (denoted by ϕ = −ψ) if ϕ ∈ ψ, ψ ∈ ϕ; (iii)
each ϕ ∈ L has at least one contradictory

3. R = RS ∪ RD is a set of strict (RS) and defeasible
(RD) inference rules of the form ϕ1, . . . , ϕn → ϕ and
ϕ1, . . . , ϕn ⇒ ϕ respectively (where ϕi, ϕ are meta-
variables ranging over wff in L), andRS ∩RD = ∅

4. n : RD → L is a naming convention forRD.

A knowledge base is a subset of L including certain (called
axioms) and defeasible (called ordinary) premises. It gives
rise to the notion of argumentation theory.

Definition 3 A knowledge base in an argumentation system
AS = (L, ,̄R, n) is a set K ⊆ L consisting of two disjoint
subsetsKn (the axioms) andKp (the ordinary premises). The
tuple AT = (AS,K) is called an argumentation theory.

Two notions of consistency are considered in ASPIC+.

Definition 4 For any S ⊆ L, let the closure of S under strict
rules, denoted ClRS

(S), be the smallest set containing S and
the consequent of any strict rule in RS , whose antecedents
are in ClRS

(S). Then a set S ⊆ L is: (i) directly consistent
iff @ϕ,ψ ∈ S such that ϕ ∈ ψ; (ii) indirectly consistent iff
ClRS

(S) is directly consistent.

Arguments are built from a knowledge base using rules.

Definition 5 An argument a on the basis of a knowledge base
K in an argumentation system (L, ,̄R, n) is:

1. ϕ if ϕ ∈ K with: Prem(a) = {ϕ}; Conc(a) = ϕ;
Sub(a) = {ϕ}; Rules(a) = ∅; Top(a) = undefined.

2. a1, . . . an → (⇒) ψ if a1, . . . an are arguments
such that there exists a strict (defeasible) rule
Conc(a1), . . . Conc(an) → (⇒) ψ in RS (RD)
with: Prem(a) = Prem(a1) ∪ . . . ∪ Prem(an);
Conc(a) = ψ; Sub(a) = Sub(a1) ∪ . . . ∪ Sub(an) ∪
{a}; Rules(a) = Rules(a1) ∪ . . . ∪ Rules(an) ∪
{Conc(a1), . . . , Conc(an) → (⇒) ψ}; Top(a) =
Conc(a1), . . . , Conc(an) → (⇒) ψ; DefRules(a) =
{r | r ∈ Rules(a) ∩ RD}; StRules(a) = {r | r ∈
Rules(a) ∩RS}.

For any argument a, Premn(a) = Prem(a) ∩ Kn;
Premp(a) = Prem(a)∩Kp. a is: strict if DefRules(a) =
∅, defeasible if DefRules(a) 6= ∅; firm if Prem(a) ⊆ Kn;
plausible if Prem(a) * Kn; fallible if a is plausible or de-
feasible; finite if Rules(a) is finite.

We assume, as in [Modgil and Prakken, 2013], that the set
Prem(a) of premises of an argument a is always finite. An
argument may include both fallible (ordinary premises and
defeasible rules) and infallible (axioms and strict rules) ele-
ments. The following definition is based on this distinction.

Definition 6 For any set of arguments {a1, . . . , an} the
argument a is a strict continuation of {a1, . . . , an}
iff Premp(a) =

⋃n
i=1 Premp(ai); DefRules(a) =⋃n

i=1DefRules(ai); StRules(a) ⊇ ⋃n
i=1 StRules(ai);

Premn(a) ⊇ ⋃n
i=1 Premn(ai).

Some further notations are worth introducing.

Notation 1 1. Given S ⊆ L, S ` ϕ denotes that there
exists a strict argument a such that Conc(a) = ϕ, with
Prem(a) ⊆ S.

2. S `min ϕ denotes that S ` ϕ and @T ( S : T ` ϕ.

3. Given a set of arguments Σ, Prem(Σ) ,⋃
a∈Σ Prem(a), and similarly for Conc(Σ), Sub(Σ),

Rules(Σ), Top(Σ), DefRules(Σ), StRules(Σ).

The notion of c-consistency is based on contradiction.

Definition 7 A set S ⊆ L is c-consistent if for no ϕ it holds
that S ` ϕ,−ϕ. Otherwise S is c-inconsistent. S is mini-
mally c-inconsistent iff S is c-inconsistent and ∀S′ ( S, S′ is
c-consistent. An argument a on the basis of a knowledge-base
K in an argumentation system (L, ,̄R, n) is c-consistent iff
Prem(a) is c-consistent.

Accordingly, several properties for an argumentation the-
ory can be formulated.

Definition 8 Let AT = (AS,K) be an argumentation the-
ory, where AS = (L, ,̄R, n). AT is:

1. closed under contraposition iff for all S ⊆ L, ψ ∈ S,
ϕ ∈ L, if S ` ϕ then S \ {ψ} ∪ {−ϕ} ` −ψ;

2. closed under transposition iff
if ϕ1, . . . , ϕn → ψ ∈ RS then, for i = 1 . . . n,
ϕ1, . . . , ϕi−1,−ψ,ϕi+1, . . . , ϕn → −ϕi ∈ RS;

3. axiom consistent iff ClRS
(Kn) is directly consistent;

4. c-classical iff for any minimal c-inconsistent S ⊆ L and
for any ϕ ∈ S, it holds that S \ {ϕ} ` −ϕ;
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5. well formed if whenever ϕ is a contrary of ψ then ψ /∈
Kn and ψ is not the consequent of a strict rule.

Three kinds of attack among arguments are considered.

Definition 9 An argument a attacks an argument b iff a un-
dercuts, rebuts, or undermines b where:

• a undercuts b (on b′) iff Conc(a) ∈ n(r) for some b′ ∈
Sub(b) such that r = Top(b′) is defeasible.

• a rebuts b (on b′) iff Conc(a) ∈ ϕ for some b′ ∈ Sub(b)
of the form b′′1 , . . . , b

′′
n ⇒ ϕ. In such a case a contrary-

rebuts b iff Conc(a) is a contrary of ϕ.

• a undermines b (on b′) iffConc(a) ∈ ϕ for some b′ = ϕ,
ϕ ∈ Premp(b). In such a case a contrary-undermines b
iff Conc(a) is a contrary of ϕ.

Attack effectiveness, in some cases, depends on an order-
ing � among arguments, where a � b means that argument
b is at least as preferred as a and, following [Prakken, 2010],
we assume that � is a preorder. As usual a ≺ b iff a � b and
b � a; a ≈ b iff a � b and b � a.

Definition 10 An argument ordering � is reasonable iff:

1. ∀a, b if a is strict and firm and b is plausible or defeasi-
ble, then b ≺ a;

2. ∀a, b if a is strict and firm then a ⊀ b;

3. ∀a, a′, b with a′ a strict continuation of {a}, if a ⊀ b
then a′ ⊀ b and if b ⊀ a then b ⊀ a′

4. let Θ = {a1, . . . , an} be a finite set of arguments and
for i = 1 . . . n let a+\i be some strict continuation of
Θ \ {ai}. Then, it is not the case that ∀i a+\i ≺ ai.

Effective attacks give rise to defeat.

Definition 11 Let a attack b on b′. If a undercuts, contrary-
rebuts, or contrary-undermines b on b′, then a preference-
independent attacks b on b′, otherwise a preference-
dependent attacks b on b′. Then, a defeats b iff for some b′ ei-
ther a preference-independent attacks b on b′ or a preference-
dependent attacks b on b′ and a ⊀ b′. a strictly defeats b iff a
defeats b and b does not defeat a.

Two kinds of structured argumentation frameworks are de-
fined from an argumentation theory, using the attack relation.

Definition 12 Let AT = (AS,K) be an argumentation the-
ory. A (c-)structured argumentation framework ((c)−SAF )
defined by AT is a triple (Σ, C,�) where Σ is the set of
all (c-consistent) finite arguments constructed from K in AS
(henceforth called the set of arguments on the basis of AT ),
� is an ordering on Σ and (a, b) ∈ C iff a attacks b.

Well-definedness of (c-)structured argumentation frame-
works depends on the properties of the underlying theory.

Definition 13 A SAF defined by an AT is well-defined
iff AT is c-classical, axiom consistent, well formed and
closed under contraposition or closed under transposition;
A c−SAF defined by an AT is well-defined iff AT is axiom
consistent, well formed and closed under contraposition or
closed under transposition.

A traditional Dung’s framework is derived from a
(c)−SAF using the defeat relation.

Definition 14 Let ∆ = (Σ, C,�) be a (c)−SAF , and D ⊆
Σ × Σ be the defeat relation according to Def. 11. The AF
corresponding to ∆ is defined as F∆ = (Σ,D).

Compliance with rationality postulates is then proved in
[Modgil and Prakken, 2013] under the assumptions above.

Theorem 1 Let ∆ = (Σ, C,�) be a well-defined (c)−SAF
with reasonable � and E a complete extension of F∆. Then
• ∀a ∈ E if a′ ∈ Sub(a) then a′ ∈ E;
• {Conc(a) | a ∈ E} = ClRS

({Conc(a) | a ∈ E});
• {Conc(a) | a ∈ E} is consistent;
• ClRS

({Conc(a) | a ∈ E}) is consistent.

3 A problem in ASPIC+ without negation
Def. 2 is liberal about the notion of contrariness and con-
tradiction. In particular, it requires every ϕ ∈ L to have a
contradictory (to ensure that the items of Def. 8 using − are
well-founded) but leaves open the possibility of having more
than one contradictory. However this may give rise to difficul-
ties with the closure properties stated in Def. 8. To see this,
consider a simple language L6 = {B,M,D,T,A,O} meant
to intuitively correspond to the properties of being Bachelor,
Married, Divorced, Teen-ager, Adult, and Old respectively,
where the former three properties are mutually exclusive and
so are the three latter ones, hence B = {M,D}, M = {B,D},
D = {B,M}, and T = {A,O}, A = {T,O}, O = {T,A}.
Assume then that as a strict rule (e.g. imposed by law) a teen-
ager is a bachelor, i.e. T→ B ∈ RS .

Suppose now that closure under transposition is applied to
this rule. We get −B → −T, however both −B and −T ad-
mit two replacements, namely M or D and A or O respectively.
Hence a plain application of closure under transposition gen-
erates four strict rules: M → A, M → O, D → A, D → O.
It follows that both {M} and {D} are c-inconsistent. Then a
c-classical AT (required for a well-defined SAF ) would im-
pose ∅ ` −M and ∅ ` −D, leading to ∅ ` B,D,M, i.e. contra-
dictory conclusions should be strictly derived from the empty
set. Given that AT must be axiom consistent, it follows that
L6 with T→ B ∈ RS is forbidden in a well-defined SAF .

A well-defined c−SAF does not require a c-classical AT ,
but arguments must be c-consistent, which, in this case, im-
plies in particular that neither M nor D can be a premise. To
put it in other words, the fact that a teen-ager must be bach-
elor prevents you to have as a premise that a person is mar-
ried or divorced. Note that these observations do not affect
the correctness of the results in [Modgil and Prakken, 2013],
rather they show that multiple contradictories may give rise
to a collapse of the expressiveness of the system: consistency
is preserved at the price of very counterintuitive limitations.

One could fix this problem by requiring in Def. 8 every
element of the language to have exactly one contradictory.
Indeed the main example presented in [Modgil and Prakken,
2013] is coherent with this restriction. It may be noted how-
ever that this amounts to actually reintroduce negation within
the language, though in disguise. While using negation (and
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possibly also disjunction) would be appropriate to this toy
example, proposing it as the general solution to these diffi-
culties would compromise the aim of ASPIC+ of being as
language-independent as possible. Quoting [Prakken, 2010],
“formulas like bachelor and married can, if desired, be de-
clared contradictory without having to reason with an axiom
¬(bachelor ∧married)”. For similar reasons, we do not con-
sider other possible very specific technical fixes, like for in-
stance forbidding that two contraries of a formula are in turn
contrary each other. Thus, the goal of this paper is to devise
an alternative solution to achieve the same desirable results
obtained in [Modgil and Prakken, 2013] while keeping the
underlying language as generic as possible, namely equipped
only with a basic contrariness function.

4 Revising ASPIC+

We assume the same basic elements of ASPIC+ just removing
any further specification and constraint on the contrariness
function. Thus, in Def. 2 items 1, 3, and 4, are unmodified
while in item 2 we drop (iii). Defs. 3, 4, 5, 6, as well as
Notation 1 are also left unmodified.

We then leave apart c-consistency (Def. 7) and consider
the properties of Def. 8, used to introduce well-definedness.
To start, we keep only the properties of axiom consistency
and well-formedness and focus on the closure requirements.
Closure under transposition imposes a sort of explicit com-
pleteness of the set of strict rules, based on the − relation,
while closure under contraposition imposes this completeness
implicitly through the notion of strict derivation `.

The use of − being problematic, (explicit or implicit) clo-
sure of strict rules cannot be defined. One can, however, pur-
sue the complementary idea of establishing a closure of the
contrariness relation on the basis of the strict rules, according
to the fact that the contrariness relation captures some form of
(directional) incompatibility. The relevant intuition is as fol-
lows. Let ϕ ∈ ψ and χ → ϕ ∈ RS . Since ϕ is incompatible
with ψ and ϕ strictly follows from χ, one may require that χ
too is regarded as (directionally) incompatible with ψ. Fur-
ther, let ω → ψ ∈ RS . Since ϕ is incompatible with ψ and
when ω holds also ψ necessarily holds, one may require ϕ to
be incompatible with ω too. This needs two complements.

First, a strict rule may have multiple premises, e.g. in RS

we may have η, θ → ϕ. Then, it is the set {η, θ} to be in-
compatible with ψ. Similarly, if κ, λ → ψ we get that ϕ
is incompatible with {κ, λ}. These examples show that an
extended contrariness relation involving sets of formulas is
needed. Intuitively, this can be justified by the fact that nega-
tion is a collective notion (it includes whatever is incompati-
ble with the negated entity): if it is removed, the underlying
collections of elements have to be dealt with explicitly.

Second, strict derivation may involve several rules. Hence
the previous considerations need to be generalized to the
cases where we have ` instead of → in the formulas above.
More precisely, in order to ensure minimality in the identifi-
cation of incompatibilities, `min should be considered.

Accordingly, we introduce an extended contrariness rela-
tion between subsets of L obtained as a “completion” of the
basic contrariness relation .̄ A preliminary precisation is re-

quired. Taking into account Def. 5 and Notation 1, in an argu-
mentation theory strict derivation must start from the knowl-
edge base, i.e. S `min ϕ implies S ⊆ K. However, we aim
at defining a notion of closure that does not depend on the set
of premises but only on the contrariness relation and the set
of strict rules. To this purpose we need to define a notion of
strict derivability, rather than of strict derivation, namely the
possibility to derive a conclusion from some elements of the
language using strict rules only, independently of the pres-
ence of these elements in the knowledge base.

Definition 15 Given an argumentation system AS =
(L, ,̄R, n) the strict knowledge baseK∗AS forAS is given by
Kn = L, Kp = ∅ and the corresponding argumentation the-
ory is defined asAT ∗AS = (AS,K∗AS). S `∗ ϕ and S `∗min ϕ
denote respectively that S ` ϕ and S `min ϕ in AT ∗AS .

Note that from the finiteness of the set of premises of any
argument, it follows that whenever S `∗min ϕ, S is finite.

Definition 16 Given an argumentation system AS =
(L, ,̄R, n), let EC1(AS), EC2(AS),EC3(AS) be the follow-
ing subsets of 2L × 2L

• EC1(AS) = {({ϕ}, {ψ}) | ϕ ∈ ψ};
• EC2(AS) = {(S, {ψ}) | S `∗min ϕ and ϕ ∈ ψ};
• EC3(AS) = {(S, T ) | T `∗min ψ and (S, {ψ}) ∈
EC1(AS) ∪ EC2(AS)}.

The extended contrariness relation is defined as EC(AS) =
EC1(AS) ∪ EC2(AS) ∪ EC3(AS) ⊆ 2L × 2L.

A set is EC-incompatible if it corresponds to the union of
two contrary subsets according to EC(AS).

Definition 17 Given an AS = (L, ,̄R, n), a set S ⊆ L is
EC-incompatible, denoted as S ∈ ECI(AS), if there is some
T,U such that S = T ∪ U and (T,U) ∈ EC(AS).

We can now revise accordingly the various forms of attack.

Definition 18 Given an argumentation theory AT =
(AS,K), a set of arguments Σ attacks an argument b iff Σ
undercuts, rebuts, or undermines b where:

• Σ undercuts b (on b′) iff Conc(Σ)∪{n(r)} ∈ ECI(AS)
for some b′ ∈ Sub(b) such that r = Top(b′) ∈ RD.

• Σ rebuts b (on b′) iff for some b′ ∈ Sub(b) of the form
b′′1 , . . . , b

′′
n ⇒ ϕ the following condition holds: ∃T,U

such that T ∪ U = Conc(Σ) ∪ {ϕ}, (T,U) ∈ EC(AS)
and ϕ ∈ U . In this case Σ contrary rebuts b if there is
no V,W such that V ∪W = Conc(Σ)∪{ϕ}, (V,W ) ∈
EC(AS) and ϕ ∈ V .

• Σ undermines b (on b′) iff for some b′ = ϕ, ϕ ∈
Premp(b) the following condition holds: ∃T,U such
that T ∪ U = Conc(Σ) ∪ {ϕ}, (T,U) ∈ EC(AS)
and ϕ ∈ U . In this case Σ contrary undermines b if
there is no V,W such that V ∪W = Conc(Σ) ∪ {ϕ},
(V,W ) ∈ EC(AS) and ϕ ∈ V .

As the effectiveness of some attacks depends on the prefer-
ence relation, we need to generalize the notion of preference
ordering to our extended context.
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Definition 19 Given an argument ordering � on a set of ar-
guments Σ, we extend � to 2Σ × Σ as follows. An argument
a is at least as preferred as a set of arguments Θ, denoted as
Θ � a iff ∃b ∈ Θ such that b � a. a is strictly preferred to
Θ, denoted Θ ≺ a iff ∃b ∈ Θ such that b ≺ a, not strictly
preferred to Θ, denoted Θ ⊀ a iff @b ∈ Θ such that b ≺ a.

Accordingly, we can define an extended notion of defeat.

Definition 20 Let the set of arguments Θ attack an ar-
gument b on b′ according to Def. 18. If Θ under-
cuts, contrary-rebuts, or contrary-undermines b on b′, then
Θ preference-independent attacks b on b′, otherwise Θ
preference-dependent attacks b on b′. Then, Θ defeats b, de-
noted as Θ  b, iff either Θ preference-independent attacks
b on b′ or Θ preference-dependent attacks b on b′ and Θ ⊀ b′.

Lemmata 1 and 2 are used later (the proofs are omitted).

Lemma 1 If Θ is finite then ∃a ∈ Θ : (Θ \ {a}) ⊀ a.

Lemma 2 Given an argumentation theoryAT = (AS,K), if
Θ a then Θ b for every b such that a ∈ Sub(b).

We can now define an AF based on the above relation
of defeat in order to evaluate the justification status of argu-
ments. The idea is that the nodes of the framework represent
relevant sets of arguments. In particular we need a node for
each singleton corresponding to a produced argument, and a
node for each set that defeats some produced argument.

Definition 21 Given an argumentation theory AT =
(AS,K) with ordering �, let ARGS(AT ) be the set of the
arguments produced in AS on the basis of K. The set of rel-
evant sets of arguments of AT , denoted as RS(AT ), is de-
fined as RS(AT ) = {{a} | a ∈ ARGS(AT )} ∪ {Θ | Θ ⊆
ARGS(AT ) and ∃b ∈ ARGS(AT ) : Θ b}.

In the AF a relevant set of arguments attacks another one
(denoted as D-attacks) simply if it defeats one of its members.

Definition 22 Let Σ,Θ ∈ RS(AT ) for an argumentation
theory AT . Σ D-attacks Θ, denoted as Σ � Θ, iff ∃a ∈
Θ : Σ a.

The relevant-set-based AF is defined accordingly.

Definition 23 Given an argumentation theory AT =
(AS,K), the RS-based argumentation framework induced
by AT is defined asRS−AF (AT ) = (RS(AT ),�).

Notation 2 Each node of the induced RS-based argumen-
tation framework RS−AF (AT ) corresponds to a set Σ of
arguments of AT . To make this more explicit, we write ‖Σ‖
to denote the node ofRS−AF (AT ) corresponding to Σ. The
set of (instantiated) arguments supported by an extension E
ofRS−AF (AT ) is defined as SA(E) =

⋃
‖Σ‖∈E Σ.

5 Rationality properties
In this section we show that the revised version of ASPIC+

is well-behaved and satisfies the rationality postulates (some
proofs are omitted due to space limitations). The following
lemmata show that the acceptance of sets of arguments and
of singletons inRS−AF (AT ) are in accordance.

Lemma 3 Given an argumentation theory AT = (AS,K),
let C ∈ ECO(RS−AF (AT )). If ‖Σ‖ ∈ C then ∀a ∈ Σ
‖{a}‖ ∈ C. If a ∈ SA(C) then ‖{a}‖ ∈ C.

Proof: Note that the second statement is a direct conse-
quence of the first one, proved below. From Def. 21, if
Σ ∈ RS(AT ) then ∀a ∈ Σ, {a} ∈ RS(AT ). Let ‖Σ‖ ∈ C
and a ∈ Σ. C ∪ {‖{a}‖} is conflict-free. In fact, from Def.
22, for any Θ ∈ RS(AT ), if Θ � {a}, then Θ � Σ, and
‖Θ‖ ∈ C would contradict the conflict-freeness of C. The
case {a} � Θ leads to Θ � {a} since C defends itself
and hence to the same contradiction. Analogously, we get
‖{a}‖− ⊆ ‖Σ‖− and since ‖Σ‖− ⊆ C+, also ‖{a}‖− ⊆ C+.
Hence C defends ‖{a}‖ and, from the properties of complete
extensions, it must be the case that ‖{a}‖ ∈ C. 2

Lemma 4 Let AT = (AS,K), C ∈ ECO(RS−AF (AT ))
and Σ ∈ RS(AT ). If ∀a ∈ Σ ‖{a}‖ ∈ C then ‖Σ‖ ∈ C.

The next lemma follows directly from the previous ones.

Lemma 5 Let AT = (AS,K), C ∈ ECO(RS−AF (AT ))
and Σ,Θ, (Σ ∪ Θ) ∈ RS(AT ). If ‖{Σ}‖, ‖{Θ}‖ ∈ C then
‖Σ ∪Θ‖ ∈ C.

We now prove the properties established in Theorems 12-
15 of [Modgil and Prakken, 2013] and corresponding to the
rationality postulates of [Caminada and Amgoud, 2007].

Theorem 2 Let AT = (AS,K), C ∈ ECO(RS−AF (AT )).
If a ∈ SA(C) then ∀b ∈ Sub(a) b ∈ SA(C).

Proof: From Lemma 3 ‖{a}‖ ∈ C. We show that ∀b ∈
Sub(a) ‖{b}‖ ∈ C, implying b ∈ SA(C). From Lemma 2
and Defs. 21-22, if Θ � {b} then Θ � {a}. It follows that
‖{b}‖− ⊆ ‖{a}‖−. Since ‖{a}‖ ∈ C we get ‖{b}‖− ⊆ C+

and ‖{b}‖−∩C = ∅. Further, it cannot be that ‖{b}‖+∩C 6= ∅
since, by the properties of complete extensions, this would
contradict ‖{b}‖− ∩ C = ∅. Using again the properties of
complete extensions we get ‖{b}‖ ∈ C. 2

Theorem 3 Let AT = (AS,K), C ∈ ECO(RS−AF (AT )).
Then {Conc(a) | a ∈ SA(C)} = ClRS

({Conc(a) | a ∈
SA(C)}).

Proof: Suppose by contradiction that ∃ϕ such that ϕ ∈
ClRS

({Conc(a) | a ∈ SA(C)}) and ϕ /∈ {Conc(a) | a ∈
SA(C)}. Since ϕ ∈ ClRS

({Conc(a) | a ∈ SA(C)}) there
is an argument b with Conc(b) = ϕ such that b is a strict
continuation of a set of arguments Σ ⊆ SA(C). Moreover
from ϕ /∈ {Conc(a) | a ∈ SA(C)} we get b /∈ SA(C)
and ‖{b}‖ /∈ C. From the properties of complete exten-
sions, it follows ‖{b}‖− 6= ∅. Given that b is a strict con-
tinuation of a set of arguments Σ, by Def. 18 it can only
receive attacks through some of its subarguments belonging
to Sub(Σ). Hence ‖{b}‖− =

⋃
c∈Sub(Σ) ‖{c}‖−. From

Σ ⊆ SA(C) and Theorem 2 we get Sub(Σ) ⊆ SA(C)
and from Lemma 3 we get ∀c ∈ Sub(Σ) ‖{c}‖ ∈ C.
From the properties of complete extensions and the equality
‖{b}‖− =

⋃
c∈Sub(Σ) ‖{c}‖− it follows ‖{b}‖− ⊆ C+ and

‖{b}‖− ∩ C = ∅. Further, it cannot be that ‖{b}‖+ ∩ C 6= ∅
since, by the properties of complete extensions, this would
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contradict ‖{b}‖− ∩C = ∅. It follows that it must be the case
that ‖{b}‖ ∈ C. Contradiction. 2

Theorem 4 Given AT = (AS,K) with argument ordering
� satisfying item 1 of Def. 10, let C ∈ ECO(RS−AF (AT )).
If AT is axiom consistent and well-formed then {Conc(a) |
a ∈ SA(C)} is directly consistent.

Theorem 5 Given AT = (AS,K) with argument or-
dering � satisfying item 1 of Def. 10, let C ∈
ECO(RS−AF (AT )). If AT is axiom consistent and well-
formed then ClRS

({Conc(a) | a ∈ SA(C)}) is directly con-
sistent.

6 An example
Consider language L10 = L6 ∪ {HC,GC,FC,WR}, where in-
tuitively HC means that the person we are talking about has
a birth certificate dated 16 years ago, GC represents the de-
fault assumption that the certificate is genuine, FC means
that the certificate is fake, and WR means that the person
wears a wedding ring. The contrariness relation is as in
Sect. 3 with the only addition of GC = {FC}, i.e. FC
is a contrary of GC. Let RS = {T → B;HC,GC →
T} and RD = {WR ⇒ M}. From RS we obtain
{T} `∗min B, {HC,GC} `∗min T, {HC,GC} `∗min B. Ap-
plying Def. 16 and omitting EC1(AS), we get EC2(AS) =
{({T}, {M}), ({T}, {D}), ({HC,GC}, {A}), ({HC,GC}, {O}),
({HC,GC}, {M}), ({HC,GC}, {D})} and then EC3(AS) =
{({M}, {T}), ({D}, {T}), ({A}, {HC,GC}), ({O}, {HC,GC}),
({M}, {HC,GC}), ({D}, {HC,GC})}.

Suppose now Kn = {HC,WR} (it is certain that the person
has a birth certificate and wears a wedding ring) and Kp =
{GC} (it is defeasibly assumed that the certificate is genuine).
We get the following arguments: a1 = HC, a2 = GC, a3 =
WR, a4 = [a1, a2 → T], a5 = [a4 → B], a6 = [a3 ⇒ M].

From Def. 18 we have that both {a4} and {a5} rebut
a6, {a1, a2} rebuts a6, and {a1, a6} undermines (and also
rebuts) a2 and its superarguments a4 and a5. All these
attacks are preference dependent. To keep the presen-
tation simple we assume that all fallible arguments (i.e.
a2, a4, a5, a6) are equally preferred and are less preferred
than the firm arguments a1 and a3. Under this assumption,
all the above attacks are successful and give rise to a defeat
according to Def. 20, i.e., summing up, {a4}  a6,
{a5}  a6, {a1, a2}  a6, {a1, a6}  a2, {a1, a6}  a4,
{a1, a6}  a5. Then, by Def. 21, RS(AT ) =
{{a1}, {a2}, {a3}, {a4}, {a5}, {a6}, {a1, a2}, {a1, a6}}
and the D-attack relation� consists of the replication of the
defeat relation described above (with the attacked arguments
replaced by the corresponding singletons) with the addition
of a mutual D-attack between {a1, a2} and {a1, a6} and of
attacks from {a4} and {a5} to {a1, a6}.

Figure 1 shows the resulting AF . Its com-
plete extensions are C1 = {‖{a1}‖, ‖{a3}‖},
C2 = {‖{a1}‖, ‖{a3}‖, ‖{a6}‖, ‖{a1, a6}‖}, C3 =
{‖{a1}‖, ‖{a2}‖, ‖{a3}‖, ‖{a4}‖, ‖{a5}‖, ‖{a1, a2}‖}. C1
is the grounded extension [Dung, 1995] supporting only the
conclusions HC and WR. C2 and C3 correspond to the two
alternative choices arising from the incompatibility between

{a4}

{a2} {a5}

{a6}

{a1, a6} {a1, a2}

{a1}

{a3}

Figure 1: The “Married or 16?” example.

the fallible arguments a2 (the certificate is genuine) and a6

(the person is married) given that it is certain that s/he has a
certicate asserting that s/he is a teenager and that there is no
preference between the alternatives. Note that the structure
of the AF evidences this mutual attack as the root of all the
inconsistencies. In fact, the acceptance of all other arguments
(apart the unattacked ones) basically depends on the choice
between ‖{a1, a2}‖ and ‖{a1, a6}‖. It may also be noted
that the attacks from ‖{a4}‖ and ‖{a5}‖ against ‖{a6}‖ and
‖{a1, a6}‖ could be suppressed without affecting the final
outcome. This suggests that, at least in some cases, the same
results can be achieved with a more compact representation.
This issue is an important direction of future work.

As a variation of the example, assume that we add an
ordinary premise FC since there is some evidence suggest-
ing the falsity of the certificate. Then we get an addi-
tional argument a7 = FC which preference-independent
attacks a2 and its superarguments a4 and a5. Skip-
ping some obvious steps we obtain a modified framework
where, in particular, ‖{a7}‖ � ‖{a1, a2}‖ and, as ex-
pected, there is exactly one complete extension C′1 =
{‖{a1}‖, ‖{a3}‖, ‖{a6}‖, ‖{a7}‖, ‖{a1, a6}‖} correspond-
ing to the unique surviving (but still defeasible) alternative.

Due to space limitations, other application examples can
not be presented in detail. We remark however that the pro-
posed formalism provides a natural treatment of cases where
conflicts between arguments arise from ternary (or, generally,
more than binary) incompabilities. These cases have attracted
attention in the literature since they are somehow challenging
for modelling approaches (like AF s) based on binary incom-
patibility/attack relations. For instance the tandem example
[Baroni et al., 2011] concerns three persons (John, Mary, and
Suzy) who all want to go cycling on a tandem (represented by
three axioms jw,mw, sw) and one assumes defeasibly that if
one wants to go then s/he will go (represented by three rules
jw ⇒ jt, mw ⇒ mt, sw ⇒ st). Clearly only two of them
(no matter who) can actually go. Using ASPIC this is mod-
eled with a constraint ¬(jt∧mt∧ st). Altogether this repre-
sentation gives rise in ASPIC to the construction of ten argu-
ments, three of which, concluding respectively¬jt, ¬mt, and
¬st, are in mutual conflict each other. In the RS−AF (AT )
representation the mutual conflict involves three nodes cor-
responding to three couples of arguments with conclusions
{jt,mt}, {jt, st}, {mt, st} respectively, thus making more
explicit that the root of the conflicts is the incompatibility
among the three possible pairs of tandem riders.
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7 Conclusions
The ability to properly deal with generic contrariness is an
important feature for structured argumentation, as it ensures
a very high expressiveness and appears to enable novel devel-
opments like the use of multivalued logics for argument con-
struction. In this paper we have focused on generic contrari-
ness in ASPIC+, an expressively rich and technically complex
formalism whose properties are an important and evolving in-
vestigation topic, currently witnessing a great deal of interest.
As an example, recently Dung [Dung, 2014] has proposed a
new definition of attack relation1 in ASPIC+ in order to en-
sure the satisfaction of some axioms not respected by the at-
tack relations considered in [Modgil and Prakken, 2013].

This paper contributes to the advancement of ASPIC+ on
a different side, by pointing out that the use of a generic con-
trariness relation without explicit negation can become prob-
lematic in some cases and by providing a solution based on
two main pillars: a notion of closure of the contrariness rela-
tion at a set level and, accordingly, a notion of conflict and an
AF representation involving sets of arguments. The revised
version of ASPIC+ satisfies the same rationality postulates,
while posing fewer requirements on the properties of argu-
ment ordering than in [Modgil and Prakken, 2013].

Starting from the results provided in this paper, many fur-
ther technical developments can be envisaged, including, for
instance, the characterization of the cases where our proposal
and the one in [Modgil and Prakken, 2013] are equivalent, the
identification of necessary/sufficient conditions for the prob-
lems pointed out in Sect. 3 to occur, and the study of the
complexity properties of computing the closure of the con-
trariness relation and the induced AF in specific instances
of the ASPIC+ framework. Further, it will be interesting to
explore the relationships and, possibly, the intertranslatabil-
ity between the abstract representation based on Dung’s AF s
in Def. 23 and alternative representations based on frame-
works where attacks originating from sets of arguments are
encompassed [Bochman, 2003; Nielsen and Parsons, 2006;
Oren and Norman, 2008; Gabbay, 2009].

We remark however that the contribution of this paper goes
beyond the technical advancement of ASPIC+. Indeed, we
believe that the notions proposed in this paper are useful as
general conceptual tools in the study of rule-based structured
argumentation and can enable fruitful theoretical develop-
ments, independently of the specific framework adopted. To
exemplify, we plan to investigate the relationship between ar-
gumentation and the four-valued Belnap-Dunn logic [Belnap,
1977] and to exploit the set-based abstract representation to
provide a unifying view of different rule-based argumentation
systems available in the literature, including in particular the
one proposed in [Vreeswijk, 1997] where a collective notion
of conflict is encompassed.
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