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Abstract

When a belief state is represented as a probability
function P , the resulting belief state of the contrac-
tion of a sentence (belief) from the original belief
state P can be given by the probabilistic version
of the Harper Identity. Specifically, the result of
contracting P by a sentence h is taken to be the
mixture of two states: the original state P , and the
resultant state P ∗

¬h of revising P by the negation
of h. What proportion of P and P ∗

¬h should be
used in this mixture remains an open issue and is
largely ignored in literature. In this paper, we first
classify different belief states by their stability, and
then exploit the quantitative nature of probabilities
and combine it with the basic ideas of argumenta-
tion theory to determine the mixture proportions.
We, therefore, propose a novel approach to proba-
bilistic belief contraction using argumentation.

1 Introduction

The epistemic or belief state of an intelligent agent is gen-
erally in a state of flux with new beliefs being added and
old beliefs being removed. The field of belief change [Al-
chourrón et al., 1985; Gärdenfors, 1988; Peppas, 2008] deals
with modelling the different types of changes an agent’s be-
lief state may undergo. The impetus for change is usually a
received piece of information (sentence). Conventionally be-
lief change is studied under a propositional logic framework.
In its most rudimentary form, the belief state of an agent is
represented by a belief set, that is a set of sentences that is
possibly closed under logical consequence.1

If an agent is less certain about one sentence than an-
other, additional mechanisms are needed to capture infor-
mation about the level of uncertainties. A number of ap-
proaches exist for this purpose, including epistemic entrench-
ment of beliefs [Gärdenfors, 1988; Nayak, 1994], ranking
functions [Spohn, 1988], probability measures [Gärdenfors,
1988], possibility theory [Dubois et al., 1994], and Dempster-
Shafer belief functions [Shafer and others, 1976]. In this pa-

∗This research is partially funded by ARC grant DP150104133.
1When the set of beliefs is not closed, it is customary to call it a

belief base.

per we deal with belief states represented as probability func-
tions which effectively assign probability 1 to beliefs, 0 to
disbeliefs, and different intermediate values to non-beliefs.
When a belief state is represented as a probability function,
a (probabilistic) belief change operation (under a given sen-
tential input) becomes a mapping from probability functions
to probability functions. Belief contraction is the process by
which a sentence h that is a belief becomes a non-belief. It
is well known that in a deterministic framework belief con-
traction can be defined through belief revision employing
the Harper Identity.2 The counterpart of the Harper Identity
in the probabilistic setup is presented in [Gärdenfors, 1988]
where probabilistic belief contraction is taken to be a mixture
of two probability functions P and P ∗

¬h where P represents
the original belief state, and P ∗

¬h the result of revising P by
the negation of the sentence being contracted (h). This mix-
ture takes as ingredients a proportion of P and a proportion of
P ∗
¬h. However, it is not clear exactly what these proportions

should be and to the best of our knowledge, there is no work
in literature addressing this. The primary aim of this paper
is to propose a plausible solution to this problem. The main
idea is to view belief contraction as an argumentation process
involving two agents X and Y with belief states P and P ∗

¬h.
X argues for h whereas Y argues for ¬h and the goal is to
reach a compromise which is represented by the contracted
belief state P−

h . Thus, the input for a belief change process
is not only a naked piece of information – it should be ac-
companied by arguments to support it. Different probability
functions will generate arguments of different strengths for
X and Y and we exploit this feature to make an informed
choice as to what the proportions of the mixture should be.
Section 2 introduces probabilistic belief states and Section 3
briefly reviews probabilistic belief contraction and its prob-
lems. In Section 4, we give an overview of argumentation
theory and our argumentation framework for determining the
mixture proportion is presented in Section 5 followed by the
discussion and conclusion in Section 6.

2 Background

We assume a propositional language L consisting of a finite,
nonempty set of propositional variables (atoms) PS along
with the standard logical connectives ∧, ∨, ¬ and →. We

2K−
h = K ∩K∗

¬h, for any belief set K and sentence h.
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take the background logic represented by the provability re-
lation � to be the classical logic. Lower case Roman letters
like a and b represent sentences of L and a set of sentences is
represented by upper case Roman letters like A and B. Given
the finitary nature of L, the information content of an agent’s
belief state can be represented as a single sentence. We re-
serve the sentence k for this purpose. Alternatively, K is
reserved to represent the information content of an agent’s
belief state when it is represented as a set of sentences. An
interpretation or a possible world of L is a function from the
set of propositional atoms to {0, 1}. A model of a sentence
x is an interpretation that satisfies x, by [x] we represent the
set of models of x and by |[x]| the number of models of x.
We also say two sentences x and y are equivalent, denoted
as x ≡ y, if they have exactly the same set of models, i.e
[x] = [y]. By extension, A ≡ x iff

∧
A ≡ x. Lower case

Greek letters like α and β denote worlds, upper case Greek
letters denote sets of worlds and Ω is the set of all worlds.
ω⊥ ∈ Ω, called the absurd world, is a special world where
every sentence holds. ω⊥ allows an agent to have inconsis-
tent beliefs, i.e. it believes in contradictions. The letter P is
reserved for representing probability (distribution) functions
that assign a non-negative probability mass to each member
of Ω such that the total mass of Ω is 1, with the proviso that
P (ω⊥) = 1 or P (ω⊥) = 0. Note that if P (ω⊥) = 1, then all
other worlds will have zero probability mass.3 The probabil-
ity of any sentence x ∈ L is the sum of the probability mass
assigned by P to its models.

Let P be a probability function over Ω repesenting the be-
lief state. The belief set K (mutatis mutandis, k) is the top
of P , that is, the set of all sentences that have a probability
of 1. Given a probability function P and its associated be-
lief set K, a sentence h is said to be consistent with K (and,
by extension, consistent with P ) if P (h) > 0. If P (h) is
1, then the sentence h is a belief, if P (h) is 0, it is a disbe-
lief, and otherwise it is a non-belief. The converse issue of
generating a belief state from a belief set is problematic since
there can be several probability functions that can be asso-
ciated with K. This is an important foundational question
addressed by [Lindström and Rabinowicz, 1989] [Boutilier,
1995] and [Voorbraak, 1999] among others in the context of
probabilistic belief revision. We assume that a unique prob-
ability function P has been chosen through some process as
the one that best represents K, subject to the condition that it
assigns to each model of K except ω⊥ some non-zero proba-
bility mass whenever P is stable or maximally stable, which
are defined below:

Definition 1. Given a belief state P , we say:

• P is stable iff P (ω⊥) = 0,
• P is unstable iff P (ω⊥) = 1 and,
• P is maximally stable iff P is stable and for all ω,

P (ω) > 0, where ω �= ω⊥.

Note that all maximally stable belief states are also stable
but not all stable belief states are maximally stable. When
we refer to a belief state as stable, we mean stable but not

3To respect
∑

ω∈Ω

P (ω) = 1 (Kolmogorov’s Second Axiom).

maximally stable unless otherwise noted. If P is unstable,
[K] = {ω⊥}. Thus contradictions form part of the belief set
K and we will say K or P is inconsistent. If P is stable, then
[K] ⊂ Ω and contingent sentences form part of K. If P is
maximally stable, then [K] = Ω and K only consists of tau-
tologies. In this case, P assigns non-zero probability mass to
all worlds in Ω except ω⊥. We will assume that the epistemic
agent is not opinionated, that is, there is at least one sentence
in L that she neither believes nor disbelieves.4 This is cap-
tured by the assumption that the agent’s beliefs allow at least
three models, i.e. |[K]| ≥ 3.5

3 Probability Contraction

A probabilistic contraction function maps a probability func-
tion, under a sentential input, to another probability func-
tion. Contraction is the process by which a sentence h that
is initially a belief becomes a non-belief. Semantically, if the
agent’s belief state prior to the contraction is P , then P as-
signs non-zero probability mass to the h-worlds but not to
the ¬h-worlds whereas after contraction both h-worlds and
¬h-worlds will have non-zero probability mass. We let P−

h
represent the belief state obtained as a result of contracting
sentence h from P . [Gärdenfors, 1988] proposed five basic
postulates (P−1)−(P−5) that a rational agent should adhere
to when contracting a belief. Motivation behind and justifica-
tion for these postulates are provided in [Gärdenfors, 1988].
While it is possible to independently define contraction func-
tions, we take revision as a more natural belief change process
and define contraction in terms of it. For this work, it suffices
to know that the revision of a belief state P by a sentence ¬h
results in a new belief state P ∗

¬h where ¬h is a belief and h
is a disbelief, i.e. P ∗

¬h(h) = 0 and P ∗
¬h(¬h) = 1. Given

a probability distribution P and a sentence h, the probability
contraction function is defined in terms of revision as follows
[Gärdenfors, 1988]:

Definition 2. Given belief state P , belief h and the revised
belief state P ∗

¬h, the contracted belief state P−
h is obtained as

follows:

P−
h (x) = ε · P (x) + (1− ε) · P ∗

¬h(x),

for all sentence x and where 0 ≤ ε ≤ 1.

Often it is simply written: P−
h = PεP ∗

¬h, with PεP ∗
¬h called

the ε-mixture of P and P ∗
¬h. By K∗

¬h and K−
h , we denote the

belief sets associated with P ∗
¬h and P−

h respectively.
It is clear from Definition 2 that one needs to only specify

ε and a probability function P ∗
¬h in order to construct a prob-

ability contraction function. From a functional point of view,
the role of ε is clear. It determines how much of the origi-
nal belief state P to retain. However, in using this definition,
three issues immediately surface: 1) What exactly is ε? 2)
What should the value of ε be and how does one justify that
value? and, 3) How should P ∗

¬h be constructed? As to the

4An agent with a unstable belief state is opinionated since it be-
lieves in every sentence.

5It is 3 (not 2) to account for ω⊥ which is the model of any
sentence.
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first issue, it has been argued [Gärdenfors, 1988] that ε repre-
sents a measure of the degree of closeness to the beliefs in P .
This view is in line with the extreme cases. When ε = 1, con-
traction fails, indicating the agent totally closes up her mind
and keeps its belief state unchanged. On the other hand, when
ε = 0, contraction is reduced to revision by ¬h and the agent
is totally open to accepting P ∗

¬h as its new belief state. In the
non-extreme cases 0 < ε < 1, the agent opens up its mind
partially and is willing to part only with a certain proportion
of her belief state. What makes an agent close or open up its
mind is the second issue and its answer lies in how ε is mea-
sured. This will depend on one’s interpretation of the notion
of closeness. One natural candidate for this potential measure
of closeness is epistemic entrenchment and its variants (such
as possibility measure or ranking functions). In this paper
we consider an alternative approach towards the interpreta-
tion and implementation of this measure ε. We imagine a dia-
logic process going on in between the agent and an adversary,
the agent defending its belief h and the adversary pushing for
¬h. A typical case would be when there is some support for
h, but the agent is prepared to open up its mind and consider
the adversary’s proposal. In this case the agent suspends the
belief h without disbelieving it altogether, retains a measure
of probability depending on how firmly it was defended in the
first place. Hence what we need in addition to the probability
measure is an argumentation framework. Regarding P ∗

¬h, as
it is altogether a separate issue, in the rest of the paper we will
assume that it is obtained via some suitable mechanism.

4 Argumentation Framework

While Pollock is widely considered to be the founder of
formal argumentation systems [Pollock, 1987], most current
work on argumentation is based on the abstract argumentation
framework of [Dung, 1995] which inspired the framework in
[Amgoud and Cayrol, 1998; Amgoud and Prade, 2004] that
employs possibility theory. Our work below is based on the
latter and on [Hunter, 2013] where probabilistic arguments
are considered.
Definition 3. An argument is a pair (H,h) where h is a sen-
tence of L, H ⊆ L and, a) H is consistent, b) H � h, c)
there is no proper subset H ′ of H such that H ′ � h and, d)
H �= {h′}, where h′ ≡ h.
H is called the support of h. First, we need to make the
notion of consistency clear as in our framework we have
the absurd world ω⊥. We will say H is consistent iff
[H] �= {ω⊥}. Thus, an argument that has a contradic-
tion as support is considered invalid. Definition 3 is es-
sentially the same as those in [Amgoud and Prade, 2004;
Hunter, 2013] except that it imposes an extra condition (d).
Thus, in our framework, we refrain from arguments whose
conclusion and support are logically equivalent. Tradition-
ally arguments of this sort are considered suffering from the
fallacy of petitio principii [Iacona and Marconi, 2005] – we
accuse one of this when we claim that they are begging the
question, so to speak.

Let A denote the set of all arguments that can be gener-
ated from L. Defeasibility of arguments is captured by the
following definition:

Definition 4. Let (H1, h1) and (H2, h2) be two arguments
in A. Argument (H1, h1) rebuts (H2, h2) iff h1 ≡ ¬h2, and
(H1, h1) undercuts (H2, h2) iff h ≡ ¬h1 for some h ∈ H2.

Now we consider the strength of an argument. We assume
that the strength of an argument will be sensitive to the joint
probability of its premises. This is in line with the approachs
taken in [Hunter, 2013; Skyrms, 1986]. In [Pollock, 1987;
Prakken and Horty, 2012], the weakest link principle, that an
argument’s strength is the minimum of the strengths of the
argument’s premises, is endorsed as a way to determine an
argument’s strength. Unfortunately, in using probabilities to
quantify uncertainty, one cannot assume that the probability
of the argument is equal to the minimum of the probability of
its premises. However, it is known that for two events A and
B, P (A&B) ≤ P (A) and P (A&B) ≤ P (B), and in this
sense it conforms to the weakest link principle.

Definition 5. Given a probability distribution P and an ar-
gument (H,h) where H = {h1, . . . , hn}, the strength of the
argument is denoted as level(H,h) and is given by the prob-
ability of the conjunction of its support P (h1 ∧ . . . ∧ hn).
Given a belief state P , we denote the set of arguments that can
be generated for a conclusion (belief) h as AP

h . The strength
of each argument in AP

h can be determined from P as in Defi-
nition 5. Next we define how one argument may defend itself
from another:

Definition 6. Let (H1, h1) and (H2, h2) be two arguments
in A. If (H2, h2) rebuts or undercuts (H1, h1), then
(H1, h1) defends itself against (H2, h2) iff level(H1, h1) ≥
level(H2, h2).

5 Contraction via Argumentation

Assume there is an agent X whose belief state is P and
amongst other sentences has h as one of its beliefs. Recall
that the new belief state P−

h of X after h has been removed
from its set of beliefs can be computed by the mixture PεP ∗

¬h
as given in Definition 2. Our primary goal is to propose a
plausible way of determining ε. Though P ∗

¬h represents the
revision of X ’s belief state P by ¬h, it is convenient for illus-
trative purposes to think of P ∗

¬h as the belief state of another
agent Y . We now give the basic idea of the argumentation
process and its role in determining ε. We imagine that X has
been approached by Y to give up its belief in h. However,
X is reluctant to do so and an argumentation process ensues.
Since h is the sentence of interest, X equips itself with the set
of arguments AP

h for h and similarly Y with AP∗
¬h for ¬h.6

X and Y begin by presenting to each other their best possible
arguments. If X defends itself against Y’s argument and Y
can’t do the same, then the situation favors X and P−

h should
be closer to X ’s belief state P . The value assigned to ε should
then reflect this. Should the situation favor Y , we must again
take this into account in determining ε. If however, there is a
tie, i.e. both X and Y defend against each other’s arguments,
then the argumentation process continues with the agents re-
sorting to comparing the number of arguments that they pos-

6We have abused notation here to improve readability and repre-
sented AP∗

¬h
¬h as AP∗

¬h .
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sess in order to break the tie. The details of the argumentation
process are presented later.

Any sentence considered as a belief by an agent could be
one of three types: a tautology, a contradiction or a contin-
gent sentence. The combination of different types of belief
states and beliefs give rise to what we call contraction sce-
narios as shown in Table 1. The first step in our work is to
identify which scenarios are possible and which are not. This
will help us to focus on what kind of belief state and beliefs
we should be looking out for. It is worth keeping in mind
that the semantic interpretation of revision of P by ¬h means
none of the h worlds will have non-zero probability mass as-
signed by P ∗

¬h or in other words, the total probability mass is
completely contained within the ¬h worlds.

P h ¬h P ∗
¬h

(S1) stable contingent contingent stable
(S2)* stable contra. tautology stable
(S3) stable tautology contra. unstable
(M1)* maximal contingent contingent stable
(M2)* maximal contra. tautology maximal
(M3) maximal tautology contra. unstable
(U1) unstable contingent contingent stable
(U2) unstable contra. tautology maximal
(U3)* unstable tautology contra. unstable

Table 1: Table showing different contraction scenarios according to
the type of belief state P , belief to be contracted h, its negation ¬h,
and the revised belief state P ∗

¬h that may be used for contraction. *
indicates the scenario is either not possible or uninteresting.

In Table 1,7 h represents a current belief that we desire to re-
move, and hence ¬h is the sentence by which we must revise
the belief state in the process. The cases (S2, M1, M2) and
(U3) need some discussion. (S2) is not “possible” since the
agent in a stable belief state does not have any contradictory
beliefs to remove. Similarly, in (M1) and (M2), an agent in a
maximal belief states has only tautological beliefs, and there
are no contingent or contradictory beliefs to remove. As to
(U3), we stipulate that removal of a tautology from an unsta-
ble belief state leaves it unchanged, that is contraction is not
successful. The last column describes the intermediate state
P ∗
¬h that the process is assumed to go through. The five con-

traction scenarios that interest us are (S1), (S3), (M3), (U1)
and (U2). As we will show later, the latter four are limiting
cases where ε takes on extremal values.

Any belief state and belief in (S1), (S3), (M3), (U1) and
(U2) belong to one of five types: (T1)− (T5) that are shown
in Table 2. This is useful as it will allows us to learn about
the existence and level of arguments in the various contraction
scenarios as shown in Propositon 1 below and summarized in
Table 2 as well. For instance for (S3), we need to consider
only argument sets that can be generated from (T2) and (T4).
Furthermore, arguments in T2 are of level 0, level 1 and level
between 0 and 1 as seen in Table 2.

7We recall that by stable, we mean stable but not maximally sta-
ble belief states.

Proposition 1. Given a belief state P and a belief h:

• if P is stable and h is contingent or a tautology, then
there are arguments of level 0, level 1 and level between
0 and 1 in AP

h ,

• if P is maximal and h is a tautology, then there are only
arguments of level between 0 and 1 in AP

h ,

• if P is unstable and h is a contradiction, then there are
no arguments in AP

h ,

• If P is unstable and h is contingent or a tautology, then
there are only arguments of level 1 in AP

h .

P h [0] (0, 1) [1]

(T1) stable contingent � � �
(T2) stable tautology � � �
(T3) max tautology × � ×
(T4) unstable contra. × × ×
(T5) unstable contingent × × �

Table 2: Table showing different belief states and the possible argu-
ments levels. The last three columns represent the possible level of
arguments where the closed set [0], [1] mean levels 0, 1 respectively
and the open set (0, 1) means level between 0 and 1.

Given an agent’s argument set AP
h , ideally we would not want

an argument (H,h) ∈ AP
h to be attacked by other arguments

in AP
h . An argument that is attacked should at least be able to

defend itself. The next propositions offer us this reassurance.
Proposition 2. Given a belief state P and a belief h, if:

• P is stable and h is contingent (T1) or,
• P is stable and h is a tautology (T2, T3) or,8

• P is unstable and h is a contradiction (T4) or,
• P is unstable and h is contingent (T5),

then there are no rebuts nor undercuts in AP
h .

We are interested in contraction scenarios (S1), (S3), (M3),
(U1) and (U2). In each scenario, there are two argument
sets we are interested in: argument set AP

h of X and AP∗
¬h

of Y . An argumentation process will generally involve both
rebuttals and undercuts. However, as the following simple
theorem shows AP

h and AP∗
¬h do not have any undercutting

arguments:
Theorem 1. For any (S1), (S3), (M3), (U1) or (U2), if
(H,h) and (H ′,¬h) are arguments in AP

h and AP∗
¬h respec-

tively, then (H,h) and (H ′,¬h) only rebut but do not under-
cut each other.

Theorem 1 greatly simplifies the argumentation process as X
and Y no longer have to worry about their arguments being
undercut by the other and we use this feature to define when
one argument set is preferred over the other simply based on
the strength of the arguments that they possess.
Definition 7. Two arguments are equivalent iff h ≡ h′ and
H ≡ H ′.

8Here, stable includes maximally stable belief states as well.
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Definition 8. Given AP
h , by AP

h/∼, we denote the set of
equivalence classes of AP

h where each class consists of ar-
guments of the same level.

Definition 9. Given AP
h/∼ and a ∈ AP

h/∼,

• level(a) is the level of a and,

• uniq(a) is the number of arguments unique upto logical
equivalence in a,

• cP is the equivalence class of the highest level not equal
to 1,

• if cP exists then best(AP
h/∼) = level(cP ) else

best(AP
h/∼) = 0.

Example 1. Let PS = {a, b, c} and k ≡ a ∨ b → a ∧ b ∧ c̄.
Thus, [k] = {āb̄c̄, āb̄c, abc̄}. Let P (āb̄c̄) = 0.35, P (āb̄c) =
0.4, P (abc̄) = 0.25.9 Let h = a ↔ b. Since [h] = [k] ∪
{abc} and P (h) = 1, h is a belief. Any argument (H,h)
such that [H] ⊂ [h] is a valid argument. However, only if
[H] ∩ [k] �= ∅ will level(H,h) > 0. It is clear that for any
argument (H,h) with level 1, it must be that [k] ⊂ [H]. In
this example, all arguments with level 1 must be equivalent
to k, since [k] is the largest proper subset of [h]. Thus, if
a is the equivalence class in AP

h/∼ s.t. level(a) = 1, then
uniq(a) = 1. The next highest level possible for arguments
is 0.75. For any argument (H,h) of level 0.75, it must be
that either [H] = {āb̄c̄, āb̄c} or [H] = {āb̄c̄, āb̄c, abc} as
these are the only two subsets of [h] whose probabilities sum
to 0.75. Let a′ ∈ AP

h/∼ s.t. level(a) = 0.75, then cP = a′,
uniq(cP ) = 2 and best(AP

h/∼) = 0.75.

Definition 10. Given AP
h/∼ and AP ′

h′/∼:

Case I: AP
h and AP ′

h′ are equally preferred ( AP
h ≈ AP ′

h′ )
iff best(AP

h/∼) = best(AP ′
h′/∼) and uniq(cP ) =

uniq(cP
′
),

Case II: AP ′
h′ is strictly preferred to AP

h (AP
h ≺ AP ′

h′ ) iff

a: best(AP
h/∼) < best(AP ′

h′/∼) OR,

b: best(AP
h/∼) = best(AP ′

h′/∼) and uniq(cP ) <

uniq(cP
′
).

In Definition 9, best(AP
h/∼) returns the highest level amongst

all equivalence classes in AP
h/∼ that are not of level 1, and 0

if there is no such class. We have adopted the view in Defini-
tion 10 that where possible the winner of an argument should
be the one who possesses stronger (higher level) arguments
(II-a). However, if two agents have arguments of the same
strength, then the winner is decided by counting the num-
ber of arguments (II-b). Thus, level(·) has precedence over
uniq(·). In [Amgoud and Prade, 2004], arguments with a
small number of formulas in the support are preferred in or-
der to reduce the chances of being undercut. However, as we
do not have undercutting arguments (Theorem 1), we do not
differentiate between the arguments in cP or cP

′
. The reader

will note that in the definition of best(·), level 1 classes are
ignored. Consider scenario (S1) where both argument sets

9Recall that only k-worlds have non-zero probabilities.

for X and Y are of type (T1) and thus always have level 1
arguments. This means preference over the arguments are
determined using Case II-b. It is easily seen then that there is
no need to use a probabilistic belief state in the first place as
ties may be broken simply based on the number of models of
an argument. Thus to exploit probabilities, we refrain from
classes of level one. Finally, for the sake of simplicity, we
focussed only on one equivalences class in Definition 10 but
it is certainly possible to take other classes into consideration.

Determining ε

Recall that the contracted belief state P−
h will be constructed

according to the formula P−
h = ε · P + (1 − ε) · P ∗

¬h. For
each case in Definition 10, we justify and show how ε is deter-
mined. If the argument sets of X and Y are equally preferred,
then the proportion of X and Y’s belief state to be used for
computing P−

h should be equal as shown below.

Case I: If AP
h ≈ AP∗

¬h then ε = 0.5.

Now if X ’s argument set is preferred to Y’s, because its ar-
guments are at a higher level compared to Y’s, then a greater
proportion of X ’s belief state should be “retained” in P−

h .
This proportion should depend on how much stronger X ’s ar-
gument is and this is captured in Case II-a below. If X wins
then ε > 0.5 and if X loses, then ε < 0.5.

Case II-a: If AP
h �≈ AP∗

¬h , then:

ε =
best(AP

h/∼)

best(AP
h/∼) + best(AP∗

¬h/∼)
.

The final case is when X ’s argument set is preferred to Y’s
because it has more arguments than Y even though their ar-
guments are of the same level. It is tempting to normalize
the number of arguments but this is not very desirable. Let
uniq(cP ) = 1 for X and uniq(cP

∗
) = 2 for Y . By normaliz-

ing uniq(cP ), we get ε ≈ 0.33. ε becomes disproportionately
skewed and a large proportion Y’s belief state will be used for
P−
h even though Y has only one more argument than X . In-

stead, in such a case, we imagine that a losing agent (one with
fewer arguments) commits to retaining at most a certain pro-
portion of its belief state, represented by αmax which must be
less than 0.5. At the same time, no matter how many more ar-
guments the winning agent has, the losing agent is determined
to retain a certain proportion of its belief state and this is rep-
resented by αmin, where 0 < αmin < αmax. The actual
proportion of the losing agent’s belief state to be used in the
mixture, α, will be between αmin and αmax, and depend on
the difference, diff , between the number of arguments of the
two agents. The minimum value of diff will be 1 at which
point we need α = αmax and for all other values of diff ,
α < αmax. A desirable feature for α is for it to not jump too
much between small changes of diff , i.e. we would like it
to decrease slowly towards αmin as diff becomes bigger. A
function for α that has these properties is the slowly decreas-
ing log function shown below:
Case II-b: If AP

h �≈ AP∗
¬h , let:

α =
1

ln(diff + δ)
+ αmin
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where δ = e
1

αmax−αmin − 1 and diff = |uniq(cP ) −
uniq(cP

∗
)|. 10

(i) If AP
h ≺ AP∗

¬h , then ε = α, else

(ii) If AP∗
¬h ≺ AP

h , then ε = 1− α.
Finally, remember that ε is the proportion of X ’s belief state
to keep. Therefore, if X is the losing agent (IIb-i) then ε = α,
whereas if X wins (IIb-ii) , then ε = 1− α.

Argumentation Scenarios

AP
h AP∗

¬h best(AP
h/∼) best(AP∗

¬h/∼) ε

(S3) (T2) (T4) (0,1) [0] 1
(M3) (T3 (T4) (0,1) [0] 1
(U1) (T5) (T1) [0] (0,1) 0
(U2) (T4) (T3) [0] (0,1) 0

Table 3: Contractions scenarios except (S1) and the value of ε.

Table 3 shows the ε values of scenarios (S3), (M3), (U1) and
(U2). We discuss here only (S3), but the reasoning is similar
for the others. (S1) which is not included in the table is dis-
cussed separately. In (S3), X ’s argument set AP

h is of type
(T2) consisting of a stable belief state P and a tautological-
belief h. X is challenged by Y , whose belief state P ∗

¬h is un-
stable and pushes for X to instead accept a contradiction ¬h
as a belief. From Table 2, we see that best(AP

h/∼) is some
non-zero number less than 1, where as best(AP∗

¬h/∼) = 0
(see Definition 10). Thus, AP∗

¬h ≺ AP
h (Case II-a) and we get

ε = 1. If X ’s belief state is stable or maximally stable, and
is challenged by Y whose belief state is unstable (as in cases
S3 and M3) then X wins outright and refuses to give up any
of its beliefs and P−

h is the same as P . On the other hand, if
X ’s belief state is unstable and Y with a stable or maximally
stable belief state challenges it (as in cases U1 and U2), then
Y wins outright and X is forced to give up all its beliefs. In
the latter case, P−

h is simply P ∗
¬h. The value of ε for (S1) is

best illustrated by the Example 2 below. In (S1), P and P ∗
¬h

are both stable, and beliefs h and ¬h are both contingent.
Example 2 (continued from Example 1). Recall that h =
a ↔ b, uniq(cP ) = 2 and best(AP

h/∼) = 0.75. Let P ∗
¬h be

such that P ∗
¬h(ābc̄) = 0.5, P ∗

¬h(ābc) = 0.3, P ∗
¬h(ab̄c̄) = 0.2.

Note that P ∗
¬h(h) = 0. By similar reasoning to Example 1,

we get uniq(cP
∗
¬h) = 2 and best(AP∗

¬h/ ∼) = 0.8. Since
best(AP

h/∼) < best(AP∗
¬h/∼), AP

h ≺ AP∗
¬h (Case II-a), and

ε ≈ 0.75
0.75+0.8 ≈ 0.48. Thus, P−

h = 0.48P + 0.52P ∗
¬h. Con-

sider now P ∗
¬h(ābc̄) = 0.5, P ∗

¬h(ābc) = 0.25, P ∗
¬h(ab̄c̄) =

0.25, then best(AP
h/∼) = best(AP∗

¬h/∼) = 0.75. However,
uniq(cP

∗
¬h) = 4 > uniq(cP ). Thus AP

h ≺ AP∗
¬h (Case II-

b). Let αmax = 0.49 and αmin = 0.1. We get diff = 2
, δ ≈ 11.99 and α ≈ 0.48. Since AP

h ≺ AP∗
¬h , we set

ε = α ≈ 0.48 and P−
h = 0.48P + 0.52P ∗

¬h.
As we can see, (S1) is the only scenario where 0 < ε < 1

and neither X nor Y are willing to give up all of their beliefs.
10e is Euler’s number. αmin is the horizontal asymptote.

In X ’s original belief state P , the maximum level of support
for ¬h is 0, where as in P−

h , it has a maximum level of 1− ε.

6 Discussion and Conclusion

The work in [Hunter, 2013] is closely related to ours and it
considers how two agents that have arguments over two dif-
ferent probability distributions, Pi and Pj , may combine their
probability distributions to reflect their possibly conflicting
views. The combined probability distribution is defined as:
Pi⊕j(A) = max(Pi(A), Pj(A)), where A is any argument
in A and Pi(A) is the level of the argument (Definition 5).
However, it is also shown that Pi⊕j(A) will only be consis-
tent iff Pi and Pj do not diverge, which only occurs when
Pi(ω) = Pj(ω), for all ω ∈ Ω. In all the contractions sce-
narios that we considered in our work, P and P ∗

¬h are fully
divergent since they do not agree on any models and using
Pi⊕j(A) will result in an inconsistent probability distribu-
tion which violates the first postulate (P−1) for probabilis-
tic belief contraction. In [Amgoud and Prade, 2004], the
main focus is on two agents that use argumentation to nego-
tiate over goals under a possibilistic logic setting. In relation
to belief revision, they define the revision of a belief set by
an argument (H,h) as a new belief where the argument is
forced to hold, i.e. with a possibility degree of 1. Since our
work deals with contraction, we do not fully accept arguments
from AP∗

¬h except in scenarios (U1) and (U2) where X ’s ini-
tial belief state is unstable. In [Ramachandran et al., 2012;
Olsson, 1995] probabilistic belief contraction is also ad-
dressed but the rationale behind their approach is based on
information theory. They assume that the entropy of the con-
tracted belief state should be higher than original belief state
since information is lost and attempt to construct the con-
tracted belief state directly.

When the contraction of a probabilistic belief state is
viewed as the mixture of the original belief set and the revised
belief state, the question of what mixture proportion should
be has been largely ignored. By exploiting the quantitative
nature of probabilities and using ideas from argumentation
theory, we presented a framework that can determine a cred-
ible value for the proportions of the mixture. It is worth not-
ing that a belief state is not simply a probability distribution
P , but rather a pair 〈P, σ〉 where σ represents an appropriate
similarity measure such as a ranking or a distance function.
Although we don’t have any explicit similarity measure, we
suspect that the argumentation support structure for the in-
put sentence h somehow captures the relevant aspects of a
similarity measure and further exploration of this idea will be
taken up in future. We plan to look at refining the procedure
to determine preferred argument sets by examining more than
one equivalence class as done here and to consider argument
sets with beliefs other than the belief to be removed as con-
clusion. Argumentation theory offers an alternative way of
accounting for and thinking about probabilistic belief change
in general, and this work is a first step in that direction.
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