
A Complete Epistemic Planner without
the Epistemic Closed World Assumption

Hai Wana, Rui Yangb∗ , Liangda Fangb, Yongmei Liub, and Huada Xua

aSchool of Software, Sun Yat-sen University, Guangzhou, China
bDept. of Computer Science, Sun Yat-sen University, Guangzhou, China

{wanhai,ymliu}@mail.sysu.edu.cn, {yangr7,fangld,xuhuada}@mail2.sysu.edu.cn

Abstract
Planning with epistemic goals has received atten-
tion from both the dynamic logic and planning
communities. In the single-agent case, under
the epistemic closed-world assumption (ECWA),
epistemic planning can be reduced to contingent
planning. However, it is inappropriate to make the
ECWA in some epistemic planning scenarios, for
example, when the agent is not fully introspective,
or when the agent wants to devise a generic plan
that applies to a wide range of situations. In this
paper, we propose a complete single-agent epis-
temic planner without the ECWA. We identify two
normal forms of epistemic formulas: weak mini-
mal epistemic DNF and weak minimal epistemic
CNF, and present the progression and entailment
algorithms based on these normal forms. We
adapt the PrAO algorithm for contingent planning
from the literature as the main planning algorithm
and develop a complete epistemic planner called
EPK. Our experimental results show that EPK
can generate solutions effectively for most of the
epistemic planning problems we have considered
including those without the ECWA.

1 Introduction
Planning with epistemic goals has received attention from
both the dynamic logic and planning communities. Bolander
and Andersen [2011] formalized multi-agent epistemic plan-
ning based on dynamic epistemic logic [van Ditmarsch et al.,
2007] and showed that it is undecidable in general. Further,
Aucher and Bolander [2013] showed that multi-agent epis-
temic planning is undecidable in the presence of only purely
epistemic actions. Meanwhile, Yu et al. [2013] identified two
important decidable fragments of multi-agent epistemic plan-
ning. Recently, Kominis and Geffner [2015], and Muise et al.
[2015] showed how to exploit classical planning to solve re-
stricted versions of multi-agent epistemic planning problems.

There are earlier works on single-agent epistemic planning.
Herzig et al. [2003] proposed a framework for epistemic
planning where knowledge bases (KBs) are expressed as

∗Corresponding author

positive epistemic formulas, and showed how progression,
regression and plan generation can be achieved in their
framework. Bienvenu et al. [2010] identified two normal
forms of epistemic formulas called S5-CNFCNF,DNF and
S5-DNFDNF,CNF, and showed that progression is tractable
when the KB is in S5-DNFDNF,CNF, and entailment is
tractable when the KB is in S5-DNFDNF,CNF and the
query is in S5-CNFCNF,DNF. However, the above works
are only theoretical studies. Petrick and Bacchus [2002;
2004] presented a first-order epistemic planning system PKS
based on the idea of progression. The kinds of knowledge
they consider include literal knowledge, knowing-whether
knowledge, and exclusive-or knowledge. However, their
progression and reasoning algorithms are both incomplete,
and hence their planner is incomplete.

In the single-agent case, under the epistemic closed-world
assumption (ECWA) [Herzig et al., 2003], that is, if I cannot
prove that I know ϕ, then I don’t know ϕ, epistemic plan-
ning can be reduced to contingent planning [Peot and Smith,
1992]. Bertoli et al. [2006] used binary decision diagrams
[Bryant, 1986] to represent knowledge bases and proposed a
planner MBP based on symbolic model checking. To et al.
[2011] used minimal DNF formulas to represent knowledge
bases, and proposed an algorithm PrAO with pruning tech-
niques used in AND/OR forward search to solve contingent
planning problems.

However, in some epistemic planning scenarios, it is in-
appropriate to make the ECWA. To illustrate this, consider
the following modified wolf-sheep-cabbage example. Every
Monday, a farmer has to take at least two objects of a wolf,
a sheep and a basket of cabbages to cross a river. The wolf
will eat the sheep, and the sheep will eat the cabbages, if the
farmer is not with them. What is a plan for the farmer to cross
the river? The initial knowledge base of the planning prob-
lem can be represented as K(wi∧si)∨K(si∧ci)∨K(wi∧ci),
where wi denotes that a wolf is on the left bank of the river
initially. Also, si and ci are similar. Although the initial KB
does not entail any of Kwi,Ksi, and Kci, we cannot draw the
conclusions ¬Kwi,¬Ksi, and ¬Kci.

In general, the following are some scenarios where it is in-
appropriate to make the ECWA. Firstly, the agent is not fully
introspective; hence the agent is not able to infer what she
does not know from an explicit representation of what she
knows. Secondly, the agent wants to devise a generic plan

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3257

that can be used for a wide range of situations. Thirdly, the
agent is doing planning for the purpose of intention recog-
nition; hence the agent is not sure about the observed agent’s
mental state and can only make reasonable assumptions about
what the observed agent knows and does not know.

In this paper, we propose a complete single-agent epis-
temic planner without the epistemic closed-world assump-
tion. We begin with a theoretical formulation of single-agent
epistemic planning without the ECWA. Then we identify two
normal forms of epistemic formulas: weak minimal epistemic
DNF, in short WM-EDNF, and weak minimal epistemic CNF,
in short WM-ECNF. We present the progression and entail-
ment algorithms based on the above representations, and
show that the entailment algorithm is tractable when the KB is
in WM-EDNF and the query is in WM-ECNF. Next we adapt
the PrAO algorithm [To et al., 2011] as the main planning
algorithm and develop a complete epistemic planner called
EPK. Our experimental results show that EPK can generate
solutions effectively for most of the epistemic planning prob-
lems we have considered including those without the ECWA.

2 Preliminaries
In this section, we first introduce propositional logic and two
notions: minimal DNF/CNF and strong entailment. Then, we
extend the above notions to epistemic logic, and identify two
forms of epistemic formulas: WM-EDNF which represents
the KBs and WM-ECNF which represents the preconditions
of actions and the goals of problems. Finally, we give the def-
initions of ontic actions and sensing actions, and the model-
theoretic definition of progression wrt actions.

2.1 Propositional logic
Throughout this paper, we fix X = {x1, · · · , xn} be a fi-
nite set of propositions. The propositional language Lprop
is generated from X , the usual connectives and two boolean
constants > and ⊥. A state is a subset of X , e.g., {x1, x2}
is a state where both x1 and x2 hold and other propositions
do not. A literal is either a proposition x or its negation ¬x.
l denotes the complement of a literal l. For a set of literals
L, L = {l | l ∈ L}. We call ϕ a term (resp. clause) if it is
in the form of

∧
i li (resp.

∨
i li) where every li is a literal.

Term (resp. clause) is often represented as a set of literals. So
the union of two terms and the difference of two terms can be
considered as terms. For example, suppose that t1 = x1∧¬x2
and t2 = ¬x2 ∧ x3. Then t1 ∪ t2 = x1 ∧ ¬x2 ∧ x3 and
t1 \ t2 = x1. A DNF (resp. CNF) φ is form of

∨
i ψi (resp.∧

i ψi) where every ψi is a term (resp. clause).

Definition 2.1 (Minimal DNF/CNF) A DNF (resp. CNF) φ
whose form is

∨
iψi (resp.

∧
iψi) is minimal if for any two

distinct terms (resp. clauses) ψi and ψj , ψi 6|= ψj and ψj 6|=
ψi.

Obviously, we can transform a DNF (resp. CNF) φ to an
equivalent minimal one, denoted bymin(φ), by removing the
redundant terms (resp. clauses).

Definition 2.2 Let φ and φ′ be two DNFs where φ =
∨
i ψi

and φ′ =
∨
j ψ
′
j . We say that φ strongly entails φ′, denoted

by φ 7→ φ′, if for all ψi, there exists ψ′j s.t. ψi |= ψ′j .

Proposition 2.1 Let φ and φ′ be two DNFs. If φ 7→ φ′, then
φ |= φ′.

The above proposition says that if φ strongly entails φ′,
then φ entails φ′, but not vice versa. For example, let φ =
a ∨ ¬a and φ′ = b ∨ ¬b. Since φ ≡ φ′ ≡ >, we get that
φ |= φ′ . But φ 67→ φ′ because a 6|= b and a 6|= ¬b. Similarly,
we can extend the concept to CNFs.

Definition 2.3 Let φ and φ′ be two CNFs where φ =
∧
i ψi

and φ′ =
∧
j ψ
′
j . We say that φ strongly entails φ′, denoted

by φ 7→ φ′, if for all ψ′j , there exists ψi s.t. ψi |= ψ′j .

Proposition 2.2 Let φ and φ′ be two CNFs. If φ 7→ φ′, then
φ |= φ′.

2.2 Epistemic logic
Objective facts can be represented as propositional formulas.
In epistemic planning, we model what the agent knows about
the current state, which is an subjective formula, in epistemic
logic. We will illustrate the syntax and semantics of epistemic
logic LK as follows.

Definition 2.4 The language of epistemic logic LK is de-
fined as follows using BNF notation:

Φ ::= Kφ | Φ ∧Ψ | ¬Φ,

where φ ∈ Lprop, and Φ,Ψ ∈ LK .

For distinguishing two kinds of formulas, we use capital
letters to denote the epistemic formulas, i.e., Φ, Ψ etc. The
propositional formulas are denoted by lowercase letter, i.e.,
φ, ψ etc.

Definition 2.5 (Epistemic state) An epistemic state, in short
e-state, is a finite non-empty set of states.

Intuitively, the agent considers every state in an epistemic
state is possible.

Definition 2.6 Let M be an e-state. We interpret formulas in
LK as follows:
• for φ ∈ Lprop , M |= Kφ if for every s ∈M , s |= φ;
• M |= Φ ∧Ψ if M |= Φ and M |= Ψ;
• M |= ¬Φ if M 6|= Φ.

We let Mod(Φ) = {M ⊆ 2X | M 6= ∅ and M |= Φ},
which is the set of e-states satisfying Φ. We remark that
Mod(⊥) ≡ ∅ since there are no e-states satisfying ⊥.

Let Φ be an epistemic formula. We say that Φ is an epis-
temic literal if it is in the form of Kφ or K̂φwhere φ ∈ Lprop.
We also say that Φ is an epistemic term (resp. clause) if it is
in the form of Kψ∧

∧
i K̂ηi (resp. K̂ψ∨

∨
i Kηi). Throughout

this paper, we require ψ and all ηi’s are DNF (resp. CNF) for
an epistemic term (resp. clause).

Definition 2.7 (Epistemic DNF/CNF) An epistemic for-
mula Φ is an epistemic DNF (resp. CNF), in short EDNF
(resp. ECNF) is in the form of

∨
i Ψi (resp.

∧
i Ψi) where Ψi

is an epistemic term (resp. clause).

Definition 2.8 (Separable)
• An epistemic term Kψ ∧

∧
i K̂ηi is separable if ηi |= ψ

for each i.

3258

• An epistemic clause K̂ψ∨
∨
i Kηi is separable if ψ |= ηi

for each i.
• An EDNF

∨
i Ψi is separable if every Ψi is separable.

• An ECNF
∧
i Ψi is separable if every Ψi is separable.

We can transform an epistemic formula to an equivalent
separable one. For example, Kψ ∧

∧
i K̂ηi is equivalent to

Kψ ∧
∧
i K̂(ψ ∧ ηi). The latter is separable.

Definition 2.9 (Strong entailment) Let Φ and Φ′ be two
separable epistemic terms where Φ = Kψ ∧

∧
i K̂ηi and

Φ′ = Kψ′ ∧
∧
j K̂η′j . We say that Φ strongly entails Φ′,

denoted by Φ 7→ Φ′ if ψ 7→ ψ′ and for all η′j , either ψ 7→ η′j
or there exists ηi s.t. ηi 7→ η′j .

Similar to propositional logic, we can get the following
proposition.
Proposition 2.3 Let Φ and Φ′ be two separable EDNFs. If
Φ 7→ Φ′, then Φ |= Φ′.

Now, we can define weak minimal EDNFs.
Definition 2.10 (Weak minimal EDNF) A separable EDNF
Φ whose form is

∨
i Ψi is weak minimal if for any two distinct

epistemic terms Ψi and Ψj , Ψi 67→ Ψj and Ψj 67→ Ψi.
For space limitations, we omit a similar notion weak minimal
ECNF. We use wmin(Φ) to denote the weak minimal of Φ.
Proposition 2.4 Every epistemic formula can be trans-
formed to a WM-EDNF (resp. WM-ECNF) equivalently.

2.3 Actions and Progression
In this paper, we extend the preconditions of actions so as to
be represented as epistemic formulas.

A conditional effect is a pair 〈con, lit〉 where con and lit
are sets of literals. Intuitively, it means that literals in lit,
both positive and negative, become true if a certain action is
executed when con holds. The definitions of ontic actions
and sensing actions are as follows.
Definition 2.11 (Ontic action) An ontic action ao is a pair
〈pre, eff〉, where
• pre: an epistemic formula, which specifies precondition;
• eff : a set of conditional effects.
Throughout this paper, we require the preconditions of ac-

tions including sensing actions to be WM-ECNFs. Given a
state s and an ontic action ao, the positive effect pe(ao, s) of
executing ao in s is defined as
{l ∈ lit(e) | ∃e∈eff(ao).s |= con(e) and l is positive}.
The negative effect, denoted by ne(ao, s), is similar. The

new state resulting from s by executing ao, denoted by s~ao,
is s \ne(ao, s)∪ pe(ao, s). We also require that ontic actions
are not self-contradictory. For an ontic action ao, there do
not exist a proposition x, a state s and two conditional effects
e, e′ ∈ eff(ao) such that the following hold: (1) x ∈ lit(e);
(2) ¬x ∈ lit(e′); (3) s |= con(e); and (4) s |= con(e′).

We say an action a is applicable in an e-state M iff M |=
pre(a). We say a is executable in Φ iff a is applicable in
every e-state of Φ. On performing ao in M , the new e-state
M ⊗ ao is {s~ ao | s ∈M}.

Definition 2.12 (Progression wrt ontic actions) Let Φ ∈
LK , ao be an ontic action executable in Φ. Then Φ′, denoted
by prog(Φ, ao), is a progression of Φ for ao if

Mod(Φ′) = {M ⊗ ao |M ∈Mod(Φ)}.
We give the definition of sensing actions below.

Definition 2.13 (Sensing action) A sensing action as is a
pair 〈pre, res〉 , where
• pre: an epistemic formula, which specifies precondition;
• res: a formula in Lprop, which is the sensing result.

After executing a sensing action as, the agent will know
whether res(as) holds. The applicability and executability of
sensing actions are similar to those of ontic actions. Given an
e-state M and a propositional formula φ, the new epistemic
state M � φ is {s ∈ M | s |= φ}, i.e., the set of states of M
satisfying φ.

Definition 2.14 (Progression wrt sensing actions) Let Φ
be an epistemic formula, as a sensing action executable
in Φ. Then a pair (Φ+,Φ−), denoted by prog(Φ, as), is a
progression of Φ for as where
• Mod(Φ+) = {M � res(as) |M ∈Mod(Φ)} \ {∅};
• Mod(Φ−) = {M � ¬res(as) |M ∈Mod(Φ)} \ {∅}.

3 Epistemic planning
In this section, we introduce the definitions of epistemic plan-
ning problem and its solution.

Definition 3.1 (Epistemic planning problem) An
epistemic planning problem P is a tuple 〈O,S, I,G〉, where
• O: a set of ontic actions;
• S: a set of sensing actions;
• I: an epistemic formula specifying the initial KB;
• G: an epistemic formula specifying the goal formula.
O and S are separate, i.e., O ∩ S = ∅.
Throughout this paper, we require I to be a WM-EDNF

and G to be a WM-ECNF.

Example 1 We now formalize the example from the intro-
duction as follows. Here, we only give several ontic actions
about that the farmer moving from the right bank to the left
bank. The other ontic actions are similar. We let sa denote
that the sheep is alive, ce denote that the cabbages are not
eaten, d denote that the boat can load two objects (excluding
the farmer), and fl, wl, sl and cl denote that the farmer, the
wolf, the sheep or the cabbages are on the left bank of the
river respectively.

1. left: the farmer moves to the left bank without taking
anything.
• pre(left) ≡ K¬fl
• eff(left) = {〈∅, {¬fl}〉,

〈{wi, si, sa,¬wl,¬sl}, {¬sa}〉,
〈{si, sa, ci, ce, sl, cl}, {¬ce}〉,
〈{si, sa, ci, ce,¬sl,¬cl}, {¬ce}〉}

2. wLeft: the farmer tries to take the wolf to the left bank.

3259

• pre(wLeft) ≡ K(¬fl ∧ ¬d)

• eff(wLeft) = {〈∅, {fl}〉,
〈{wi,¬wl}, {wl}〉,
〈{si, sa, ci, ce, sl, cl}, {¬ce}〉,
〈{si, sa, ci, ce,¬sl,¬cl}, {¬ce}〉}

Intuitively, the farmer will move alone if the wolf is on
the left bank or there does not exist a wolf initially.

3. wsLeft: the farmer tries to take the wolf and the sheep
to the left bank.

• pre(wsLeft) ≡ K(¬fl ∧ d)

• eff(wsLeft) = {〈∅, {fl}〉,
〈{wi,¬wl}, {wl}〉,
〈{si, sa,¬sl}, {sl}〉}

Similar to wLeft, the farmer will take the wolf (resp.
the sheep) if it is on the right bank.

4. senseD: the farmer inquires whether the boat can load
two objects.

• pre(senseD) ≡ K>
• res(senseD) ≡ d

5. I = (K(ci∧si)∨K(wi∧si)∨(ci∧si))∧K(fl∧(ci→
ce ∧ cl) ∧ (si→ sa ∧ sl) ∧ (wi→ wl)) ∧ K̂d ∧ K̂¬d.

6. G = K((ci → ce ∧ ¬cl) ∧ (si → sa ∧ ¬sl) ∧ (wi →
¬wl)).

We formalize the notion of conditional plans through ac-
tion trees as follows.

Definition 3.2 (Action tree) Let P be an epistemic planning
problem where P = 〈O,S, I,G〉. An action tree T is defined
inductively as follows:

• ε: the empty tree

• ao; T ′, where ao ∈ O, and T ′ is an action tree

• as; (T +|T −), where as ∈ S and T + and T − are action
trees.

Let us denote undefined by undef . Now, we define the
progression wrt action trees.

Definition 3.3 (Progression wrt action trees) Let Φ be an
epistemic formula, and T an action tree. The progression
of Φ wrt T , denoted by prog(Φ, T), is defined inductively as
follows:

• prog(Φ, ε) = {Φ}, if Φ 6≡ ⊥;

• prog(Φ, ε) = undef , otherwise;

• prog(Φ, ao; T ′) = {prog(prog(Φ, ao), T ′)},
if Φ |= pre(ao) and Φ 6≡ ⊥;

• prog(Φ, ao; T ′) = undef , otherwise;

• prog(Φ, as;(T+|T−))=prog(Φ+, T+)∪prog(Φ−, T−),
if Φ |= pre(as) and Φ 6|= Kres(as) and
Φ 6|= K¬res(as) and Φ 6≡ ⊥;

• prog(Φ, as; (T +|T −)) = undef , otherwise.

We define solutions to epistemic planning problems below,
which are typically action trees.

Definition 3.4 (Epistemic planning solution) Let P be an
epistemic planning problem where P = 〈O,S, I,G〉. An
action tree T is a solution to P if T is finite, prog(I, T) is
defined, and for every epistemic formulas Φ of prog(I, T),
Φ entails the goal formula G.

Figure 1: A solution to the example

Example 2 (Example 1 continued) The action tree, de-
picted in Figure 1, is a solution to this example. It states as
follows. Firstly, the farmer senses whether a boat can load
two objects. If the boat can load two objects, then the farmer
will try to take the sheep and the cabbages to cross the river.
Because the cabbages are eaten by the sheep if the farmer is
not around, he tries to take the cabbages back to the left bank.
Finally, he tries to take the wolf and the cabbages to the right
bank. Otherwise, the farmer should obey the “eat rule”, and
has to take only one object to cross the river until all the ob-
jects are on the right bank of the river.

4 Progression and Reasoning
In this section, we introduce three core parts of EPK: (1) pro-
gression wrt ontic actions and sensing actions; (2) determin-
ing whether a KB entails the precondition of an action; (3)
checking whether two KBs are strongly equivalent.

4.1 Progression
To update KBs according to the effects of ontic actions, we
firstly transform a DNF φ to an equivalent one φ′ such that
for every conditional effect and every term of φ′, either the
term entails the condition con of the conditional effect, or it
entails ¬con.

Definition 4.1 Let t and t′ be two terms. The extension of t
wrt t′, denoted by ext(t, t′), is defined as

ext(t, t′) =

{
t, if t |= t′ or t ∧ t′ ≡ ⊥;
t ∧ t′ ∨

∨
t6|=l and t′|=l(t ∧ ¬l), otherwise.

Intuitively, we keep t if it entails t′ or it entails the negation
of t′. Otherwise, we transform t to a DNF ext(t, t′) such that
for each term of ext(t, t′), either it entails t′ or it entails the
negation of t′.

3260

Proposition 4.1 Let t and t′ be two terms, and φ =
min(ext(t, t′)). Then φ ≡ t and for every term t∗ of φ, either
t∗ |= t′ or t∗ |= ¬t′ holds.

For a DNF φ =
∨
i ti, we can define a similar operation:

ext(φ, t′) = min(
∨
i ext(ti, t

′)).

Definition 4.2 Let ao an ontic action. We say a term t is
enabling for ao if for every conditional effect 〈con, lit〉 ∈
eff(ao), either t |= con or t |=¬con holds. We say a DNF φ
is enabling for ao if every term t of φ is enabling for ao.

Proposition 4.2 Let φ be a DNF, ao an ontic action where
eff(ao)={〈coni, liti〉}ki=1, and φ′=ext((ext(φ′, con1),· · ·),
conk). Then φ′ ≡ φ and φ′ is enabling for ao.

The above proposition shows how to transform a DNF to
an equivalent one enabling for ontic actions.

Definition 4.3 Let t be a term, ao an ontic action which t is
enabling for. The effect of ao in t, denoted by e(t, ao), is
{l | ∃〈con, lit〉 ∈ eff(ao).t |= con and l ∈ lit}.

Definition 4.4 Let ao be an ontic action, and φ a DNF en-
abling for ao. The update of φ wrt ao, denoted by
update(φ, ao), is min(

∨
t∈φ(t \ e(t, ao) ∪ e(t, ao))).

The above proposition tells us how to update a DNF ac-
cording to the effect of an ontic actions. We are now ready to
give the computation of the progression wrt ontic actions.

Proposition 4.3 Let Ψ = Kψ ∧
∧
i K̂ηi be a separate epis-

temic term, and ao an ontic action executable in Ψ, and
Ψ′ = Kψ′ ∧

∧
i K̂η′i where ψ′ = update(ψ, ao) and η′i =

update(ηi, ao) for each i. Ψ′ is a progression of Ψ wrt ao.

Proposition 4.4 Let Φ =
∨
i Ψi be a separable EDNF, and

ao an ontic action executable in Φ. Then prog(Φ, ao) ≡∨
i prog(Ψi, ao).

Even if Φ is a WM-EDNF, the progressed KB prog(Φ, ao)
may not be a WM-EDNF. But we can transform it to an equiv-
alent WM-EDNF.

Next, we introduce the progression of separable epistemic
terms wrt observation.

Definition 4.5 Let Ψ = Kψ∧
∧
i K̂ηi be a separate epistemic

term, and φ ∈ Lprop. The update of Ψ wrt φ, denoted by
obs(Ψ, φ), is K(ψ ∧ φ) ∧

∧
ηi|=φ K̂ηi.

After observing φ, an agent remains her knowledge of ψ
and keeps considering ηi possible if ηi |= φ. The latter is
counterintuitive, but it is valid. This is because the possible
state satisfying ηi may not satisfy φ when we do not make the
ECWA.

Proposition 4.5 Let Φ =
∨
i Ψi be an EDNF, and as a

sensing action executable in Φ. A pair (Φ+,Φ−) is a pro-
gression of Φ wrt as where Φ+ ≡

∨
i obs(Ψi, res(as)) and

Φ− ≡
∨
i obs(Ψi,¬res(as)).

By Proposition 4.5, we can implement progression wrt
sensing actions. Similarly, we transform Φ+ (resp. Φ−) to
a WM-EDNF when it is not a WM-EDNF.

4.2 Reasoning
Firstly, we introduce a simple property of propositional logic.

Proposition 4.6 Let φ =
∨
i ψi be a DNF and φ′ =

∧
j ψ
′
j a

CNF. Then φ |= φ′ iff for every i, j, we have ψi |= ψ′j .

Proposition 4.7 Let Ψ be a separable epistemic term whose
form is Kψ ∧

∧
i K̂ηi and Ψ′ a separable epistemic clause

whose form is K̂ψ′ ∨
∨
j Kη′j . Ψ |= Ψ′ iff one of the following

conditions holds
1. ψ ∧ ¬ψ′ is inconsistent;
2. there exists i s.t. ¬ψ′ ∧ ηi is inconsistent;
3. there exists j s.t. ψ ∧ ¬η′j is inconsistent.

Proposition 4.8 Let Φ =
∨
i Ψi be an EDNF and Φ′ =∧

j Ψj an ECNF. Φ |= Φ′ iff for every i, j, Ψi |= Ψj .

By Proposition 4.8, we can determine whether an action is
executable in the current KB in polynomial time.

Theorem 4.1 Let Φ be an EDNF and Ψ be an ECNF. Decid-
ing whether Φ |= Ψ is tractable.

Next, we show how to judge the equivalence of two KBs.

Definition 4.6 (Strong equivalence) Let Φ =
∨
i Ψi and

Φ′ =
∨
j Ψ′j be two WM-EDNFs. We say Φ ∼= Φ′ if the

following two conditions all hold:
1. for every i, there exists j s.t. Ψi 7→ Ψ′j ;

2. for every j, there exists i s.t. Ψ′j 7→ Ψi.

Proposition 4.9 Let Φ and Φ′ be two WM-EDNFs. If Φ ∼=
Φ′, then Φ ≡ Φ′.

By Proposition 4.9, we can determine whether two WM-
ENDFs are strongly equivalent. Here, we only give a suf-
ficient condition, but not a sufficient and necessary condi-
tion. So, sometimes, two WM-ENDFs are equivalent, but not
strongly equivalent.

5 Planning Algorithm
In this section, we briefly describe PrAO algorithm [To et al.,
2011], which is the main planning algorithm of EPK. The
algorithm is based on progression and entailment which have
been introduced in the last section.

A node n in a search graph is a knowledge base Φn with a
state state(n) including four tags: goal, dead, unexplored,
explored and an additional tag: connected. As depicted in
Algorithm 1, Lines 1 to 5 check whether I entails G, if so,
then return the empty plan; otherwise, initialize the search
graph. Lines 6 to 15 construct the search graph until it finds
a solution or guarantees that there are no solutions. Lines 7
to 10 select an unexplored and connected node n in N for
exploration. If no such node exists then return no solution.
Line 11 expands the selected node and updates the graph
accordingly. Lines 12 to 15 check the state of the initial
node. If its state is goal, return BuildP lan(N , T , n0) to
generate a solution; if dead, return no solution. Otherwise,
continue the loop.

For space limitations, we briefly introduce subroutine
Explore and the heuristic function used in Algorithm 1.

3261

Algorithm 1: Plan(O,S, I,G)

Input : An epistemic problem P = 〈O,S, I,G〉
Output: A solution if it guarantees goal achievement or

NULL otherwise.
1 if I |= G then
2 return an empty plan ε
3 else
4 Let n0 = I, state(n0) = unexplored,
5 connected(n0) = true, T = ∅ and N = {n0}

6 while true do
7 if {n ∈ N | state(n) = unexplored and
8 connected(n) = true} = ∅ then
9 return NULL

10 Let n be the unexplored and connected node with a
heuristic function in N

11 Explore(n)

12 if state(n0) = goal then
13 return BuildP lan(N , T , n0)

14 if state(n0) = dead then
15 return NULL

Explore(n) can generate the children of n for actions
executable in Φn with loop detection. The application of
an ontic action starting from n results in a new node, while
applying sensing actions produces two new nodes, i.e., n
is split amongst the observations. It is a simple idea that
the design of heuristic function for choosing nodes in N to
explore. For each epistemic clause of goal in WM-ECNF,
we count how many epistemic term which can entail that
epistemic clause in current KB, and sum them up. Then we
can get the heuristic value of current node via dividing total
times by the number of epistemic clause of goal.

Finally, we have the following theorem stating that Algo-
rithm 1 is sound and complete.

Theorem 5.1 Let P = 〈O,S, I,G〉 be an epistemic plan-
ning problem, and Ts an action tree constructed by the
Plan(O,S, I,G). We have:

1. If Ts is NULL, then P has no solution; otherwise, Ts is
a solution tree for P , and P has a solution;

2. If P has a solution, then Ts is a solution tree for P;
otherwise, Ts is NULL.

6 Implementation and Experiments
Our planner EPK is implemented in C++, and our experi-
ments were done on a PC with Intel i7-4700MQ (2.4GHz)
CPU and 4GB RAM on Linux.1 Results are in the form of
t(d/s), where t, d and s denote the overall execution time,
the depth of the solution tree and the number of nodes in the
solution respectively. Usually, d and s are criteria for evalu-
ation of the quality of a solution. “–” denotes out-of-memory

1.http://ss.sysu.edu.cn/%7ewh/epk.html

or time-out (20 minutes limit). Heuristic, BFS, DFS and
IDS stand for search with heuristic function, breadth-first
search, depth-first search, and iterative-deepening search
respectively.

We experimentally compare EPK with PKS, and use
a testbed of five domains, including two domains taken
from PKS, other domains taken from contingent planning.
Some domains in PKS contain functions and numerical
representation, which EPK can not handle. Two domains
in PKS are as follows: btc and unix series. In addition,
other domains, doors, push and dispose are from classical
contingent planning benchmarks.

Table 1 reports the comparative experimental results. We
can observe that, generally speaking, our planner EPK are
better than PKS in the performance except btc. In detail,
the heuristic function is not suitable for these domains, since
this search method is slower than BFS and DFS in EPK. For
domains btc, unix series, PKS is faster than EPK, while the
quality of epistemic planning solutions of EPK are better than
PKS using BFS or DFS. For domains such as push, doors,
dispose series, EPK is faster than PKS using BFS and PKS
even can not solve push and doors series using DFS.

Table 2 shows that domains without the ECWA. Although
heuristic search in domains such as block, farmer,medpks-
2 and medpks-3 is slower than BFS and DFS, it is obvious
that heuristic function is very important especially for cube
series and ebtcs-2-5.

Table 1: Experimental results between PKS and EPK
EPK PKS

Problem Heuristic BFS DFS BFS DFS IDS

btc-20 0.549 — 0.033 — 0.005 —
(39/40) — (39/40) — (40/41) —

btc-30 3.976 — 0.169 — 0.008 —
(59/60) — (59/60) — (60/61) —

btc-50 56.826 — 1.203 — 0.009 —
(99/100) — (99/100) — (100/101) —

unix-1 0.030 0.006 0.015 0.003 0.003 0.003
(7/8) (3/4) (3/4) (3/4) (81/82) (3/4)

unix-2 0.470 0.104 0.199 0.026 0.212 0.025
(4/6) (3/4) (3/4) (3/4) (>100/>100) (3/4)

doors-2 0.010 0.011 0.010 0.419 — 0.035
(9/16) (5/9) (8/14) (5/9) — (5/10)

doors-5 34.518 5.495 0.346 67.386 — 75.125
(71/72) (6/7) (8/9) (6/7) — (8/9)

push-3-1 0.009 0.052 0.296 0.094 — 0.100
(3/4) (3/4) (3/4) (3/4) — (3/4)

push-3-2 163.478 1.889 — 2.354 — 2.477
(8/9) (4/5) — (4/5) — (4/5)

dispose-2-1 0.001 0.001 0.002 0.001 0.023 0.001
(2/3) (2/3) (2/3) (2/3) (>100/>100) (2/3)

dispose-2-2 0.094 0.087 0.176 0.491 — 0.516
(13/18) (7/11) (7/11) (7/11) — (7/13)

dispose-3-1 0.009 0.166 15.170 0.868 8.537 0.875
(4/5) (4/5) (4/5) (4/5) (>1K/>1K) (4/5)

Table 2: Experimental results in EPK without the ECWA
Problem Heuristic BFS DFS

farmer 0.073(8/13) 0.043(8/13) 0.084(8/13)

block-3 1.777(12/44) 0.006(5/9) 0.019(5/9)

inroom 0.001(3/6) 0.001(3/6) 0.001(3/6)

doors-2 0.132(5/6) 10.091(3/7) —
medpks-2 0.008(3/6) 0.001(2/3) 0.001(2/3)
medpks-3 0.013(2/3) 0.004(2/3) 0.005(2/3)
medpks-6 0.136(2/3) 0.168(2/3) 0.163(2/3)

ebtcs-2-5 0.014(3/4) 8.155(3/4) —
ebtcs-2-6 — 28.671(3/7) —
cube-3 0.714(15/18) 0.986(13/16) 1.070(13/16)
cube-5 8.424(48/51) — —
cube-6 124.528(98/101) — —

3262

7 Conclusions
We have introduced a general and effective approach to
single-agent epistemic planning with deterministic actions
without making the ECWA. We identify two compact
representations: WM-EDNF and WM-ECNF. Based on
the representations, we give the progression and entailment
algorithms which are core modules in planning. Moreover,
entailment is tractable when the KB is in WM-EDNF and the
query is in WM-ECNF. We adapt the PrAO algorithm as the
main planning algorithm, and our planner is complete. Our
empirical evaluation shows that our planner is better than
PKS in most of the epistemic planning problems we have
tested. Also, EPK generates solutions effectively for most
of the epistemic planning problems we have considered,
especially those without the ECWA.

There are several possible directions for future study.
Firstly, we want to improve the efficiency of our planner via
designing a compact yet efficient and scalable representation
and developing better heuristic functions, such as graph
heuristics. Secondly, we want to extend the definition of
ontic actions so that conditional effects can contain not only
propositional literals but also epistemic literals, and give the
semantics for these actions. Thirdly, we would also like to
extend this work to multi-agent cases.

8 Acknowledgments
The authors would like to thank Andreas Herzig for his useful
suggestions. Hai Wan thanks Guangzhou Science and Tech-
nology Project (No. 2013J4100058) for the support of this
research. Liangda Fang and Yongmei Liu acknowledge the
support of the National Natural Science Foundation of China
under grant No. 61073053.

References
[Aucher and Bolander, 2013] Guillaume Aucher and

Thomas Bolander. Undecidability in epistemic plan-
ning. In Francesca Rossi, editor, Proceedings of the
Twenty-Third International Joint Conference on Artificial
Intelligence (IJCAI-2013), pages 27–33, 2013.

[Bertoli et al., 2006] Piergiorgio Bertoli, Alessandro
Cimatti, Marco Roveri, and Paolo Traverso. Strong plan-
ning under partial observability. Artificial Intelligence,
170(4):337–384, 2006.

[Bienvenu et al., 2010] Meghyn Bienvenu, Hélène Fargier,
and Pierre Marquis. Knowledge compilation in the modal
logic S5. In Proceedings of the Twenty-Fourth Confer-
ence on Artificial Intelligence (AAAI-2010), pages 261–
265, 2010.

[Bolander and Andersen, 2011] Thomas Bolander and
Mikkel Birkegaard Andersen. Epistemic planning for
single- and multi-agent systems. Journal of Applied
Non-Classical Logics, 21(1):9–34, 2011.

[Bryant, 1986] Randal E. Bryant. Graph-based algorithms
for boolean function manipulation. IEEE Transactions on
Computers, 100(8):677–691, 1986.

[Herzig et al., 2003] Andreas Herzig, Jérôme Lang, and
Pierre Marquis. Action representation and partially ob-
servable planning using epistemic logic. In Proceedings
of the Eighteenth International Joint Conference on Artifi-
cial Intelligence (IJCAI-2003), pages 1067–1072, 2003.

[Kominis and Geffner, 2015] Filippos Kominis and Hector
Geffner. Beliefs in multiagent planning: From one agent
to many. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2015), 2015.

[Muise et al., 2015] Christian Muise, Vaishak Belle, Paolo
Felli, Sheila McIlraith, Tim Miller, Adrian R. Pearce,
and Liz Sonenberg. Planning over multi-agent epistemic
states: A classical planning approach. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence (AAAI-2015), pages 3327–3334, 2015.

[Peot and Smith, 1992] Mark A. Peot and David E. Smith.
Conditional nonlinear planning. In Proceedings of the
First International Conference on Artificial Intelligence
Planning Systems (AIPS-1992), pages 189–197, 1992.

[Petrick and Bacchus, 2002] Ronald P.A. Petrick and
Fahiem Bacchus. A knowledge-based approach to
planning with incomplete information and sensing. In
Proceedings of the Sixth International Conference on
Artificial Intelligence Planning Systems (AIPS-2002),
pages 212–222, 2002.

[Petrick and Bacchus, 2004] Ronald P.A. Petrick and
Fahiem Bacchus. Extending the knowledge-based ap-
proach to planning with incomplete information and
sensing. In Proceedings of the Fourteenth International
Conference on Automated Planning and Scheduling
(ICAPS-2004), pages 613–622, 2004.

[To et al., 2011] Son Thanh To, Tran Cao Son, and En-
rico Pontelli. Contingent planning as and/or forward
search with disjunctive representation. In Proceedings of
the Twenty-First International Conference on Automated
Planning and Scheduling (ICAPS-2011), pages 258–265,
2011.

[van Ditmarsch et al., 2007] Hans van Ditmarsch, Wiebe
van Der Hoek, and Barteld P. Kooi. Dynamic epistemic
logic. Springer, 2007.

[Yu et al., 2013] Quan Yu, Ximing Wen, and Yongmei Liu.
Multi-agent epistemic explanatory diagnosis via reasoning
about actions. In Proceedings of the Twenty-Third Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
2013), pages 1183–1190, 2013.

3263

