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Abstract
In this paper, we develop a novel graph kernel by
aligning the Jensen-Shannon (JS) representations
of vertices. We commence by describing how to
compute the JS representation of a vertex by mea-
suring the JS divergence (JSD) between the cor-
responding h-layer depth-based (DB) representa-
tions developed in [Bai et al., 2014a]). By align-
ing JS representations of vertices, we identify the
correspondence between the vertices of two graphs
and this allows us to construct a matching-based
graph kernel. Unlike existing R-convolution ker-
nels [Haussler, 1999] that roughly record the iso-
morphism information between any pair of sub-
structures under a type of graph decomposition, the
new kernel can be seen as an aligned subgraph
kernel that incorporates explicit local correspon-
dences of substructures (i.e., the local information
graphs [Dehmer and Mowshowitz, 2011]) into the
process of kernelization through the JS representa-
tion alignment. The new kernel thus addresses the
drawback of neglecting the relative locations be-
tween substructures that arises in the R-convolution
kernels. Experiments demonstrate that our kernel
can easily outperform state-of-the-art graph kernels
in terms of the classification accuracies.

1 Introduction
There have been many successful attempts to classify or
cluster graphs using graph kernels [Gärtner et al., 2003;
Jebara et al., 2004; Barra and Biasotti, 2013; Harchaoui and
Bach, 2007]. The main advantage of using graph kernels is
that they characterize graph features in a high dimensional
space and thus better preserve graph structures. A graph ker-
nel is usually defined in terms of a similarity measure be-
tween graphs. Most of the recently developed graph kernels
are instances of the family of R-convolution kernels proposed
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by Haussler [Haussler, 1999], which provide a generic way
of defining graph kernels by comparing all pairs of isomor-
phic substructures under decomposition, and a new decom-
position will result in a new graph kernel. Generally speak-
ing, the R-convolution kernels can be categorized into the
following classes, namely graph kernels based on compar-
ing all pairs of a) walks (e.g., the random walk kernel [Jebara
et al., 2004]), b) paths (e.g., the shortest path kernel [Borg-
wardt and Kriegel, 2005]), c) cycles (e.g., the backtracless
kernel from the cycles identified by the Ihara zeta function
[Aziz et al., 2013]), and d) subgraph or subtree structures
(e.g., the subgraph or subtree kernel [Costa and Grave, 2010;
Shervashidze et al., 2011]).

One drawback arising in the R-convolution kernels is that
they neglect the relative locations of substructures. This oc-
curs when an R-convolution kernel adds an unit value to the
kernel function by roughly identifying a pair of isomorphic
substructures. As a result, the R-convolution kernels can-
not establish reliable structural correspondences between the
substructures. This drawback limits the precise kernel-based
similarity measure for graphs.

To overcome the shortcomings of existing R-convolution
kernels, we propose a novel matching kernel by aligning
JS representations of vertices, which are computed based
on the JSD measure [Bai et al., 2012; Bai and Hancock,
2013] between DB representations [Bai and Hancock, 2014]
of graphs. The main advantages of using DB representa-
tions and the JSD measure are twofold. First, in the liter-
ature [Crutchfield and Shalizi, 1999; Escolano et al., 2012;
Bai and Hancock, 2014], DB representations of graphs are
powerful tools for characterizing graphs in terms of complex-
ity measures and reflect rich depth characteristics of graphs.
Second, in the litearturethe [Bai et al., 2012; Bai, 2014], the
JSD measure of graphs can not only reflect the information
theoretic (dis)similarities between entropies of graphs but can
also be efficiently computed for a pair of large graphs. As a
result, the DB representation and the JSD measure provide us
an elegant way of defining new effective graph kernels.

To compute the new matching kernel, for each graph un-
der comparison, we commence by computing the h-layer DB
representation of each vertex, that has been previously in-
troduced in [Bai et al., 2014a]. Moreover, we determine a
m-sphere (i.e., a vertex set) for each vertex by selecting the
vertices that have the shortest path length m to the vertex.
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We compute a new m-layer JS representation for each ver-
tex by measuring the JSD between the h-layer DB repre-
sentations of the vertex and the vertices from its m-sphere.
The m-layer JS representation rooted at a vertex not only
encapsulates a high-dimensional entropy-based depth infor-
mation for the vertex, but also reflects the co-relation be-
tween the vertex and its m-sphere vertices (i.e., the JS repre-
sentation reflects richer characteristics than the original DB
representation). Based on the new JS representations for
two graphs we develop a new vertex matching strategy by
aligning the JS representations. Finally, we compute the
new kernel, namely the JS matching kernel, for graphs by
counting the number of matched vertex pairs. We theoreti-
cally show the relationship between our kernel and the clas-
sical all subgraph kernel and explain the reason for the ef-
fectiveness of our kernel. Our JS matching kernel can be
seen as an aligned subgraph kernel that counts the num-
ber of aligned isomorphic subgraph (i.e., the local informa-
tion graph [Dehmer and Mowshowitz, 2011]) pairs which
are correspond by the corresponding aligned JS representa-
tions. Our kernel thus overcomes the mentioned shortcoming
of neglecting the structural correspondence information be-
tween substructures that arises in R-convolution kernels. Fur-
thermore, compared to the DB matching kernel that is com-
puted by aligning the h-layer DB representations [Bai, 2014;
Bai et al., 2014a], our kernel not only reflects richer char-
acteristics but also identifies more pairs of isomorphic sub-
graphs that encapsulate the structural correspondence infor-
mation. We empirically demonstrate the effectiveness of our
new kernel on graphs from computer vision datasets.

2 Vertex Matching using JS Representations
In this section, we define a JS representation for a vertex and
a vertex matching method by aligning the representations.

2.1 The JSD Measure for Graphs
In this work, we require the JSD measure for graphs. In mu-
tual information, the JSD is a dissimilarity measure for prob-
ability distributions in terms of the entropy difference asso-
ciated with the distributions [Martins et al., 2009]. In [Bai
and Hancock, 2013; Bai et al., 2012], Bai et al. have ex-
tended the JSD measure to graphs for the purpose of com-
puting the JSD based information theoretic graph kernels. In
their work, the JSD between a pair of graphs is computed
by measuring the entropy difference between the entropies of
the graphs and those of a composite graph (e.g., the disjoint
union graph [Bai et al., 2012]) formed by the graphs. In this
subsection, we generalize their work in [Bai et al., 2012] and
give the concept of measuring the JSD for a set of graphs. Let
G = {Gn|n = 1, 2, . . . , N} denote a set of N graphs, and
Gn(Vn, En) is a sample graph in G with vertex set Vn and
edge set En. The JSD measure D for the set of graphs G is

D(G) = HS(GDU )−
1

N

N∑
n=1

HS(Gn), (1)

where HS(Gn) is the Shannon entropy for Gn associated
with steady state random walks [Bai and Hancock, 2013] and

is defined as

HS(Gn) = −
∑
v∈Vn

PGn(v) logPGn(v), (2)

where PGn
(v) = Dn(v, v)/

∑
u∈V Dn(u, u) is the probabil-

ity of the steady state random walk visiting the vertex v ∈ Vn,
and D is the diagonal degree matrix of Gn. Moreover, in
Eq.(1) GDU is the disjoint union graph formed by all the
graphs in G, and HS(GDU ) is the Shannon entropy of the
union graph. Based on the definition in [Köner, 1971], the
entropy of the disjoint union graph is defined as

HS(GDU ) =

∑N
n=1 |Vn|HS(Gn)∑N

n=1 |Vn|
, (3)

where |Vn| is the number of vertices ofGn. Eq.(1) and Eq.(3)
indicate that the JSD measure for a pair of graphs can be di-
rectly computed from their vertex numbers and entropy val-
ues. Thus, the JSD measure can be efficiently computed.

2.2 The JS Representation through the JSD
In this subsection, we compute a m-layer JS representation
around a vertex for a graph. To commence, we first review
the concept of the h-layer DB representation around a vertex.
This has been previously introduced by Bai et al. [Bai et al.,
2014a], by generalizing the DB complexity trace around the
centroid vertex [Bai and Hancock, 2014]. For an undirected
graph G(V,E) and a vertex v ∈ V , let a vertex set NK

v be
defined as NK

v = {u ∈ V | SG(v, u) ≤ K}, where SG

is the shortest path matrix of G and SG(v, u) is the shortest
path length between v and u. For G, the K-layer expansion
subgraph GKv (VK

v ; EKv ) around v is{
VK
v = {u ∈ NK

v };
EKv = {u, v ∈ NK

v , (u, v) ∈ E}.
(4)

For the graph G, the h-layer DB representation around v is

DBh
G(v) = [HS(G1v), · · · , HS(GKv ), · · · , HS(Ghv )]T , (5)

where (K ≤ h), GKv is the K-layer expansion subgraph
around v, and HS(GKv ) is the Shannon entropy of GKv and is
defined in Eq.(2). Note that, if Lmax is the greatest length
of the shortest paths from v to the remaining vertices and
K ≥ Lmax, the K-layer expansion subgraph is G itself.

Clearly, the h-layer DB representation DBh
G(v) reflects an

entropy-based information content flow through the family of
K-layer expansion subgraphs rooted at v, and thus can be
seen as a vectorial representation of v.
The m-layer JS representation: For the graph G(V,E) and
the vertex v ∈ V , we define the m-sphere (i.e., a vertex set)
around v as N̂m

v = {u ∈ V | SG(v, u) = m} (note that,
N̂m

v is different from NK
v , even if m = K), based on the

definition in [Dehmer and Mowshowitz, 2011]. The JSD for
the h-layer DB representations of v and the vertices in N̂K

v is

D(m;h)
G (v) = [D(G1

N̂m
v
), . . . ,D(GK

N̂m
v
), . . . ,D(Gh

N̂m
v
)]T ,

(6)
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where GK
N̂m

v

is a graph set and consists of the K-layer expan-

sion subgraphs around v and the vertices in N̂m
v . Them-layer

JS representation around the vertex v is

J
(m;h)
G (v) = D(m;h)

G (v) +DBh
G(v). (7)

Note that, the dimension of Jm
G (v) is equal to that of

DBh
G(v), i.e., Jm

G (v) is a h dimensional vector. This can
be observed from Eq.(5), Eq.(6) and Eq.(7). 2

Discussions: Compared to the h-layer DB representation
DBh

G(v), the m-layer JS representation J (m;h)
G (v) not only

reflects the information content (i.e., the entropy) flow rooted
at the vertex v relying on DBh

G(v), but also encapsulates the
entropy-based dissimilarity information (or the relationship)
between the h-layer DB representation of v and that of the
vertices in N̂m

v in terms of the JSD measure D(m;h)
G (v). In

other word, for each vertex the m-layer JS representation re-
flects richer characteristics than its original h-layer DB rep-
resentation. This can be observed from Eq.(7). Moreover,
based on the definition proposed by Dehmer and Mowshowitz
in [Dehmer and Mowshowitz, 2011], the shortest paths de-
parting from v to the vertices in N̂m

v can be used to form a lo-
cal information graph LG(v,m) rooted at v. Since LG(v,m)

is encompassed or determined by the m-sphere N̂m
v around

v, the vertex v and its m-sphere play a crucial role of gen-
erating LG(v,m). As a result, the m-layer JS representation
J
(m;h)
G (v) can also be seen as a vectorial signature for the lo-

cal information graph LG(v,m). Details of local information
graphs can be found in [Dehmer and Mowshowitz, 2011].

2.3 Vertex Matching from the JS Represenations
We propose a new vertex matching method, namely the JS
matching method, for a pair of graphs by aligning their JS
representations of vertices. Our matching method is similar
to that previously introduced by Scott et al. in [Scott and
Longuett-Higgins, 1991] for point set matching, that com-
putes an affinity matrix in terms of the distances between
points. For a pair of graphs Gp(Vp, Ep) and Gq(Vq, Eq),
we use the m-layer JS representations J

(m;h)
Gp

(vi) and

J
(m;h)
Gq

(uj), that are computed from the corresponding h-
layer DB representations, as the point coordinates for the ver-
tices vi ∈ Vp and uj ∈ Vq , respectively. For Gp and Gq ,
we compute the Euclidean distance between J (m;h)

Gp
(vi) and

J
(m;h)
Gq

(uj) as the elementR(m;h)(i, j) of their affinity matrix
R(m;h), and R(m;h)(i, j) is defined as

R(m;h)(i, j) = ‖J (m;h)
Gp

(vi)− J (m;h)
Gq

(uj)‖2. (8)

where R(m;h) is a |Vp| × |Vq| matrix, and the parameters m
and h indicate that the affinity matrix is computed from the
m-layer JS representation over the h-layer DB representation.
R(m;h)(i, j) represents the distance or dissimilarity between
the vertex vi in Gp and the vertex uj in Gq . Furthermore, for
the affinity matrix R(m;h), the rows index the vertices of Gp,
and the columns index the vertices of Gq .

If R(m;h)(i, j) is the smallest element simultaneously in
row i and in column j, moreover |N̂m

vi
| = |N̂m

uj
| 6= 0 (i.e.,

the vertex number of the m-sphere around vi ∈ Vp is equal
to that around uj ∈ Vq , and these vertex numbers also cannot
be 0), there should be a one-to-one correspondence between
the vertex vi of Gp and the vertex uj of Gq , i.e., vi and uj
are matched. We record the state of correspondence using the
correspondence matrix C(m;h) ∈ {0, 1}|Vp|×|Vq| that satisfies

C(m;h)(i, j) =


1 if R(i, j) is the smallest element,

both in row i and in column j,

and |N̂m
vi
| = |N̂m

uj
| 6= 0;

0 otherwise.
(9)

Eq.(9) indicates that if C(m;h)(i, j) = 1, the vertices vi and
vj are matched. Moreover, the condition |N̂m

vi
| = |N̂m

uj
| 6= 0

for Eq.(9) guarantees that both of the m-spheres |N̂m
vi
| and

|N̂m
uj
| are not empty vertex sets.

Note that, similar to the DB matching previously intro-
duced by Bai et al. [Bai et al., 2014a], for a pair of graphs
a vertex from a graph may have more than one matched ver-
tices from the other graph. In our work, we propose to assign
a vertex at most one matched vertex. One way to achieve this
is to update the matrix C(m;h) by adopting the Hungarian al-
gorithm [Munkres, 1957] that can solve the assignment prob-
lem, following the strategy proposed in [Bai et al., 2014a].
Here, the matrix C(m;h) ∈ {0, 1}|Vp|×|Vq| can be seen as the
incidence matrix of a bipartite graphGpq(Vp, Vq, Epq), where
Vp and Vq are the two sets of partition parts and Epq is the
edge set. By performing the Hungarian algorithm on the ma-
trix C(m;h), we can assign each vertex from the partition part
Vp or Vq at most one matched vertex from the other partition
part Vq or Vp. Unfortunately, the Hungarian algorithm usu-
ally requires extra expansive computation and thus may lead
to computational inefficiency for the JS matching. To address
the inefficiency, an alternative way or strategy is to randomly
assign each vertex an unique matched vertex through the cor-
respondence matrix C(m;h). In other words, for the corre-
spondence matrix C(m;h), from the first row and the first col-
umn, we will set each evaluating element of C(m;h) as 0 if
there has been an existing element that is 1 either in the same
row or the same column. Based on our evaluations, this strat-
egy will not influence the effectiveness of our resulting kernel
in Section 3, and the kernel using the strategy will be more ef-
ficient than that using the Hungarian algorithm.

3 A Graph Kernel from the JS Matching
In this section, we propose a new graph kernel from the JS
vertex matching by aligning the JS representations of vertices.

3.1 The Jensen-Shannon Matching Kernel
Definition (The Jensen-Shannon matching kernel): Con-
sider a pair of graphs as Gp(Vp, Ep) and Gq(Vq, Eq). Based
on the definition of JS matching introduced in Section 2.3, we
commence by computing the correspondence matrix C(m;h).
The JS matching kernel k(M ;h)

JSM , which aligns the m-layer JS
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representations, for the graphs is

k
(M ;h)
JSM (Gp, Gq) =

M∑
m=1

|Vp|∑
i=1

|Vq|∑
j=1

C(m;h)(i, j), (10)

where M is the greatest value of the parameter m (i.e., m
varies from 1 to M ). Eq.(10) indicates that k(M ;h)

JSM (Gp, Gq)
counts the number of matched vertex pairs between Gp and
Gq over the M correspondence matrices C(m;h). 2

Lemma. The matching kernel k(M ;h)
JSM is positive definite (pd).

Proof. Intuitively, the proposed JS matching kernel is pd
because it counts pairs of matched vertices (i.e., the small-
est subgraphs) over the M correspondence matrices C(m;h).
More formally, let the base counting kernel km be a func-
tion counting pairs of matched vertices between the graphs
Gp and Gq from the correspondence matrix C(m;h), and

km(Gp, Gq) =
∑

vi∈Vp

∑
uj∈Vq

δ(vi, uj), (11)

where

δ(vi, uj) =

{
1 if C(i, j) = 1;
0 otherwise.

(12)

where δ is the Dirac kernel, that is, it is 1 if the arguments
are equal and 0 otherwise (i.e., it is 1 if a pair of vertices are
matched and 0 otherwise). From the base counting kernel km,
the JS matching kernel k(M ;h)

JSM can be re-written as

k
(M ;h)
JSM (Gp, Gq) =

M∑
m=1

km(Gp, Gq). (13)

Eq.(11) indicates that the base counting kernel km is the sum
of pd Dirac kernels and is thus pd. As a result, the kernel
k
(M ;h)
JSM summing the positive definite kernel km is pd. �

3.2 Relation to the All Subgraph Kernel
The JS matching kernel can be re-defined in another manner
that elucidates its advantage and effectiveness, compared to
the all subgraph (AS) kernel. To commence, we review the
definition of the AS kernel introduced in [Borgwardts, 2007].
Let Gp(Vp, Ep) and Gq(Vq, Eq) be a pair of graphs for the
kernel computation. The AS kernel is defined as

kAS(Gp, Gq) =
∑

SpvGp

∑
SqvGq

kI(Sp, Sq), (14)

where

kI(Sp, Sq) =

{
1 if Sp ' Sq,
0 otherwise.

(15)

Below, we re-define the JS matching kernel in a manner
that is similar to the AS kernel. Based on the definition in
Section 2.2, the m-layer JS representations around a vertex
v ∈ Vp of Gp(Vp, Ep) and a vertex u ∈ Vq of Gq(Vq, Eq)

are J
(m;h)
Gp

(v) = Dm
Gp

(v) + DBh
Gp

(v) and J
(m;h)
Gq

(u) =

Dm
Gq

(u) +DBh
Gq

(u), respectively. According to the discus-
sions in Section 2.2, each m-layer JS representation around

a vertex can be seen as a vectorial signature of a local infor-
mation graph, which is determined by the vertex and the m-
sphere around the vertex. Based on the JS matching defined
in Section 2.3, if the vertices v and u are matched, the two
m-layer JS representations around the two vertices are close
together in a corresponding principle space. Thus, the corre-
sponding local information graphs LGp

(v,m) around v ∈ Vp
and LGq

(u,m) around u ∈ Vq can be seen as approximate
isomorphism, i.e., LGp

(v,m) ' LGq
(u,m). As a result, the

JS matching kernel k(M ;h)
JSM can be re-written as

k
(M ;h)
JSM (Gp, Gq) =

∑
SpvGp

∑
SqvGq

kI(Sp, Sq), (16)

where

kI(Sp, Sq) =


1 if Sp = LGp(v,m) and LGq (u,m),

v and u are matched,

and |N̂m
v | = |N̂m

u | 6= 0;
0 otherwise.

(17)
Here, the condition |N̂m

vi
| = |N̂m

uj
| 6= 0 of Eq.(17) guarantees

that the m-spheres N̂m
v and N̂m

u exist, i.e., the local informa-
tion graphs LGp

(v,m) and LGq
(u,m) that are determined

by the m-spheres exist. This is because an empty m-sphere
cannot form a local information, more details can be found in
[Dehmer and Mowshowitz, 2011].
Discussions: Through Eq.(14) and Eq.(17), we observe that
both the kernels kAS and k(M ;h)

JSM need to identify any pair of
isomorphic subgraphs. For kAS and k(M ;h)

JSM , each pair of iso-
morphic subgraphs pair will add an unit value to the kernel
function, i.e., both the AS kernel and our JS matching kernel
count the number of isomorphic subgraph pairs. However,
we also observe that there are two significant differences be-
tween the AS kernel and the JS matching kernel. First, for
the JS matching kernel, only the subgraphs (i.e., the local in-
formation graphs) around a pair of matched vertices that are
determined by the vertices and the m-spheres around the ver-
tices are evaluated with respect to be isomorphic. By con-
trast, for the AS kernel, any pair of subgraphs are evaluated
for identifying the isomorphism. As a result, the JS matching
kernel overcomes the NP-hard problem of measuring all pos-
sible pairs of subgraphs that arises in the AS kernel. Second,
for the JS matching kernel, any pair of isomorphic local in-
formation graphs are identified by a pair of matched vertices
and the m-spheres around the vertices. Thus, there is a loca-
tional correspondence between the isomorphic local informa-
tion graphs (i.e., the corresponding subgraphs) with respect
to the global graphs. By contrast, a pair of subgraphs hav-
ing no location correspondence may also be seen as isomor-
phism by the AS kernel. The above observations indicate that
our JS matching kernel is essentially an aligned subgraph
kernel that counts the number of aligned isomorphic local
information graph pairs, which are corresponded by the cor-
responding JS representations. Our kernel thus overcomes
the shortcoming of neglecting the relative locations between
substructures arising in the R-convolution kernels.
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3.3 Discussions and Related Work
Clearly, the JS matching kernel is related to the DB represen-
tation defined in [Bai and Hancock, 2014]. However, there
are two significant differences. First, the DB representation
is computed by measuring the entropies of subgraphs rooted
at the centroid vertex. The centroid vertex is identified by
evaluating the minimum shortest path length variance to the
remaining vertices. By contrast, in our work, we first compute
the h-layer DB representation rooted at each vertex, and then
compute the resulting m-layer JS representation. For a ver-
tex, itsm-layer JS representation is computed by summing its
DB representation and the JSD measure between its DB rep-
resentation and that of the vertices from its m-sphere. Sec-
ond, in [Bai and Hancock, 2014] the DB representation from
the centroid vertex is a vectorial signature of a graph, i.e., it
can be seen as an embedding vector for the graph. Embed-
ding a graph into a vector tends to approximate the structural
correlations in a low dimensional space, and thus leads to in-
formation loss. By contrast, the JS matching kernel aligning
the m-layer JS representation represents graphs in a high di-
mensional space and thus better preserves graph structures.

On the other hand, the DB matching kernel developed in
[Bai et al., 2014a] is also related to the DB representation in
[Bai and Hancock, 2014]. Moreover, similar to our JS match-
ing kernel, the DB matching kernel can also better preserve
graph structures by kernelizing the DB representation. How-
ever, unlike the JS matching kernel, this kernel is computed
by aligning the h-layer DB representation rather than align-
ing them-layer JS representation. According to the statement
in Section 2.2, the m-layer JS representation for a vertex re-
flects richer characteristics than its original h-layer DB rep-
resentation. As a result, the JS matching kernel can capture
more information for graphs than the DB matching kernel.
Moreover, Bai [Bai, 2014] also demonstrates the relationship
between the DB matching kernel and the AS kernel. The DB
matching kernel can also be re-defined as a manner that is
similar to the AS kernel, i.e., the DB matching kernel can
be seen as a subgraph kernel that counts the number of ap-
proximately isomorphic h-layer (i.e., K = h) expansion sub-
graph pairs. Each pair of isomorphic h-layer expansion sub-
graphs are identified by a pair of matched vertices from the
DB matching. Thus, similar to our JS matching kernel, the
DB matching kernel can also reflect the locational correspon-
dence information between each pair of identified isomorphic
subgraphs. Unfortunately, the identified isomorphic subgraph
pair number of the DB matching kernel is less than that of the
JS matching kernel. For a pair of graphs each having x ver-
tices, the DB matching kernel can only identify x pairs of
isomorphic subgraphs at most. By contrast, the JS match-
ing kernel can identify Mx pairs of isomorphic subgraphs at
most. This again demonstrates that our JS matching kernel
captures more information than the DB matching kernel.

Finally, like the JS graph kernel [Bai and Hancock, 2013],
our kernel is also related to the JSD. However, the JS graph
kernel only reflects the global similarity of graphs in terms of
the JSD measure between a pair of global graphs, and lacks
the interior topological information of graphs. By contrast,
our JS matching kernel can reflect rich vertex correspondence
information from the JS representations computed by measur-

ing the JSD between corresponding DB representations.

4 Experimental Results
We demonstrate the performance of our new kernel on three
standard graph datasets from computer vision databases. The
reason of using computer vision datasets is that many com-
puter vision applications usually require the correspondence
information between pairwise feature points that are ab-
stracted from images or 3D shapes, for the objective of simi-
larity measure. For an instance, one has two graphs abstracted
from two digital images both containing the same object,
based on different viewpoints. Here, each vertex represents
a feature point. Identifying the correspondence information
between pairwise vertices or substructures from the identical
region is our concern, and can provide us an elegant way of
reflecting precise similarity between the images or shapes. As
a result, the new matching kernel can easily indicate its main
advantage of identifying the correspondence information, on
computer vision datasets. The advantage is unavailable for
most existing graph kernels from R-convolution.
BAR31, BSPHERE31 and GEOD31: The SHREC 3D
Shape database consists of 15 classes and 20 individuals per
class, that is 300 shapes [Biasotti et al., 2003]. This is a
usual benchmark in 3D shape recognition. From the SHREC
3D Shape database, we establish three graph datasets named
BAR31, BSPHERE31 and GEOD31 datasets through three
mapping functions. These functions are a) ERG barycen-
ter: distance from the center of mass/barycenter, b) ERG
bsphere: distance from the center of the sphere that circum-
scribes the object, and c) ERG integral geodesic: the average
of the geodesic distances to the all other points. The num-
ber of maximum, minimum and average vertices for the three
datasets are a) 220, 41 and 95.42 (for BAR31), b) 227, 43
and 99.83 (for BSPHERE31), and c) 380, 29 and 57.42 (for
GEOD31), respectively.

4.1 Experiments on Graph Datasets
Experimental Setup: First, we evaluate the performance
of our JS matching kernel (JSMK) on graph classification
problems. We also compare our kernel with several alter-
native state-of-the-art graph kernels. These graph kernels
include 1) the DB matching kernel (DBMK) [Bai, 2014;
Bai et al., 2014a], 2) the Weisfeiler-Lehman subtree ker-
nel (WLSK) [Shervashidze et al., 2011], 3) the shortest path
graph kernel (SPGK) [Borgwardt and Kriegel, 2005], 4) the
graphlet count graph kernel [Shervashidze et al., 2009] with
graphlet of size 4 (GCGK) [Shervashidze et al., 2009], 5) the
un-aligned quantum Jensen-Shannon kernel (UQJS) [Bai et
al., 2015], 6) the Jensen-Shannon graph kernel (JSGK) [Bai
and Hancock, 2013], and 7) the Jensen-Tsallis q-difference
kernel (JTQK) [Bai et al., 2014b] associated with q = 2. For
our JS matching kernel k(M ;h)

JSM , we set the h as 10 and the
greatest value of m as 40 (i.e., M = 40). For the WLSK ker-
nel and the JTQK kernel, we set the highest dimension (i.e.,
the highest height of subtrees) of the Weisfeiler-Lehman iso-
morphism (for the WLSK kernel) and the tree-index method
(for the JTQK kernel) as 10. For the DBMK kernel, we set
the highest layer of the required DB representation as 10. For
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each kernel, we compute the kernel matrix on each graph
dataset. We perform 10-fold cross-validation using the C-
Support Vector Machine (C-SVM) Classification to compute
the classification accuracies, using LIBSVM [Chang and Lin,
2011]. We use nine samples for training and one for testing.
All the C-SVMs were performed along with their parame-
ters optimized on each dataset. We repeat the experiment 10
times. We report the average classification accuracies and
standard errors for each kernel in Table.1.
Experimental Results: In terms of the classification accu-
racies, our JSMK kernel can easily outperform all the alter-
native graph kernels on any dataset. The classification accu-
racies of our JSMK kernel are obviously higher than those
of all the alternative kernels. The reasons for the effective-
ness are threefold. First, compared to the WLSK, SPGK,
GCGK and JTQK kernels that require decomposing graphs
into substructures, our JSMK kernel can establish the sub-
structure location correspondence which is not considered in
these kernels. Second, compared to the JSGK and QJSK ker-
nels that rely on the similarity measure between global graphs
in terms of the classical or quantum JSD, our JSMK kernel
can identify the correspondence information between both the
vertices and the substructures, and can thus reflect richer in-
terior topological characteristics of graphs. By contrast, the
JSGK and QJSK kernels can only reflect the global similarity
information between graphs. Third, compared to the DBMK
kernel that can also reflect the correspondence information
between substructures, our JSMK kernel can identify more
pairs of aligned isomorphic substructures. Moreover, as we
have stated in Section 3.3, the m-layer JS representation can
reflect richer characteristics than the h-layer DB representa-
tion. As a result, the JSMK kernel using the JS representation
can capture more information for graphs than the DBMK ker-
nel using the DB representation.
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Figure 1: The Accuracy with Different Parameters h and M.

Comparisons with Increasing h and M : We explore the
performance of our JSMK kernel on graph datasets with in-
creasing h (i.e., h = 1, 2, . . . , 10 when M = 40) and M
(i.e., M = 5, 10, 15 . . . , 50 when h = 10). We report the re-
sults in Fig.1. In each subfigure, the x-axis gives the varying
of h or M , and the y-axis gives the classification accuracies
of our JSMK kernel. The lines of different colours represent
the results on different datasets. The classification accuracies
tend to become greater with increasing h or M . The reasons
are twofold. First, for the parameter h, the greater the h, the
higher dimensional DB complexity information of our kernel
can be captured. Second, for the parameter M , the greater
the M , the more pairs of aligned isomorphic local informa-
tion graphs can be identified by our kernel.
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Figure 2: Runtime Evaluations.

4.2 Computational Evaluations
We explore the computational efficiency (i.e, the CPU run-
time) of our JSMK kernel on randomly generated graphs
with respect four parameters: the graph size n, the layer h
of the DB representations of graphs, the greatest value of
the JS representation layer M , and the graph dataset size
N . We vary x = {100, 200, . . . , 2000}, h = {1, 2, . . . , 10},
M = {1, 2, . . . , 10}, and N = {5, 10, . . . , 500}, separately.
a) For the parameter x, we generate 20 pairs of graphs with in-
creasing number of vertices. We report the runtime for com-
puting the kernel values between pairwise graphs (h = 10
and M = 10). b) For the parameter h, we generate a pair
of graphs each of which has 200 vertices. We report the run-
time for computing the kernel values of the pair of graphs as a
function of h (M = 10). c) For the parameter M , we use the
pair of graphs from step b. We report the runtime for com-
puting the kernel values of the pair of graphs as a function
of M (h = 10). d) For the parameter N , we generate 500
graph datasets with an increasing number of test graphs. In
each dataset, one graph has 200 vertices. We report the run-
time for computing the kernel matrices for each graph dataset
(h = 10 and M = 10). Note that, since M = 10, the
runtime is for computing the 10 kernel matrices for each
dataset. The CPU runtime is reported in Fig.2, as operated in
Matlab R2011b on a 2.5GHz Intel 2-Core processor (i.e., i5-
3210m). Fig.2 indicates that the runtime scales cubicly with
n, linearly with h and M , and quadratically with N . These
verify that our kernel can be computed in a polynomial time.

5 Conclusions
We have developed a JS matching kernel by aligning the
JS representations that are computed over the correspond-
ing DB representations in terms of the JSD measure. Our
new kernel can incorporate explicit local substructure corre-
spondence into the process of kernelization, the new kernel
thus addresses the drawback of neglecting the relative loca-
tions between substructures that arises in the R-convolution
kernels. Experiments demonstrate that our kernel can easily
outperforms start-of-the-art graph kernels.
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Table 1: Classification Accuracy (In % ± Standard Error) Using C-SVM and Runtime.
Datasets JSMK DBMK WLSK SPGK GCGK UQJS JSGK JTQK

BAR31 75.93± .51 69.40± .56 58.53± .53 55.73± .44 23.40± .60 30.80± .61 24.10± .86 60.56± .35
BSPHERE31 64.46± .66 56.43± .69 42.10± .68 48.20± .76 18.80± .50 24.80± .61 21.76± .53 46.93± .61

GEOD31 50.46± .45 42.83± .50 38.20± .68 38.40± .65 22.36± .55 23.73± .66 18.93± .50 40.10± .46
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