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Abstract
Random feature mappings have been successfully
used for approximating non-linear kernels to scale
up kernel methods. Some work aims at speeding
up the feature mappings, but brings increasing vari-
ance of the approximation. In this paper, we pro-
pose a novel random feature mapping method that
uses a signed Circulant Random Matrix (CRM) in-
stead of an unstructured random matrix to project
input data. The signed CRM has linear space com-
plexity as the whole signed CRM can be recov-
ered from one column of the CRM, and ensures
loglinear time complexity to compute the feature
mapping using the Fast Fourier Transform (FFT).
Theoretically, we prove that approximating Gaus-
sian kernel using our mapping method is unbiased
and does not increase the variance. Experimen-
tally, we demonstrate that our proposed mapping
method is time and space efficient while retaining
similar accuracies with state-of-the-art random fea-
ture mapping methods. Our proposed random fea-
ture mapping method can be implemented easily
and make kernel methods scalable and practical for
large scale training and predicting problems.

1 Introduction
Support Vector Machine (SVM) is one of the most popu-
lar classification tools, which is based on statistical learn-
ing theory and delivers excellent results for non-linear clas-
sification in machine learning [Vapnik, 1998; Schölkopf and
Smola, 2002]. The underlying training problem can be for-
mulated as a Quadratic Programming (QP) problem that can
be solved by standard optimization algorithms in O(l3) time
andO(l2) space complexity, where l is the number of training
data [Tsang et al., 2005]. This is computationally infeasible
for training on very large datasets.

There is a lot of work proposed for scaling up non-linear
kernel SVMs on large scale datasets, such as solving the
QP problem exactly through decomposition methods [Platt,
1999; Chang and Lin, 2011], approximation algorithms using
core vector set [Tsang et al., 2005], and parallel interior point
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solver [Chang et al., 2007]. However, the increasing volumes
of datasets would lead to the curse of support [Kar and Kar-
nick, 2012], where the number of Support Vectors (SVs) that
have to be explicitly maintained grows linearly with the sam-
ple size on noisy data [Steinwart, 2003]. According to Repre-
senter Theorem [Kimeldorf and Wahba, 1970], and Karush-
Kuhn-Tucker conditions [Boyd and Vandenberghe, 2004],
one can typically represent the decision function f(x) via the
kernel trick with SVs, f(x) =

∑
xi∈SVs αik(xi,x), αi > 0.

Obviously, it requires huge computational time and space to
train a model as SVs increase on large scale datasets. More-
over, to evaluate a learned model with hundreds of thousands
of SVs will bring in additional time and space burden in the
predicting stage.

Random feature mapping methods, such as Random
Kitchen Sinks (RKS) [Rahimi and Recht, 2007; 2008] and
Random Maclaurin Feature Maps [Kar and Karnick, 2012],
are proposed for addressing the curse of support, which em-
bed the implicit kernel feature space into a relatively low-
dimensional explicit Euclidean space. In the embedded fea-
ture space, the kernel value of any two points is well approx-
imated by their inner product and one can apply existing fast
linear algorithms, such as linear SVMs that run in time linear
with sample size [Joachims, 2006; Fan et al., 2008], to ab-
stract data relations corresponding to non-linear kernel meth-
ods. After learning a hyperplane with a linear classifier, one
can predict an input in O(dD) time complexity (independent
on the number of training data and mainly used for comput-
ing random feature mapping), where d represents the dimen-
sionality of the input and D the dimensionality of the random
feature space. Therefore, random feature mapping methods
with liner classifiers can inherit high efficiency of linear learn-
ing algorithms and good generalization performance of non-
linear kernel methods, providing a promising way to the curse
of support. However, the random feature mapping itself is a
bottleneck when dD is not small.

Fastfood uses an approximation of the unstructured Gaus-
sian matrix of RKS with several special matrices to acceler-
ate the computation of random feature mapping [Le et al.,
2013]. Because the special matrices are easy to store and
multiply, Fastfood computes the random feature mapping in
O(D log d) time and O(D) space complexity, a significant
improvement from O(dD) computation and storage. How-
ever, Fastfood brings great increasing variance of approxi-
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mating the kernel, which will cause inaccurate approximation
and loose concentration bound.

In this paper, we propose a novel random feature mapping
method, called Signed Circulant Random Feature mapping
(SCRF), for approximating non-linear kernel. Our proposed
SCRF uses the structured random matrix Π ∈ RD×d, a stack-
ing of D/d signed circulant Gaussian matrices, to project in-
put data, followed by a non-linear transform, i.e., φ(Πx). We
prove that the approximation using SCRF is an unbiased es-
timate of the corresponding non-linear kernel and does not
increase the variance of that using RKS. Therefore, the ap-
proximation using SCRF concentrates with the same rate as
RKS and faster than that using Fastfood. Because Π has the
circulant structure, instead of saving it directly, we can store
the first columns of the corresponding circulant Gaussian ma-
trices with a random sequence inO(D) space complexity and
then easily recover it. For the structured matrix projection, we
can apply the Fast Fourier Transform (FFT) to compute the
feature mapping in O(D log d) time complexity. Experimen-
tal results demonstrate that our proposed SCRF is much more
time and space efficient than both RKS and Fastfood while
retaining similar accuracies with state-of-the-art random fea-
ture mapping methods.

1.1 Related Work
Random feature mappings have been successfully used for
approximating non-linear kernels to address the curse of sup-
port. As the first proposed random feature mapping method,
Random Kitchen Sinks (RKS) [Rahimi and Recht, 2007] fo-
cuses on approximating translation invariant kernels (e.g.,
Gaussian kernel, Laplacian kernel). There have been several
approaches proposed to approximate other kernels as well,
including intersection [Maji and Berg, 2009], group invari-
ant [Li et al., 2010], additive [Vedaldi and Zisserman, 2012]
and dot product kernels [Kar and Karnick, 2012]. Moreover,
there has been work aiming at improving quality of the exist-
ing random feature mapping methods, some of which include
a more compact representation of accurately approximating
polynomial kernels [Hamid et al., 2014] and a more effective
Quasi-Monte Carlo feature mapping for translation invariant
kernels [Yang et al., 2014]. Yen et al. [Yen et al., 2014]
propose a sparse random feature algorithm so that the result-
ing model doesn’t grow linearly with the number of random
features.

Recently, two promising quasilinear kernel approximation
techniques have been proposed to accelerate the existing ran-
dom feature mappings. Tensor sketching applies recent re-
sults in tensor sketch convolution to deliver approximations
for polynomial kernels in O(d + D logD) time [Pham and
Pagh, 2013]. Fastfood uses an approximation of the unstruc-
tured Gaussian matrix of RKS with several special matrices to
project input data [Le et al., 2013]. Because the special matri-
ces are inexpensive to multiply and store, Fastfood computes
the random feature mapping in O(D log d) time and O(D)
space complexity.

We summarize the contributions of this paper as follows:

• We propose a novel scheme for random feature mapping
that uses structured random matrix (signed circulant ran-

dom matrix) instead of unstructured random matrix to
project data.
• We prove that the approximating Gaussian kernel using

our proposed SCRF is unbiased and does not increase
the variance of that using RKS.
• We save the random parameters in O(D) space com-

plexity and implement our random feature mapping in
O(D log d) time complexity by using FFT.
• Empirically, our random feature mapping method is time

and space efficient, making kernel methods scalable for
large scale training and predicting problems.

2 Preliminaries
In this section, we first review two well-known random
feature mapping methods, Random Kitchen Sinks (RKS)
[Rahimi and Recht, 2007] and Fastfood [Le et al., 2013], for
kernel approximation, and then introduce a structured matrix,
circulant matrix [Davis, 1979; Gray, 2006].

2.1 Random Feature Mapping
The starting point of RKS is a celebrated result that charac-
terizes the class of positive definite functions.
Theorem 1 (Bochner’s theorem [Rudin, 2011]). For any
normalized continuous positive definite function f : Rd → C,
there exists a finite non-negative Borel measure µ on Rd such
that

f(x) =

∫
Rd

e−iw
Txdµ(w), (1)

i.e. f is the Fourier transform of a finite non-negative Borel
measure µ on Rd.

Without loss of generality, we assume henceforth that the
kernel κ(δ) is properly scaled and µ(·) is a probability mea-
sure with associated probability density function p(·).
Corollary 1. For shift-invariant kernel k(x,y) = κ(x− y),

k(x,y) =

∫
Rd
p(w)e−iw

T(x−y)dw, (2)

where p(w) is a probability density function and can be cal-
culated through the inverse Fourier transform of κ.

For Gaussian kernel, k(x,y) = exp(−‖x − y‖2/(2σ2)),
we calculate p(w) through the inverse Fourier transform of
k(x,y) and obtain w ∼ N (0, I/σ2), where I is an identity
matrix. In addition, we have Ew[sin(wT(x − y))] = 0 and
Ew,b[cos(w

T(x + y) + 2b)] = 0, where b is drawn from
[−π, π] uniformly. Note that

k(x,y) = Ew[e−iw
T(x−y)]

= Ew[cos(wT(x− y))]
= Ew,b[

√
2 cos(wTx+ b)

√
2 cos(wTy + b)].

Defining Zw,b(x) =
√
2 cos(wTx+ b), we get

k(x,y) = E[〈Zw,b(x), Zw,b(y)〉], (3)

so 〈Zw,b(x), Zw,b(y)〉 is an unbiased estimate of the Gaus-
sian kernel. Through a standard Monte Carlo (MC) approx-
imation to the integral representation of the kernel, we can
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lower the variance of 〈Zw,b(x), Zw,b(y)〉 by concatenating
D randomly chosen Zw,b into a column feature mapping vec-
tor and normalizing each component by

√
D,

ΦRKS : x 7→
√
2√
D

cos(Zx+ b), (4)

whereZ ∈ RD×d is a Gaussian matrix with each entry drawn
i.i.d. from N (0, 1/σ2), b ∈ RD is a random vector drawn
i.i.d. from [−π, π] uniformly and cos(·) is an element-wise
function.

As derived above, the associated feature mapping con-
verges in expectation to the Gaussian kernel. In fact, con-
vergence occurs with high probability and at the rate of in-
dependent empirical averages. In the explicit random feature
space, we can use primal space methods for training, which
delivers a potential solution to the curse of support. How-
ever, such approach is still limited by the fact that we need
to store the unstructured Gaussian matrix Z and, more im-
portantly, we need to compute Zx for each x. Because the
unstructured matrix has the disadvantage that no fast matrix
multiplication is available, large scale problems are not prac-
ticable with such unstructured matrix.

Fastfood finds that Hadamard matrix H when combined
with binary scaling matrix B, permutation matrix Q, diago-
nal Gaussian matrix G and scaling matrix S exhibits prop-
erties similar to the unstructured Gaussian matrix Z, i.e.,
V ≈ Z, where

V =
1

σ
√
d
SHGQHB.

The decomposed matrices are inexpensive to multiply and
store, which speeds up the random feature mapping. How-
ever, approximating Gaussian kernel using Fastfood brings
increasing variance, which causes inaccurate approximation
and loose concentration bound. Different from Fastfood, in
this paper, we make use of a structured random matrix to take
the place of Z and propose a novel scheme for random fea-
ture mapping.

2.2 Circulant Matrix
A circulant matrix C is an m × m Toeplitz matrix with the
form

C =



c0 cm−1 cm−2 · · · c1

c1 c0 cm−1 cm−2
...

c1 c0 cm−1
. . .

...
. . . . . . . . . . . . cm−2

. . . . . . cm−1
cm−1 cm−2 · · · c1 c0


, (5)

where each column is a cyclic shift of its left one [Davis,
1979]. The structure can also be characterized as follows:
For the (k, j) entry of C, Ckj ,

Ckj = c(k−j) mod m. (6)
A circulant matrix is fully determined by its first column,

so we rewrite the circulant matrix of order m as follows
C[m] = circ [cj : j ∈ {0, 1, . . . ,m− 1}] . (7)

Therefore, it only needs to store the first column vector so
that we can reconstruct the whole matrix, which saves a lot of
storage.
Definition 1 (Circulant Random Matrix, CRM). A circu-
lant matrixC[m] = circ [cj : j ∈ {0, 1, . . . ,m− 1}] is called
a circulant random matrix if its first column is a random se-
quence with each entry drawn i.i.d according to some distri-
bution probability.
Definition 2 (Signed Circulant Random Matrix, Signed
CRM). If a matrix P = [σ0C0·;σ1C1·; . . . ;σm−1C(m−1)·]
satisfies that Ci· is the i-th row vector of a circulant random
matrix C[m] and σi is a Rademacher variable (P[σi = 1] =
P[σi = −1] = 1/2), where i = 0, 1, . . . ,m− 1, we call P a
signed circulant random matrix.

The following lemma provides an equivalent form of a
circulant matrix with the Discrete Fourier Transform (DFT)
[Davis, 1979; Tyrtyshnikov, 1996].
Lemma 1. Suppose C is a matrix with the first column c =
[c0, c1, . . . , cm−1]

T. Then C is a circulant matrix, i.e.
C = circ(c),

if and only if

C =
1

m
F ∗diag(Fc)F , (8)

where
F =

[
ei

2π
m kn

]m−1
k,n=0

is the discrete Fourier matrix of order m (i =
√
−1),

diag(Fc) signifies the diagonal matrix whose diagonal com-
prises the entries of the vector Fc, and F ∗ represents the
conjugate transpose of F .

Obviously, we could realize the calculation of Cx effi-
ciently via the Fast Fourier Transform algorithm (FFT). In
the following, we introduce our structured feature mapping
method and apply such computational advantage to acceler-
ate the feature mapping.

3 Signed Circulant Random Feature Mapping
In this section, we propose a random feature mapping method
with signed circulant matrix projection, called Signed Circu-
lant Random Feature mapping (SCRF), and analyse its ap-
proximation error.

3.1 Our Random Feature Mapping
Without loss of generality, we assume that d | D (D is di-
visible by d). And then we generate t = D/d signed circu-
lant Gaussian matrices P (1),P (2), . . . ,P (t) and stack them
by row to take the place of the unstructured Gaussian ma-
trix Z in Eq. (4), i.e., replacing Z with projection ma-
trix Π = [P (1);P (2); · · · ;P (t)]. The first column of the
corresponding circulant random matrix C(i)

[d] of P (i)(i =

1, 2, . . . , t) is randomly drawn i.i.d. from a Gaussian distri-
butionN (0, I/σ2). Therefore, we obtain a novel random fea-
ture mapping, called Signed Circulant Random Feature map-
ping (SCRF),

ΦSCRF : x 7→
√
2√
D

cos(Πx+ b). (9)
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If d - D, we can generate t = dD/de signed circulant
Gaussian matrices. By combining these t signed circulant
Gaussian matrices in a column, after random feature mapping
we take the {1, 2, . . . , d, . . . , (t−1)d, (t−1)d+1, . . . , D}-th
entries of Eq. (9) as the final random feature mapping. In this
paper, without any specification, we assume that d | D.

With the structured random matrix projection, we can im-
plement the SCRF efficiently by using FFT.
Lemma 2 (Computational Complexity). The feature map-
pings of SCRF (Eq.(9)) can be computed in O(D log d) time
and O(D) space complexity. To predict an input data is in
O(D log d) time complexity.

Proof. For the i-th block (Lemma 1), the corresponding fea-
ture representation x(i) can be calculated as follows,

x(i) = P (i)x =
1

d
diag(σi)F

∗diag(Fci)Fx.

To compute x(i) could proceed efficiently by using FFT and
the inverse FFT, which is in O(d log d) time complexity.
Changing the signs of rows will be in O(d) time complex-
ity. x(i)+bi will costO(d) time complexity. Only σi, ci and
bi need to be stored, which is in O(3d) space complexity. To
sum up, the total time complexity isO(D log d) and the space
complexity is O(3D).

Obviously, the predicting function has the form f(x) =
〈w,ΦSCRF(x)〉, which will be computed in O(D log d) time
complexity.

3.2 Theoretical Analysis
The goal of this subsection is to analyse the approximation
quality of SCRF. Lemma 3 states that the approximation us-
ing our proposed SCRF is an unbiased estimate of the Gaus-
sian kernel. Corollary 2 shows that the variance of the ap-
proximation using SCRF is the same with that using RKS
and much smaller than that using Fastfood. SCRF has smaller
concentration error than Fastfood as shows in Theorem 3.
Lemma 3. The expected feature mapping (Eq.(9)) recovers
the Gaussian kernel, i.e.,

E [〈ΦSCRF(x),ΦSCRF(y)〉] = exp

(
−‖x− y‖

2

2σ2

)
. (10)

Proof. Any given row of a circulant Gaussian matrix is a
Gaussian vector with distribution N (0, I/σ2).

E [〈ΦSCRF(x),ΦSCRF(y)〉] = E [cos(σiCi·(x− y))]
= E [cos(Ci·(x− y))] .

Obviously, Eq. (10) holds.

Remark 1. Any two rows of circulant Gaussian matrix are
considerably more correlated, which causes increasing vari-
ance of approximating Gaussian kernel. We change signs of
the rows randomly to eliminate the correlations and define the
signed circulant random matrix. Theoretical analysis states
that our proposed random feature mapping with signed circu-
lant matrix projection is unbiased and does not increase the
variance of the approximation. Fastfood generates correlated
random features while SCRF generates independent random
features.

Theorem 2. Assume that P is a signed circulant Gaussian
matrix with the associated circulant Gaussian matrix C =
Circ(c0, c1, . . . , cd−1), where c0, c1, . . . , cd−1 are randomly
drawn i.i.d. from N (0, 1/σ2). Let v = x − y and φj(v) =
cos([Pv]j), the estimate of the kernel value that comes from
the k-th pair of random features for each k ∈ {0, 1, . . . , d −
1}. Then for each k we have

Var[φk(v)] =

(
1− e−‖

v
σ‖2
)2

2
, (11)

and

Var

1
d

d−1∑
j=0

φj(v)

 =

(
1− e−‖

v
σ‖2
)2

2d
. (12)

Proof. Pk· = σkCk·, k ∈ {0, 1, . . . d − 1}. Sign changes
retain Gaussianity so that Pk· is also Gaussian vector with
i.i.d entries, where E[Pkj ] = E[σkCkj ] = 0 and

Var[Pkj ] = Var[σkCkj ] = E[σ2
kC

2
kj ]−E[σkCkj ]

2 = 1/σ2,

for j = 0, 1, . . . , d− 1. Therefore, Pkj ∼ N (0, 1/σ2).

Let z = Pv. We have E[zk] = E
[∑d−1

a=0Pkava

]
= 0 and

Var[zk] = Var

[
d−1∑
a=0

Pkava

]
=

d−1∑
a=0

v2aVar[Pka] =
‖v‖2

σ2
,

so zk ∼ N (0, ‖v‖2/σ2). Therefore, we have

E[cos(zk)] = exp

(
−
∥∥∥v
σ

∥∥∥2 /2) .
Hence, we can obtain the following equation

Var[φk(v)] = E cos2(zk)− [E cos(zk)]
2

= E
[
1

2
(1 + cos(2zk))

]
− [E cos(zk)]

2

=
1

2

(
1− e−‖

v
σ‖2
)2
.

For j 6= k,

Cov(zj , zk) =
d−1∑
a,b=0

vavbCov(Pja,Pkb)

=
d−1∑
a,b=0

vavb (E[PjaPkb]− E[Pja]E[Pkb])

=
d−1∑
a,b=0

vavbE[σjCjaσkCkb] = 0.

Therefore, the correlation coefficient ρjk between zj and zk
equals to zero,

ρjk =
Cov(zj , zk)√

Var[zj ]
√
Var[zk]

= 0.

Obviously, Eq. (12) holds.
The proof completes.
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Corollary 2. Let v = x − y. Then for the feature mapping
of SCRF (Eq.(9)), Φ : Rd → RD, obtained by stacking D/d
signed circulant Gaussian matrices, we have that

Var[〈ΦSCRF(x),ΦSCRF(y)〉] =

(
1− e−‖

v
σ‖2
)2

2D
. (13)

Proof. 〈ΦSCRF(x),ΦSCRF(y)〉 is the average of D/d inde-
pendent esitmates. Following the proof of Theorem 2, if the
two rows Pj· and Pk· are in distinct signed circulant Gaus-
sian matrix blocks, the corresponding correlation coefficient
ρjk between zj and zk is also zero. Obviously, this corollary
holds.

All of the three approximations are unbiased, but lower
variance means tighter concentration error. Corollary 2 states
that SCRF approximates kernel with the same variance as
RKS and smaller variance than Fastfood. Combining Corol-
lary 2 and Chebyshev’s inequality, we can easily obtain the
concentration error of SCRF, which will converge quickly as
D increases with probability 1− δ.
Theorem 3 (Concentration Error). For the feature mapping
of SCRF (Eq.(9)), Φ : Rd → RD, obtained by stacking D/d
signed circulant Gaussian matrices, and any δ ∈ (0, 1), the
following inequality holds with probability 1− δ,

|〈ΦSCRF(x),ΦSCRF(y)〉 − k(x,y)| ≤
1− e−‖

x−y
σ ‖2

√
2δD

.

4 Experiments
We implement random feature mappings in R 3.1.1 and con-
duct experiments on a public SUSE Linux enterprise server
10 SP2 platform with 2.2GHz AMD Opteron Processor 6174
CPU and 48GB RAM. We compare the performance of ran-
dom feature mappings, including RKS, Fastfood and our
SCRF in terms of kernel approximation, efficiency of kernel
expansion and generalization performance.

4.1 Kernel Approximation
First, we evaluate the kernel estimates from RKS, Fast-
food and SCRF. We uniformly sample l = 100 vectors
from [0, 1]16, and set D = 512 and kernel parameter γ =
0.25 (γ = 1/(2σ2)). Figure 1(a)–1(c) show kernel es-
timates from the three methods plotted against exact ker-
nel values respectively. Each point represents a combina-
tion of two vectors x,y. The coordinate corresponds to
(k(x,y), 〈Φ(x),Φ(y)〉). A perfect mapping would mani-
fest as a narrow 45-degree line. As we can see, both RKS and
SCRF perform a little better than Fastfood in terms of kernel
estimates, which coincides with the fact that the variance of
approximation using SCRF is the same with that using RKS
and smaller than that using Fastfood.

Next, we investigate the convergence of kernel approxima-
tion using SCRF. We uniformly sample l = 500 vectors from
[0, 1]16 and compare RKS, Fastfood and SCRF with the exact
kernel values. Figure 1(d) shows the relative kernel approxi-
mation error (‖K̂−K‖F/‖K‖F) w.r.t. D. From Figure 1(d),
all the three approaches converge quickly to the exact kernel
values as D increases, where both RKS and SCRF converge
faster than Fastfood.

Figure 1: Kernel estimates and kernel approximation errors
of different random feature mappings.

Table 1: Computation time, speedup and memory improve-
ment of Fastfood and SCRF relative to RKS.

d RKS Fastfood Speed RAM SCRF Speed RAM
512 39.8s 18.8s 2.1x 109x 9.3s 4.3x 164x

1024 113.1s 18.9s 6.0x 223x 9.6s 11.7x 334x
2048 255.0s 21.7s 11.8x 450x 10.5s 24.1x 675x
4096 424.1s 27.0s 15.7x 905x 10.6s 40.1x 1358x

4.2 Efficiency of Kernel Expansion
In this subsection, we compare the CPU time of computing
random feature mappings of the three approaches. We uni-
formly sample l = 5000 vectors from [0, 1]d and set D =
8192. As analysed above, both Fastfood and SCRF share
O(lD log d) time complexity while RKS requires O(ldD)
time. Obviously, the running time of both Fastfood and SCRF
are less dependent on d, a very promising property since ran-
dom feature mapping often contributes a significant compu-
tational cost in predicting.

Table 1 shows the CPU time in seconds of the three meth-
ods with speedup and memory improvement. The running
time of both Fastfood and SCRF is almost independent on
d. It costs more time in generating random parameters for
Fastfood than SCRF, thus SCRF runs a little faster than Fast-
food. Both Fastfood and SCRF save much storage compared
with RKS. However, SCRF uses around 1.5x less storage than
Fastfood. This is because Fastfood needs to store 5D param-
eters while SCRF only stores 3D parameters.

For higher-dimensional problems, we need to increase D
to boost the accuracy, D = O(d). Figure 2 shows that the
CPU time of computing D = d random feature mapping
with RKS is quadratic with d, a bottleneck of kernel methods
on high-dimensional datasets. However, both Fastfood and
SCRF scale well in this case. Especially, SCRF runs faster
and uses less memory than Fastfood.
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Table 2: Comparison of RKS, Fastfood, SCRF with LIBLINEAR and Gaussian kernel with LIBSVM. Parameters (C, γ) are
selected by 5-fold cross validation with Gaussian kernel SVM. Test accuracy and training time + predicting time are listed.

Dataset log(C) log(γ) D LIBSVM RKS+LIBLINEAR Fastfood+LIBLINEAR SCRF+LIBLINEAR
splice 0 -8 400 86.90% 86.26±0.50% 86.23±0.34% 86.31±0.65%
(d = 60) 0.7s+0.4s 0.2s+0.4s 0.7s+0.8s 0.2s+0.4s
dna 2 -6 1000 95.44% 92.34±0.67% 90.70±0.50% 92.34±0.43%
(d = 180) 4.2s+0.8s 2.6s+0.6s 3.8s+1.1s 2.1s+0.4s
mushrooms 0 -4 100 100.0% 99.57±0.12% 99.31±0.33% 99.26±0.23%
(d = 112) 2.5s+0.8s 0.3s+0.2s 1.2s+1.0s 0.2s+0.1s
usps 6 -6 2000 95.56% 94.83±0.21% 95.05±0.28% 94.31±0.11%
(d = 256) 55.9s+5.8s 35.4s+2.5s 40.8s+3.4s 31.9s+1.3s
a9a 4 -6 1000 85.11% 85.17±0.07% 85.14±0.03% 85.15±0.09%
(d = 123) 6.2m+42.1s 28.7s+7.1s 49.3s+16.3s 30.8s+7.2s
w8a 2 -4 2000 99.08% 99.07±0.01% 99.05±0.05% 99.08±0.05%
(d = 300) 3.6m+12.0s 1.9m+21.8s 2.3m+24.5s 1.4m+10.5s
ijcnn1 0 -8 500 98.78% 97.78±0.18% 97.10±0.17% 97.66±0.23%
(d = 22) 2.0m+34.7s 22.5s+12.8s 61.9s+79.2s 25.1s+19.2s
mnist 6 -6 3000 98.42% 97.29±0.14% 96.85±0.13% 96.38±0.17%
(d = 784) 53.5m+3.3m 14.2m+49.6s 11.9m+26.6s 11.4m+13.7s
cifar10 2 -8 10000 56.40% 50.09% 48.77% 45.09%
(d = 3072) 63.1h+2.8h 4.0h+21.8m 3.1h+2.0m 3.0h+54.8s
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Figure 2: CPU time of computing random feature mappings
of the three approaches w.r.t. d.

4.3 Generalization Performance
In this subsection, we compare RKS, Fastfood and SCRF
with non-linear SVMs on 9 well-known classification bench-
mark datasets of size ranging from 1,000 to 60,000 with di-
mensionality ranging from 22 to 3,072. For mushrooms,
we select 4,062 training data randomly and the left as test
data. We use LIBSVM [Chang and Lin, 2011] for non-linear
kernels and LIBLINEAR [Fan et al., 2008] for random fea-
ture mappings for classification task. All averages and stan-
dard deviations are over 5 runs of the algorithms except on
cifar10. We select the kernel parameter γ and regulariza-
tion coefficient C of Gaussian kernel SVM by using 5-fold
cross validation with LIBSVM.

Figure 3 depicts the test accuracies of RKS, Fastfood and
SCRF with LIBLINEAR w.r.t. D on dna and ijcnn1.
Their generalization performances are not obviously distin-
guishable as D increases. Table 2 shows the results of the
comparison. There is virtually no difference among them in
terms of test accuracy except on cifar10. All of the results
of the three approaches on cifar10, which come from one
random trial respectively, are worse than LIBSVM. This is
because the selected γ and C by LIBSVM may not be op-
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Figure 3: Test accuracies of RKS, Fastfood and SCRF with
LIBLINEAR w.r.t. D on dna and ijcnn1.

timal for the other three approaches. Except on mnist and
cifar10, Fastfood runs slower than RKS and SCRF in both
training and predicting. This is because Fastfood needs to for-
mat d = 2k, k ∈ N, through padding the vector with zeros,
which demands more time for preprocessing input data and
random feature mapping. In addition, if d is not so large that
there will be no speedup of computing random feature map-
pings. For larger dimensional dataset mnist/cifar10,
Fastfood can obtain efficiency gains. In general, SCRF is
more time and space efficient than both Fastfood and RKS.

5 Conclusion

In this paper, we have proposed a random feature mapping
method for approximating Gaussian kernel using signed cir-
culant matrix projection that makes the approximation unbi-
ased and have lower variance. The adoption of circulant ma-
trix projection guarantees a quasilinear random feature map-
ping and promotes scalable and practical kernel methods for
large scale machine learning.
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