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Abstract
Expressing data vectors as sparse linear combina-
tions of basis elements (dictionary) is widely used
in machine learning, signal processing, and statis-
tics. It has been found that dictionaries learned
from data are more effective than off-the-shelf
ones. Dictionary learning has become an impor-
tant tool for computer vision. Traditional dictio-
nary learning methods use quadratic loss function
which is known sensitive to outliers. Hence they
could not learn the good dictionaries when out-
liers exist. In this paper, aiming at learning dic-
tionaries resistant to outliers, we proposed capped
`1-norm based dictionary learning and an efficient
iterative re-weighted algorithm to solve the prob-
lem. We provided theoretical analysis and carried
out extensive experiments on real word datasets and
synthetic datasets to show the effectiveness of our
method.

1 Introduction
Dictionary learning [Tosic and Frossard, 2011] and sparse
representation [Olshausen and Field, 1997] are important
tools for computer vision. Dictionary learning seeks to learn
an adaptive set of basis elements (dictionary) from data in-
stead of predefined ones [Mallat, 1999], so that each data
sample is represented by sparse linear combination of these
basis vectors. It has achieved start-of-the-art performance
for numerous image processing tasks such as classification
[Raina et al., 2007; Mairal et al., 2009b], denoising [Elad
and Aharon, 2006], self-taught learning [Wang et al., 2013b],
and audio processing [Grosse et al., 2007]. Unlike principal
component analysis, dictionary learning does not impose that
the dictionary be orthogonal, hence allow more flexibility to
represent data.

Usually, dictionary learning is formulated as:
min

D∈C,A
‖X−DA‖2F , s.t. ‖A‖0 ≤ γ . (1)

In this formulation, X ∈ Rd×n is the data matrix whose
columns represent samples, A ∈ RK×n is the new represen-
tations of data and the matrix D ∈ Rd×K contains K basis
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(a) Capped `1-norm loss (ε =
2.5)
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(b) `1-norm loss

Figure 1: Capped `1-norm loss vs `1-norm loss

vectors to learn. To prevent the `2 norm of D being arbitrar-
ily large which would lead to arbitrarily small values in the
columns of A, it is common to constraint the columns have
`2 norm less than or equal to 1. Hence, D is in the following
convex set of matrices:

C = {D ∈ Rd×K | ∀i ∈ {1, · · · ,K}, ‖di‖2 ≤ 1} . (2)

The dictionary learned is the foundation for sparse rep-
resentations. Dictionary with good expressive ability is the
key to achieve good performance. It is well known that the
quadratic loss function is not robust to outliers. To train the
dictionary, a large amount data will be used, and outliers will
be included in the training data unavoidably. Hence it is nec-
essary to learn dictionary resistant to outliers.

To be robust to outliers, the quadratic loss function could
be replaced by an loss function that are not sensitive to out-
liers, e.g. `1 norm loss or Huber loss. In this paper, we
use capped `1-norm based loss function lε(u) = min(|u|, ε),
where ε is a parameter. It is illustrated in Fig. 1. This loss
function treat u equally if |u| is bigger than ε. Hence, it is
more robust to outliers than `1 norm. Unfortunately, this loss
function is not convex. In this paper, we propose an efficient
algorithm to find the local optimal solutions. And we will
also provide theoretical analysis of this method.

2 Related Work
In this section, we present a brief review on dictionary learn-
ing methods as follows.

Since the original dictionary learning model (1) is NP-hard,
the straightforward way to find dictionary is to adopt greedy
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strategy. K-SVD [Aharon et al., 2006] tried to solve the fol-
lowing model:

min
D,A

1

2
‖X−DA‖22

s.t. dj = 1, for j = 1, 2, · · · ,K
‖ai‖0 ≤ T0, for i = 1, 2, · · · , n , (3)

where di is the ith column of matrix D. The K-SVD is an
iterative method that alternates between sparse coding of the
examples based on the current dictionary and a process of
updating the dictionary atoms. The columns of dictionary are
updated with SVD sequentially, and the corresponding coef-
ficients are updated with any pursuit algorithm. The K-SVD
algorithm showed good performance on image denoising. As
extensions of K-SVD, LC-KSVD [Jiang et al., 2013] and dis-
criminative K-SVD [Zhang and Li, 2010] introduced label in-
formation into the procedure of learning dictionaries. Hence
the dictionaries learned are more discriminative.

Except for adopting greedy strategy to solve problems with
l0 constraints, the original problem can be relaxed into the
following traditional dictionary learning problem with `1 reg-
ularization:

min
D∈C,A

‖X−DA‖2F + λ‖A‖1 . (4)

It is convex separately with respect to D and A, a `1 regular-
ized least squares problem and a `2 constrained least squares
problem are needed to be solved iteratively to find the so-
lutions. In [Lee et al., 2007], an feature-sign search algo-
rithm for learning coefficients, and a Lagrange dual method
for learning the bases are proposed to compute the dictionary
and corresponding representations. An online algorithm was
proposed to solve it efficiently in [Mairal et al., 2009a]. The
method mentioned above all use quadratic loss functions to
measure the reconstruction errors, hence these methods are
not robust enough to outliers.

In order to learn dictionary robustly, Lu et al. proposed
online robust dictionary learning (ORDL) [Lu et al., 2013],
which uses `1 loss function and `1 regularization term that
could be expressed as

min
D,A,‖di‖≤1

n∑
i=1

‖xi −Dai‖11 + λ‖a‖1. (5)

It updates dictionary and representations alternately in an on-
line way. For visual tracking, Wang proposed online robust
non-negative dictionary learning [Wang et al., 2013c], which
uses the Huber loss function. In [Wang et al., 2013a], the
semi-supervised robust dictionary learning model was pro-
posed by solving the `p-norm based objective.

3 Proposed New Algorithm
To facilitate the presentation of our method, we describe the
notations in the following subsection.

3.1 Notations
Throughout this paper, the following definitions and notations
are used. We use bold upper letters for matrices, bold lower

letters for vectors and regular lower letters for elements. For
vector a = (a1, a2, · · · , am)T ∈ Rm, let ‖a‖1 =

∑m
i=1 |ai|

be the `1-norm of a. Similarly, we define ‖A‖0 as the number
of nonzero elements in matrix A and ‖A‖1 =

∑
‖ai‖1 be

the `1 norm of matrix A.

3.2 Robust dictionary learning
Capped `1-norm has been used in [Zhang, 2010; 2013] as a
better approximation of `0-norm regularization. An extension
capped-`1,1 regularization was proposed in the multi-task fea-
ture learning setting [Gong et al., 2013]. In this paper, we use
capped `1-norm as a robust loss function.

For dictionary learning, our goal is to find a set of high
quality atoms. An straightforward way is to use `1 loss
function. To provide better robustness, we go further to use
capped `1-norm loss function. As illustrated in Fig 1, the ob-
jective values of capped `1-norm loss does not increase any
more if |u| is larger than ε. Therefore, capped `1-norm loss is
more robust than `1-norm loss. We use the same constraints
for dictionary and the objective function of our roust dictio-
nary learning with capped `1-norm is expressed as:

min
D,A,‖di‖≤1

n∑
i=1

min(‖xi −Dai‖2, ε) + λ‖A‖1 . (6)

From this objective function, we can see that if ε is set as
∞, the above objective function becomes `2,1-norm with the
same constraints.

We define f(A) = ‖A‖1, which is a convex function. And
define a concave function L̄(u) = min(

√
u, ε) where u > 0

and g(D,a) = ‖x−Da‖22. We have:

L̄′(u) =

{ 1
2
√
u
, if 0 < u < ε2

0, if u > ε2
(7)

Our objective function is sum of a convex function and a
concave function. According to the re-weighted method pro-
posed in [Nie et al., 2010; 2014], it can be solved by updat-
ing D,A and auxiliary variables si with following updating
rules:

[D,A] = arg min
D,A,‖di‖≤1

∑
i

si‖xi −Dai‖22 + λ‖A‖1 ,

(8)

si =

{
1

2‖xi−Dai‖2 , if ‖xi −Dai‖2 ≤ ε
0, otherwise

(9)

The whole iterative re-weighted method is listed in Alg. 1.
The subproblem (8) is similar to the traditional dictionary

learning. The only difference lies in the fact that samples
are not treated equally. It is weighted dictionary learning.
From the updating rule for si, we can see that the samples
with lower reconstruction errors have higher weights, which
is very intuitive for learning dictionary robustly.

The subproblem (8) is convex separately with respect to
D and A. We adopt the same strategy as solving traditional
dictionary learning. We solve it by updating D and A alter-
nately. With A fixed, the objective function becomes:

min
D,‖di‖≤1

∑
i

si‖xi −Dai‖22 , (10)
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which is equivalent to:

min
D,‖di‖≤1

∑
i

‖zi −Dci‖22 , (11)

where zi =
√
sixi and ci =

√
siai. To solve the above

problem, we update D column by column which is similar
to the traditional dictionary learning. The algorithm we use
is adopted from [Mairal et al., 2009a], which is described in
Alg. 3.

With D fixed, the objective of (8) becomes:

A = argmin
A

∑
i

si‖xi −Dai‖22 + λ‖A‖1 , (12)

which can be decomposed into n independent problems as
follows:

ai = argmin
a
si‖xi −Da‖22 + λ‖a‖1 . (13)

If si 6= 0, this problem can be transformed into the following
LASSO problem:

ai = argmin
a
‖xi −Da‖22 +

λ

si
‖a‖1 , (14)

which could be solved efficiently. The algorithm to solve
weighted dictionary learning is summarized in Alg. 2.

During the stage of training dictionary D, if si is 0, the
corresponding representation ai will be a zero vector. Hence,
when training D, our method does not find codings for out-
liers. However, the outliers in training D stage might not be
outliers for classification tasks. Hence, we let the classifica-
tion algorithm to decide how to use the codings of the outliers.
With the learned D, in order to get the codings for outliers,
we just run Alg. 1 with setting ε as ∞ and omit the D up-
dating step (step 1 in Alg. 2) to learn the representations for
both training data and testing data with the same λ. In fact,
we are solving a dictionary learning problem with `2,1-norm
loss function.

Algorithm 1 Robust dictionary learning with capped `1-norm
input: Data matrix X, dictionary size K, λ and ε.

Initialize D,A and si = 1 for i = 1, 2, · · · , n.
repeat

1. Solve subproblem (8) with algorithm 2
2. Update si for i = 1, · · · , n as (9)

until Converge

output: D and A

3.3 Convergence analysis
Theorem 3.1. The algorithm described in Alg. 1 will de-
crease the objective value of (6) in each iteration until it con-
verges.

Proof. We define h(w) = w2, and denote u = ‖x − Da‖22
and L̄(u) = min(

√
u, ε). The capped `1-norm loss function

min(‖x−Da‖2, ε) could be re-written as:
min(‖x−Da‖2, ε) (15)

= inf
s≥0

[sh(‖x−Da‖2)− L∗(s)] , (16)

Algorithm 2 Weighted dictionary learning
input: Data matrix X, initial dictionary matrix D0 and
representation matrix A0, λ and weight vector s.

Initialize D = D0 and A = A0

repeat
1. Update D with algorithm 3.
2. Update ai for i = 1, · · · , n as

ai =

{
argmina ‖xi −Da‖22 + λ

si
‖a‖1 if si > 0

0 otherwise

until Converge

output: D,A

Algorithm 3 Dictionary update
input: Data matrix X, dictionary matrix D, representation
matrix A and weight vector s.

Compute matrix G = [g1, · · · ,gK ] ∈ RK×K and H =
[h1, · · · ,hK ] ∈ Rd×K as

G =
n∑
i=1

siaia
T
i , H =

n∑
i=1

sixia
T
i .

repeat
for j = 1 to K do

Update the j-th column of D:

uj =
1

Gjj
(hj −Dgj) + dj

dj =
1

max(‖uj‖2, 1)
uj

end for
until Converge

output: D

where L∗(s) is the concave dual of L̄(u) defined as:
L∗(s) = inf

u

[
su− L̄(u)

]
. (17)

Plug in L̄(u) and it is easy to find that:

L∗(s) =

{
− 1

4s , if
√
u < ε

sε2 − ε, if
√
u ≥ ε . (18)

Therefore, the capped `1-norm loss could be expressed as:
min(‖x−Da‖2, ε) = inf

s≥0
Lx(s,D,a) , (19)

where
Lx(s,D,a)

=

{
s‖x−Da‖22 + 1

4s , if ‖x−Da‖2 < ε
s‖x−Da‖22 − sε2 + ε, if ‖x−Da‖2 ≥ ε

. (20)

Hence, the objective function (6) is equivalent to the fol-
lowing objective:

min
D,A,‖di‖≤1

n∑
i=1

inf
si≥0

Lxi
(si,D,ai) + λ‖ai‖1 , (21)
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which can be re-written as:

min
D,A,‖di‖≤1,si≥0

o(D,A, s) , (22)

where we denote:

o(D,A, s) =
n∑
i=1

Lxi(si,D,ai) + λ‖ai‖1 . (23)

Therefore, the algorithm described in Alg. 1 can be seen as a
two stage optimization method:

Updating D and A stage: D and A are updated by solv-
ing:

min
D,A,‖di‖≤1

o(D,A, s) , (24)

which is equivalent to:

min
D,A,‖di‖≤1

n∑
i=1

si‖xi −Dai‖22 + λ‖ai‖1 . (25)

The updated D and A decrease the objective values of (25).
Hence, they also decrease the objective values of (24).

Updating si stage: The auxiliary variable s are updated by
solving:

min
si≥0

o(D,A, s) , (26)

which is equivalent to n independent problems

min
si≥0

Lxi(si,D,ai) . (27)

Both stages will decrease the value of the objective func-
tion (21), hence our algorithm also decrease the value of the
original objective function (6) and is guaranteed to converge.

4 Experimental Results
In this section, we analyze and illustrate the performance of
our method on real word datasets.

4.1 Preliminary study on natural image patches
First, we present a preliminary analysis of our method on nat-
ural image patches. In our method, λ mainly controls the
sparsity of representations and ε mainly controls the number
of outliers identified by the algorithm. ε is related to the resid-
uals of representations. If the residual of a sample is larger
than ε, it is not used to train the dictionary, since the corre-
sponding s is zero. We set ε as infinity first to get the distribu-
tion of the residuals. We use this distribution as an estimation
of the distribution of residuals with optimal D and A. We
set ε such that a fraction of samples are seen as outliers. In
this experiment, we set the fraction of outliers as 0.05 and
λ = 0.1 empirically. The values of objective function during
iterations are presented in Fig. 2. We can see that our method
converged in only 22 iterations. The bases learned on natural
image patches by our method is shown in Fig. 3.
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Figure 2: The values of objective function during iterations
when learning dictionaries on 10,000 natural images patches.

Figure 3: Learned 1,024 bases images bases (each 14 × 14
pixels) on 10,000 natural images patches.

4.2 Face recognition without occlusion
In this subsection, we provide the experimental results on face
recognition tasks without synthetic occlusion on extended
Yale B dataset [Georghiades et al., 2001] and AR face dataset
[Martinez, 1998].

Extended Yale B dataset The extended Yale B database
[Georghiades et al., 2001] contains 2,414 images of 38 hu-
man frontal faces under 64 illumination conditions and ex-
pressions. There are about 64 images for each person. The
original images were cropped to 192 × 168 pixels. Some
samples are shown in Fig. 4(a). We do not perform any pre-
process on the images. Following [Wright et al., 2009], we
project each face image into a 504-dimensional feature vec-
tor using a random matrix. We split the database randomly
into two halves. One half which contains about 32 images for
each person was used for training the dictionary. The other
half was used for testing.
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(a) Sample images from extended Yale B dataset

(b) Sample images from AR face dataset

Figure 4: Sample images

In the practical implementation of our method, we first set
ε as infinity and choose the best λwith cross validation. Then
we fix λ and choose ε.

For face recognition, we compared our method with a
few start-of-the-art methods, including traditional dictionary
learning [Mairal et al., 2009a], K-SVD [Aharon et al., 2006],
LC-KSVD1 and LC-KSVD2 [Jiang et al., 2013], D-KSVD
[Zhang and Li, 2010] and ORDL [Lu et al., 2013]. The dic-
tionary size is 570 for all methods, which means 15 items for
person on average. The parameters for these methods were
selected by cross validation. We ran all methods on 10 dif-
ferent splits of training and testing set. The results are sum-
marized in Table 1. We can see that our method achieved the
best performance. The reason that ORDL did not perform
well might be the dictionary and representations trained with
`1-norm loss function are not suitable for classification tasks.

We show that our method is robust when training dictio-
nary. Recall that, in our method si = 0 means that the ith
sample is recognized as outlier and not used in training the
dictionary. In running on one random split, our method found
20 outliers, which are all shown in Fig. 5. We can see that
most of the outliers found by our method are with extreme
illumination, which will effect the quality of bases.

AR face dataset The AR face dataset [Martinez, 1998]
consists of over 4,000 color images from 126 individuals. For
each individual, 26 pictures were taken in two separate ses-
sions. Compared to the extended Yale B dataset, as shown

Table 1: Average classification accuracies(%) on extended
Yale B dataset.

Method Accuracy (%)
Capped Norm 96.91
Traditional DL 95.70
KSVD 95.54
LC-KSVD1 93.61
LC-KSVD2 94.48
D-KSVD 93.58
ORDL 89.17

Figure 5: The outliers found by our method when training
dictionary on an randomly selected training set from extended
Yale B dataset.

in Fig. 4(b) 1, the AR face dataset includes more facial vari-
ations, including different illumination conditions, different
expressions, and different facial disguises (sunglasses and
scarves). Following the standard evaluation procedure from
[Wright et al., 2009], we used a subset of the database con-
sisting of 2,600 images from 50 male subjects and 50 female
subjects. For each person, 20 images were randomly selected
for training and the remaining images are for testing. Each
face image is cropped to 165× 120 and then projected into a
540-dimensional feature vector.

Similar to the experiments on Yale B dataset, we also ran
all methods in 10 different splits of training and testing set.
The results are presented in Table 2. We can see that our
method achieved the best performance among all dictionary
learning algorithms. We show the 17 outliers found by our
algorithm in Fig 6. We can see that these outliers are faces
with glasses or scarves. Our algorithm identified these faces
as outliers that will hurt the quality of dictionary and did not
use them in the training process.

4.3 Face recognition with occlusion
In order to study the property of robustness to outliers, we
carried out experiments on extended Yale B dataset with syn-

1We use grayscale images in our experiments.
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Table 2: Average classification accuracies(%) on AR face
dataset.

Method Accuracy (%)
Capped Norm 97.48
Traditional DL 97.25
KSVD 95.03
LC-KSVD1 94.56
LC-KSVD2 94.33
D-KSVD 88.18
ORDL 91.72

Figure 6: The 17 outliers found by our method when training
dictionary on an randomly selected training set from AR face
dataset.

thetic outliers. If the samples for training the dictionary con-
tain outliers, traditional dictionary learning will try to find
dictionary that could express these outliers. But it is of no
use to express the outliers, hence the quality of dictionary
will be effected for traditional dictionary learning. In this
experiment, we generate outliers by adding block occlusion.
Other ways of generating outliers will also lead to the similar
phenomena described below.

We selected a fraction of images (outlier ratio) from train-
ing set, then we added block occlusion of size 96 × 96 into
these images at random positions. Some samples are shown
in Fig. 7. We set outlier ratio as 10%, 20%, 30% and 40%
to get 4 different datasets with synthetic outliers in the train-
ing sets. The images from testing sets are not added any oc-
clusions. Under this setting, the effect on the performance
of classification will come from the quality of dictionaries.
Similar to the experiments we have done above, we also ran
experiments on 10 different datasets and the average accura-
cies are reported in Table 3. We can see that the classifica-
tion accuracies of all methods decreased as the outlier ratio
increased. Compared with performances without block oc-
clusion in Table 1, the performance of traditional dictionary
learning dropped a lot (from 95.70 to 90.00 with 10% outliers
). But our method did not drop so much (from 96.91 to 96.29
). And our method also performed the best on all datasets.
Hence we can conclude that our capped `1-norm loss does
provide resistance to such kind of noise.

The outliers found by our algorithm from an synthetic
dataset with 10% corruption are shown in Fig. 8. We can see
that most outliers are images that are too dark or corrupted

Figure 7: Sample faces with occlusion from extended Yale B
dataset.

Table 3: Average classification accuracies(%) on extended
Yale B dataset with block occlusion of different levels.

Method 10% 20% 30% 40%

Capped Norm 96.29 95.49 95.43 93.88
Traditional DL 90.00 88.37 87.61 86.17
KSVD 93.74 93.26 92.99 92.30
LC-KSVD1 94.10 93.47 93.14 92.42
LC-KSVD2 94.27 93.65 93.21 92.27
D-KSVD 91.19 90.14 89.85 89.21
ORDL 87.00 85.53 84.95 83.38

and are difficult to recognize. In our method, the dictionaries
were trained without these samples, hence they were better
than dictionaries trained in other ways, which can be proved
from the comparisons of performances in Table 3.

Figure 8: The 93 outliers found by our method when train-
ing dictionary on an randomly selected training set with 10%
samples corrupted with block occlusion from extended Yale
B dataset.

5 Conclusion
In this paper, we presented a robust dictionary learning model
based on capped `1-norm and an efficient algorithm to find
local solutions. One important advantage of our method is
its robustness to outliers. By iteratively assigning weights to
samples, our algorithm succeeded in finding outliers and re-
duced their effects on training the dictionaries. The proposed
method was extensively evaluated on face recognition jobs on
different real word datasets and synthetic datasets. The ex-
perimental results demonstrated that our method outperforms
previous state-of-the-art dictionary learning methods.
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