
Multi-Task Model and Feature Joint Learning ∗

Ya Li, Xinmei Tian
University of Science and Technology of China

muziyiye@mail.ustc.edu.cn, xinmei@ustc.edu.cn

Tongliang Liu, Dacheng Tao
University of Technology, Sydney

tliang.liu@gmail.com, dacheng.tao@uts.edu.au

Abstract
Given several tasks, multi-task learning (MTL)
learns multiple tasks jointly by exploring the in-
terdependence between them. The basic assump-
tion in MTL is that those tasks are indeed related.
Existing MTL methods model the task related-
ness/interdependence in two different ways, either
common parameter-sharing or common feature-
sharing across tasks. In this paper, we propose a
novel multi-task learning method to jointly learn
shared parameters and shared feature representa-
tion. Our objective is to learn a set of com-
mon features with which the tasks are related as
closely as possible, therefore common parameters
shared across tasks can be optimally learned. We
present a detailed deviation of our multi-task learn-
ing method and propose an alternating algorithm
to solve the non-convex optimization problem. We
further present a theoretical bound which directly
demonstrates that the proposed multi-task learn-
ing method can successfully model the relatedness
via joint common parameter- and common feature-
learning. Extensive experiments are conducted on
several real world multi-task learning datasets. All
results demonstrate the effectiveness of our multi-
task model and feature joint learning method.

1 Introduction
Multi-task learning jointly learns multiple tasks by explor-
ing the interdependence between them. Recent works have
witnessed the fast development of multi-task learning in var-
ious research areas, such as web image and video search
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[Wang et al., 2009], disease prediction [Zhang and Shen,
2012], relative attributes learning [Chen et al., 2014], etc.
The basic assumption in MTL is that tasks are related, so
learning one task will benefit from learning other tasks.
The key problem in MTL, therefore, is how to model the
relatedness/interdependence across tasks. Existing multi-
task learning algorithms have two principal ways to learn
the relatedness: sharing common models/parameters [Evge-
niou and Pontil, 2004; Xue et al., 2007; Yu et al., 2005;
Rai and Daume, 2010], and sharing common features repre-
sentations [Argyriou et al., 2008; Jebara, 2011; Lapin et al.,
2014].

MTL in the category of sharing common mod-
els/parameters (multi-task model learning) assumes that
the tasks are related in such a way that the true models have
something in common in their parameters. For example,
Xue et al. constructed a hierarchical Bayesian framework
for learning task relatedness using the Dirichlet process and
assumed that the Bayesian models shared a common prior
[Xue et al., 2007]. Evgeniou and Pontil developed a novel
multi-task learning method based on the minimization of
regularization functions, similar to support vector machines,
and assumed that the hyperplanes of all tasks are close to a
mean SVM hyperplane [Evgeniou and Pontil, 2004].

MTL in the category of sharing common feature represen-
tations (multi-task feature learning) assumes that the tasks are
related in the sense that they all share a small set of features.
For example, a framework was proposed for learning sparse
representations shared across multiple tasks [Argyriou et al.,
2008]. It is based on the well-known L1-norm regularized
single-task learning and controls the number of learned com-
mon features across tasks. Jebara gave a summary of feature
selection and kernel selection in [Jebara, 2011]. In consid-
ering the effectiveness of multi-task learning for high dimen-
sional feature space, Lapin et al. proposed a novel multi-task
learning method to learn a low dimensional representation
jointly with corresponding classifiers [Lapin et al., 2014].

Neither multi-task model learning nor multi-task feature
learning can model relatedness well. Recent works have at-
tempted to simultaneously learn model relatedness and fea-
ture relatedness [Li et al., 2014; Yang et al., 2013]. Multi-
task model learning directly mines relatedness in the original
feature space. However, the performance of multi-task model
learning may be degraded, as relatedness measured by the
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Figure 1: Illustration of our multi-task model and feature joint learning.

original features may not be obvious in a real world dataset.
Multi-task feature learning solves this problem by mining
potentially common feature representations, but ignores the
model relatedness between tasks in the learned common fea-
ture space. In this paper we propose a multi-task learning
method, which jointly learns shared model and shared feature
representation. In our multi-task model-feature joint learning
method, we learn a set of common features shared by mul-
tiple tasks to maximize task relatedness, therefore common
models shared across tasks can be optimally learned simulta-
neously. The proposed method is formalized as a non-convex
problem. We propose an alternating algorithm to solve this
challenging problem. Theoretical analyses are also presented
which prove that joint model and feature learning is able to
model task relatedness well.

2 Multi-task model and feature joint learning
Our main idea is to learn a shared model and shared fea-
ture representations simultaneously, as illustrated in Figure 1.
Multiple tasks in real world applications may not be closely
related due to complexity and noise. In other words, they have
weak interdependence and their models/hyperplanes may dif-
fer significantly in the original feature space. We hope to
learn a feature mapping matrix U, through which the hyper-
planes of all tasks are closely related, enabling them to share
a common hyperplane a0. at is the offset of the t-th task,
which compensates for the limitation of the study ability of
the mapping matrix U and reflects its own unique character-
istics.

2.1 The proposed formulation
Assume we are given T different learning tasks. Each task t
is associated with a set of data:

Dt = {(xt1, yt1), (xt2, yt2), ..., (xtmt , ytmt)},
where xti is the i−th input feature and yti is its correspond-
ing output. xti ∈ Rd, yti ∈ R, t ∈ {1, 2, ..., T}, and
i ∈ {1, 2, ...,mt}. Our goal is to learn T different linear func-
tions using the above T datasets {D1, D2, ..., DT } as follows:

ft(xti) = vTt xti ≈ yti. (1)

Single-task learning methods learn the T different linear
functions separately using their own data (such as linear re-
gression, SVMs), while multi-task learning methods learn the
T different functions jointly by mining the relationships be-
tween tasks.

Our objective is to learn an orthogonal feature mapping
matrix U through which all tasks can share a central hyper-
plane a0 but also preserve their unique model at,

ft(xti) = 〈at + a0, U
Txti〉. (2)

The central hyperplane a0 represents the interdependent
information across tasks. The offset at captures the unique
characteristic of each task. Both a0 and at are learned in the
new feature space. We give our proposed multi-task learning
model as follows:

min
V,a0,U

T∑
t=1

mt∑
i=1

l
(
yti, 〈vt, UTxti〉

)
+ γ

T ‖V − a0 ∗ 1‖
2
2,1 + β‖a0‖22,

(3)
where V = [v1, v2, ..., vT ]. 1 is a 1 × T vector with all en-
tries being 1. ‖a0‖2 is the 2-norm of vector a0, which can

be formulated as ‖a0‖2 = (
d∑
i=1

|a0i|2)
1
2 . This regulariza-

tion term is used to guarantee the smoothness of the cen-
tral hyperplane a0. ‖V − a0 ∗ 1‖2,1 represents the (2, 1)-
norm of matrix (V − a0 ∗ 1), which can be formulated as

‖V − a0 ∗ 1‖2,1 = (
d∑
i=1

‖vi− a0i ∗ 1‖2). vi is the i-th row of

matrix V . The (2, 1)-norm regularization ensures that com-
mon features will be selected across all tasks. It encourages
the group sparse property, which means that many rows of the
learned matrix (V − a0 ∗ 1) are all zero.

Note vt = at + a0, problem (3) can be rewritten as

min
A,a0,U

T∑
t=1

mt∑
i=1

l
(
yti, 〈at + a0, U

Txti〉
)

+ γ
T ‖A‖

2
2,1 + β‖a0‖22,

(4)
where A = [a1, a2, ..., aT ].

Our proposed formulation differs from the formulation
proposed in [Argyriou et al., 2008] in three main aspects.
First, the method proposed in [Argyriou et al., 2008] ignores

3644



the limitation of the learning ability of feature mapping ma-
trix U . It may be more feasible to select the common fea-
tures by regularizing V around a0 ∈ Rd rather than the orig-
inal point. Our proposed problem (3) learns the shared fea-
ture around point a0 instead of the original point. Second,
the method proposed in [Argyriou et al., 2008] focused on
learning shared features and did not consider the relation-
ships of task models. After the shared feature was learned,
they treated multiple tasks independently when learning their
model parameters. From the formulation of problem (4), we
can see that our method jointly learns the shared features and
shared common parameters. Third, the minimization of our
proposed objective function will be more difficult because we
learn the shared features and shared common parameters si-
multaneously. This will be shown in the following section.

2.2 Equivalent convex optimization problem
Problem (4) is a non-convex problem. It is difficult to solve
such a non-convex optimization problem directly. We will
give an equivalent convex optimization problem of problem
(4) in this section [Argyriou et al., 2008].

Theorem 1. Problem (4) is equivalent to the following con-
vex optimization problem:

min
W,w0,D

T∑
t=1

mt∑
i=1

l (yti, 〈wt + w0, xti〉) (5)

+
γ

T

T∑
t=1

〈wt, D
+wt〉+ β〈w0, w0〉,

s.t. D ∈ Sd
+, trace(D) ≤ 1, range(W ) ⊆ range(D).

In particular, if (Â,â0,Û ) is an optimal solution of problem
(4), then Ŵ = Û Â, ŵ0 = Û â0, D̂ = ÛDiag( ‖â

i‖2
‖Â‖2,1

)di=1Û
T

is an optimal solution of problem (5). Conversely, if
(Ŵ , ŵ0, D̂) is an optimal solution of problem (5) then any
(Â, â0, Û), such that the columns of Û form an orthonormal
basis of eigenvectors of D̂ and Â = ÛT Ŵ , â0 = ÛT ŵ0 is an
optimal solution of problem (4).

Noting that Sd+ represents the set of positive semidefinite
symmetric matrices and range(W) denotes the set {x ∈ Rn :
x = Wz, for some z ∈ RT }. Diag(a0)di=1 represents a diag-
onal matrix with the components of vector a0 on the diagonal.
D+ is the pseudoinverse of matrix D.

2.3 An optimization algorithm
In this section, we propose an alternating algorithm to

solve problem (5) by alternately minimizing it with respect
to (W,w0) and D, as presented in Algorithm 1. We can ul-
timately obtain the solution to problem (4) through the re-
lationships between the optimal solution of problem (4) and
problem (5) in Theorem 1.

In Algorithm 1, we first fix D and minimize the problem
over (W,w0). When D is fixed, the minimization over wt
cannot simply be separated into T independent problems be-
cause of the existence of w0. Therefore, it is more difficult to

Algorithm 1 Multi-task model and feature joint learning
Input: training data {(xti, yti)}mt

i=1, t ∈ {1, 2, ..., T}
Output: W,w0, D
1: Initialize D = I

d , d is the dimension of the data
2: while ‖W−Wprev‖ > tol1 or ‖w0−w0prev‖ > tol2

do
3: min

W1,W0

‖Y −XT (W1+W0)‖+ γ
TW

T
1 D

+
0 W1+βwT0 w0

4: D = (WWT )
1
2

trace(WWT )
1
2

5: end while

solve our proposed problem. It is shown as follows:

min
W,w0

T∑
t=1

mt∑
i=1

l (yti, 〈wt + w0, xti〉) (6)

+
γ

T

T∑
t=1

〈wt, D+wt〉+ β〈w0, w0〉,

s.t. D ∈ Sd+, trace(D) ≤ 1, range(W ) ⊆ range(D).

We consider the situation in which the loss function is a
least squared loss and make changes to solve the above prob-
lem. Suppose Xt = [xt1, xt2, ..., xtmt

] ∈ Rd×mt represents
all data points in task t. Yt = [yt1, yt2, ..., ytmt

]T ∈ Rmt

represents the outputs of the mt data points in task t. M is
the total number of data points of all T tasks:

M = m1 +m2 + ...+mT .

Let X = bdiag(X1, X2, ..., XT ) ∈ RdT×M and Y =
[Y T1 , Y

T
2 , ..., Y

T
T ]T ∈ RM , X represents a block diagonal

matrix with the data of T different tasks as the diagonal el-
ements. Y is the output vector of all data points in the T
tasks by aligning the outputs of each of the tasks. Let D0 =
bdiag(D,D, ...,D︸ ︷︷ ︸

T

) ∈ RdT×M , W0 = [wT0 , w
T
0 , ..., w

T
0︸ ︷︷ ︸

T

]T ∈

RdT and W1 = [wT1 , w
T
2 , ..., w

T
T ]T ∈ RdT .

Problem (6) can be reformulated as

min
W1,W0

‖Y−XT (W1+W0)‖22+
γ

T
WT

1 D
+
0 W1+βwT0 w0. (7)

Let I be a d × d identity matrix and I0 = [I, I, ..., I︸ ︷︷ ︸
T

]T ∈

RdT×d, then W0 = I0 × w0. In fact, problem (7) can
be formulated as a standard 2-norm regularization problem
if we introduce new variables. Let Z1 =

√
γ
T (D+

0 )
1
2W1,

Z2 =
√
βw0. Then W1 =

√
T
γ (D+

0 )−
1
2Z1 and W0 =√

1
β I0Z2. (D+

0 )
1
2 = bdiag((D+)

1
2 , (D+)

1
2 , ..., (D+)

1
2︸ ︷︷ ︸

T

) and

(D+
0 )−

1
2 = bdiag((D+)−

1
2 , (D+)−

1
2 , ..., (D+)−

1
2︸ ︷︷ ︸

T

). We
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have
γ

T
WT

1 D
+
0 W1 + βwT0 w0 = [ZT1 , Z

T
2 ][ZT1 , Z

T
2 ]T = ZTZ

W1 +W0 = [

√
T

γ
(D+

0 )
− 1

2 ,

√
1

β
I0][ZT1 , Z

T
2 ]T = PZ

(8)
where Z = [ZT1 , Z

T
2 ] and P = [

√
T
γ (D+

0 )
− 1

2 ,
√

1
β I0]. Then

problem (7) can be formulated as follows:

min
Z
‖Y −XTPZ‖22 + ZTZ. (9)

The above problem is a standard 2-norm regularization
problem and has an explicit solution:

Z = (PTXXTP + I)−1PTXY. (10)

W andW0 can be derived from Z, then problem (6) is solved.
The second step of Alogorithm 1 is to fix (W,w0) and min-

imize problem (5) overD. We just need to solve the following
problem for a fixed W and w0:

min
D

T∑
t=1

〈wt, D+wt〉, (11)

s.t. D ∈ Sd+, trace(D) ≤ 1, range(W ) ⊆ range(D).

The optimal solution is given as follows [Argyriou et al.,
2008]:

D̂ =
(WWT )

1
2

trace(WWT )
1
2

. (12)

3 Theoretical Analysis
In this section, we derive a generalization bound for proposed
problem (4). We change the soft constraints γ

T ‖A‖
2
2,1 and

β‖a0‖22 into hard constraints. Then, problem (4) becomes:

min
at,a0,U,ε1,ε2

T∑
t=1

mt∑
i=1

l
(
yti,

〈
at + a0, U

Txti
〉)

+ ε1 + ε2,

s.t. γ
1

T
‖A‖22,1 ≤ ε1, (13)

β‖a0‖22 ≤ ε2.

Note that problem (13) is equal to problem (4) and that both
ε1 and ε2 are of order O(1) (see [Vainsencher et al., 2011]).
Let ε1 = ε2 = O(1), problem (13) becomes:

min
at,a0,U

T∑
t=1

mt∑
i=1

l
(
yti,
〈
at + a0, U

Txti
〉)
,

s.t. ‖A‖22,1 ≤ O
(
T

γ

)
, (14)

‖a0‖22 ≤ O
(

1

β

)
.

Thus, a problem with soft constraints can be analyzed in
the form of hard constraints. Mehta and Gray [Mehta and

Figure 2: Absolute value of learned weight matrix A0.

Figure 3: Absolute value of learned weight matrix A.

Gray, 2013] directly set ε = 1 to analyze a soft constraint
problem by changing it into a hard constraint problem. We
will analyze proposed problem (4) in the same way and pro-
vide a generalization bound to the following problem:

min
at,a0,U

T∑
t=1

mt∑
i=1

l
(
yti,
〈
at + a0, U

Txti
〉)
,

s.t. ‖A‖22,1 ≤
T

γ
, (15)

‖a0‖22 ≤
1

β
.

To upper bound the generalization error, we assume that
the loss function l satisfies the following Lipschitz-like con-
dition, which has been widely used (see [Mohri et al., 2012]).
Definition 1. A loss function l is c-admissible with respect to
the hypothesis class H if there exists a c ∈ R+, where R+

denotes the set of non-negative real numbers, such that for
any two hypotheses h, h′ ∈ H and example (x, y) ∈ X × R,
the following inequality holds:

|l(y, h(x))− l(y, h′(x))| ≤ c|h(x)− h′(x)|.

The result is as follows:
Theorem 2. Let the loss function l be upper bounded by B,
that is l(y, f(x)) ≤ B, and be c-admissible with respect to
the linear function class. For any A, a0 and U learned by
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Table 1: Performance comparison between our proposed MFJL method and seven baseline methods on School dataset in terms
of averaged nMSE and aMSE.

Measure Training ratio Ridge Lasso TraceNorm Sparse-LowRank CMTL RMTL DirtyMTL MFJL
10% 1.0398 1.0261 0.9359 0.9175 0.9413 0.9130 0.9543 0.7783

nMSE 20% 0.8773 0.8754 0.8211 0.8126 0.8327 0.8055 0.8396 0.7432
30% 0.8171 0.8144 0.7870 0.7657 0.7922 0.7600 0.7985 0.7299

10% 0.2713 0.2682 0.2504 0.2419 0.2552 0.2330 0.2327 0.1898
aMSE 20% 0.2303 0.2289 0.2156 0.2114 0.2131 0.2018 0.2048 0.1813

30% 0.2156 0.2137 0.2089 0.2011 0.1922 0.1822 0.1943 0.1776

Table 2: Performance comparison of multi-task regression algorithms on SARCOS dataset in terms of averaged nMSE and
aMSE.

Measure Training size Ridge Lasso TraceNorm Sparse-LowRank CMTL RMTL DirtyMTL MFJL
50 0.2454 0.2337 0.2257 0.2127 0.2192 0.2123 0.1742 0.1640

nMSE 100 0.1821 0.1616 0.1531 0.1495 0.1568 0.1456 0.1274 0.1155
150 0.1501 0.1469 0.1318 0.1236 0.1301 0.1245 0.1129 0.1057

50 0.1330 0.1228 0.1122 0.1073 0.1156 0.0982 0.0625 0.0588
aMSE 100 0.1053 0.0907 0.0805 0.0793 0.0852 0.0737 0.0458 0.0415

150 0.0846 0.0822 0.0772 0.0661 0.0755 0.0674 0.0405 0.0379

problem (4) with the soft constraints about γ 1
T ‖A‖

2
2,1 and

β‖a0‖22 being replaced by the hard constraints ‖A‖22,1 ≤ T
γ

and ‖a0‖22 ≤ 1
β , and for any δ > 0, with probability at least

1− δ, we have

Ex

T∑
t=1

mt∑
i=1

l
(
yti,
〈
at + a0, U

Txti
〉)

−
T∑
t=1

mt∑
i=1

l
(
yti,
〈
at + a0, U

Txti
〉)
≤

2c

(√
T

γ
+

√
1

β

)√√√√ T∑
t=1

mtS(Xt) +

3B

√∑T
t=1mt ln( 2

δ )

2
,

where S(Xt) = tr
(

Σ̂(xt)
)

= 1
mt

∑mt

i=1 ‖xti‖22 is the em-
pirical covariance for the observations of the t-th task. Let
m1 = . . . = mT = m and ‖xt‖2 ≤ r, t = 1, . . . , T , with
probability at least 1− δ, we have

1

T

T∑
t=1

Exl
(
yt,
〈
at + a0, U

Txt
〉)

− 1

T

T∑
t=1

1

m

m∑
i=1

l
(
yti,
〈
at + a0, U

Txti
〉)

≤ 2cr
√
γm

+
2cr√
βmT

+ 3B

√
ln(2/δ)

2mT
.

Remark 1. According to Theorem 2, the two terms 2cr√
γm

and 2cr√
βmT

are the generalization bounds with respect to the

learning of A = (a1, . . . , aT ) and a0, respectively, where A
corresponds to the specific task in the set of multiple tasks,
and a0 corresponds to the shared hyperplane of the multiple
tasks. Our theoretical result shows that a0 can be learned
with the order of O(

√
1/mT ), which means the shared hy-

perplane can be successfully learned by increasing the num-
ber of tasks. We have therefore theoretically justified that the
proposed multi-task learning is superior to single task learn-
ing. Additionally, the employed orthogonal operator U and
regularization on ‖A‖2,1 will encourage a0 to be as large
as possible. The generalization bound of problem (4) will
therefore converge faster than that of problem proposed in
[Argyriou et al., 2008], which means the proposed method is
more efficient.

4 Experiments
In this section, we present extensive experiments conducted
on several real-world datasets including School, SARCOS,
and Isolet. These datasets have been wildly used for evalu-
ation in previous multi-task learning works, for example in
[Argyriou et al., 2008; Gong et al., 2012b; Chen et al., 2011;
Kang et al., 2011; Gong et al., 2012a]. We compare the
performance of our proposed multi-task model and feature
joint learning (MFJL) method with two single-task learning
methods and five state-of-the-art multi-task learning meth-
ods. The two single-task learning methods are ridge re-
gression (Ridge) and least squares with L1-norm regular-
ization (Lasso). The five multi-task learning methods are
least squares with trace norm regularization (TraceNorm),
least squares with low-rank and sparse structures regulariza-
tion (Sparse-LowRank) [Chen et al., 2012], convex multi-
task feature learning (CMTL) [Argyriou et al., 2008], robust
multi-task learning with low-rank and group-sparse structures
(RMTL) [Chen et al., 2011] and dirty model multi-task re-
gression learning (DirtyMTL) [Jalali et al., 2013]. We choose
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Table 3: Performance comparison of multi-task regression algorithms on Isolet dataset in terms of averaged nMSE and aMSE.
Measure Training ratio TraceNorm Sparse-LowRank CMTL RMTL DirtyMTL MFJL

15% 0.6044 0.6307 0.7000 0.5987 0.6764 0.5691
nMSE 20% 0.5705 0.6166 0.6491 0.5741 0.6344 0.5526

25% 0.5622 0.6011 0.6288 0.5635 0.6212 0.5498

15% 0.1424 0.1486 0.1650 0.1411 0.1594 0.1314
aMSE 20% 0.1343 0.1452 0.1528 0.1352 0.1494 0.1301

25% 0.1321 0.1412 0.1477 0.1324 0.1459 0.1292

these five multi-task learning methods as our competitors be-
cause their objective formulations are similar to ours and they
have achieved top-level performance on benchmark datasets.
All these methods use a least square loss function.

4.1 School dataset
The School dataset is from the Inner London Education Au-
thority. It consists of the examination scores of 15,362 stu-
dents from 139 secondary schools in 1985, 1986 and 1987.
There are 139 tasks in total, corresponding to examination
scores prediction in each school. The input features in-
clude the year of the examination, 4 school dependent fea-
tures and 3 student-dependent features. We follow the same
setup as previous multi-task learning works and obtain a 27-
dimensional binary variable for each example.

We randomly select 10%, 20% and 30% of the examples in
each respective task as a training set, and the remaining exam-
ples are used for testing. For each training ratio, we repeat the
random splits of the data 10 times and report the average per-
formance. The parameters of all methods are tuned via cross-
validation on the training set. We evaluate all these regression
methods using normalized mean squared error (nMSE) and
averaged mean squared error (aMSE) [Gong et al., 2012b;
Chen et al., 2011].

The experimental results are shown in Table 1. From these
results, we make the following observations. (1) All multi-
task learning methods outperform single-task learning meth-
ods, which proves the effectiveness of multi-task learning.
(2) Our proposed joint learning method significantly and con-
sistently outperforms all other baseline MTL methods, espe-
cially when the training ratio is small. This demonstrates that
our method can successfully learn the optimal feature space
in which multiple tasks are closely related.

We also show the absolute values of learned weight A0 =
[a0, a0, ..., a0︸ ︷︷ ︸

T

] and A in Figure 2 and Figure 3, respectively.

Here, the training ratio is 20%. The black areas in the fig-
ures denote zero value. From Figure 3, we can see that the
learned weight matrix A is very sparse, and there are about
15 nonzero rows referring to the shared features across tasks.
As for matrix A0, we find that some features not shared in
matrix A will be used in the central hyperplane a0, which
will increase the utilization of information in the features.

4.2 SARCOS dataset
The SARCOS dataset is related to an inverse dynamic prob-
lem for a seven degree-of-freedom SARCOS anthropomor-

phic robot arm. It consists of 48,933 observations corre-
sponding to seven joint torques. Each observation is de-
scribed by a 21-dimensional feature vector, including seven
joint positions, seven joint velocities, and seven joint accel-
erations, therefore we have seven tasks in total. Our task is
to map the 21-dimensional features to the seven joint torques.
We randomly select 50, 100 and 150 examples to form three
separate training sets respectively, and randomly select 5000
examples as test sets. All experiments are run 15 times to
avoid randomness. The validation methods are the same as
described in the experiments on the School dataset for all the
multi-task learning methods.

The experimental results in terms of averaged nMSE and
aMSE are given in Table 2. We make similar observations
to those in the experiment on the School dataset. Our pro-
posed joint learning method again achieves much better per-
formance than other baseline algorithms, which demonstrates
the effectiveness and robustness of our proposed multi-task
model and feature joint learning method.

4.3 Isolet dataset

We have also tested our method on the Isolet dataset. This
dataset is collected from 150 speakers, each of whom speaks
all the English letter of the alphabet twice, i.e., each speaker
provides 52 data examples. The speakers are grouped into
five subsets of 30 similar speakers; thus we have five tasks
corresponding to the five speaker groups. The five tasks have
1560, 1560, 1560, 1558 and 1559 corresponding samples.
Each English letter corresponds to a label (1-26) and we treat
the English letter labels as regression values following the
same setup as [Gong et al., 2012a]. We randomly select 15%,
20%, 25% of the samples to form three training sets and use
the rest of the samples as test sets. We first preprocess the
data with PCA by reducing the dimensionality to 100. Exper-
iments are repeated 10 times.

Experiments on the School and SARCOS datasets have
shown that Ridge and Lasso do not perform well for multi-
task learning problem, therefore we only compare MFJL with
five multi-task learning algorithms in this experiment. The
experimental results on the Isolet dataset in terms of averaged
nMSE and aMSE are given in Table 3. It is clear that our
MFJL outperforms the other five multi-task learning meth-
ods stably, which demonstrates that our method is suitable
for problems in a variety of applications.
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5 Conclusion
In this paper, we propose a novel multi-task learning method
by jointly learning shared parameters and shared feature rep-
resentations. A detailed description of our proposed multi-
task learning method is provided. Additionally, we present
a theoretical bound which directly demonstrates that the pro-
posed multi-task learning method performs better than single-
task learning and is able to successfully model the relatedness
between tasks. Various experiments are conducted on several
landmark datasets and all results demonstrate the effective-
ness of our proposed multi-task learning method.
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