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Abstract

Gaussian processes (GPs) provide a nonparametric
representation of functions. However, classical GP
inference suffers from high computational cost for
big data. In this paper, we propose a new Bayesian
approach, EigenGP, that learns both basis dictio-
nary elements—eigenfunctions of a GP prior—and
prior precisions in a sparse finite model. It is well
known that, among all orthogonal basis functions,
eigenfunctions can provide the most compact rep-
resentation. Unlike other sparse Bayesian finite
models where the basis function has a fixed form,
our eigenfunctions live in a reproducing kernel
Hilbert space as a finite linear combination of ker-
nel functions. We learn the dictionary elements—
eigenfunctions—and the prior precisions over these
elements as well as all the other hyperparame-
ters from data by maximizing the model marginal
likelihood. We explore computational linear alge-
bra to simplify the gradient computation signifi-
cantly. Our experimental results demonstrate im-
proved predictive performance of EigenGP over al-
ternative sparse GP methods as well as relevance
vector machines.

1 Introduction
Gaussian processes (GPs) are powerful nonparametric Bayes-
ian models with numerous applications in machine learning
and statistics. GP inference, however, is costly. Training the
exact GP regression model with N samples is expensive: it
takes an O(N2) space cost and an O(N3) time cost. To ad-
dress this issue, a variety of approximate sparse GP inference
approaches have been developed [Williams and Seeger, 2001;
Csató and Opper, 2002; Snelson and Ghahramani, 2006;
Lázaro-Gredilla et al., 2010; Williams and Barber, 1998;
Titsias, 2009; Qi et al., 2010; Higdon, 2002; Cressie and Jo-
hannesson, 2008]—for example, using the Nyström method
to approximate covariance matrices [Williams and Seeger,
2001], optimizing a variational bound on the marginal like-
lihood [Titsias, 2009] or grounding the GP on a small set
of (blurred) basis points [Snelson and Ghahramani, 2006;
Qi et al., 2010]. An elegant unifying view for various sparse

GP regression models is given by Quiñonero-Candela and
Rasmussen [2005].

Among all sparse GP regression methods, a state-of-the-
art approach is to represent a function as a sparse finite lin-
ear combination of pairs of trigonometric basis functions, a
sine and a cosine for each spectral point; thus this approach
is called sparse spectrum Gaussian process (SSGP) [Lázaro-
Gredilla et al., 2010]. SSGP integrates out both weights and
phases of the trigonometric functions and learns all hyperpa-
rameters of the model (frequencies and amplitudes) by max-
imizing the marginal likelihood. Using global trigonomet-
ric functions as basis functions, SSGP has the capability of
approximating any stationary Gaussian process model and
been shown to outperform alternative sparse GP methods—
including fully independent training conditional (FITC) ap-
proximation [Snelson and Ghahramani, 2006]—on bench-
mark datasets. Another popular sparse Bayesian finite lin-
ear model is the relevance vector machine (RVM) [Tipping,
2000; Faul and Tipping, 2001]. It uses kernel expansions over
training samples as basis functions and selects the basis func-
tions by automatic relevance determination [MacKay, 1992;
Faul and Tipping, 2001].

In this paper, we propose a new sparse Bayesian approach,
EigenGP, that learns both functional dictionary elements—
eigenfunctions—and prior precisions in a finite linear model
representation of a GP. It is well known that, among all or-
thogonal basis functions, eigenfunctions provide the most
compact representation. Unlike SSGP or RVMs where the
basis function has a fixed form, our eigenfunctions live in a
reproducing kernel Hilbert space (RKHS) as a finite linear
combination of kernel functions with their weights learned
from data. We further marginalize out weights over eigen-
functions and estimate all hyperparameters—including basis
points for eigenfunctions, lengthscales, and precision of the
weight prior—by maximizing the model marginal likelihood
(also known as evidence). To do so, we explore computa-
tional linear algebra and greatly simplify the gradient compu-
tation for optimization (thus our optimization method is to-
tally different from RVM optimization methods). As a result
of this optimization, our eigenfunctions are data dependent
and make EigenGP capable of accurately modeling nonsta-
tionary data. Furthermore, by adding an additional kernel
term in our model, we can turn the finite model into an in-
finite model to model the prediction uncertainty better—that
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is, it can give nonzero prediction variance when a test sample
is far from the training samples.

EigenGP is computationally efficient. It takes O(NM)
space and O(NM2) time for training on with M basis func-
tions, which is same as SSGP and more efficient than RVMs
(as RVMs learn weights over N , not M , basis functions.).
Similar to FITC and SSGP, EigenGP focuses on predictive
accuracy at low computational cost, rather than on faithfully
converging towards the full GP as the number of basis func-
tions grows. (For the latter case, please see the approach [Yan
and Qi, 2010] that explicitly minimizes the KL divergence be-
tween exact and approximate GP posterior processes.)

The rest of the paper is organized as follows. Section 2
describes the background of GPs. Section 3 presents the
EigenGP model and an illustrative example. Section 4 out-
lines the marginal likelihood maximization for learning dic-
tionary elements and the other hyperparameters. In Section 5,
we discuss related work. Section 6 shows regression results
on multiple benchmark regression datasets, demonstrating
improved performance of EigenGP over Nyström [Williams
and Seeger, 2001], RVM, FITC, and SSGP.

2 Background of Gaussian Processes
We denoteN independent and identically distributed samples
as D = {(x1, y1), . . . , (xn, yn)}N , where xi is a D dimen-
sional input (i.e., explanatory variables) and yi is a scalar out-
put (i.e., a response), which we assume is the noisy realization
of a latent function f at xi.

A Gaussian process places a prior distribution over the
latent function f . Its projection fx at {xi}Ni=1 defines a
joint Gaussian distribution p(fx) = N (f |m0,K), where,
without any prior preference, the mean m0 are set to 0
and the covariance function k(xi,xj) ≡ K(xi,xj) en-
codes the prior notion of smoothness. A popular choice
is the anisotropic squared exponential covariance function:
k(x,x′) = a0 exp

(
−(x− x′)Tdiag(η)(x− x′)

)
, where

the hyperparameters include the signal variance a0 and the
lengthscales η = {ηd}Dd=1, controlling how fast the covari-
ance decays with the distance between inputs. Using this co-
variance function, we can prune input dimensions by shrink-
ing the corresponding lengthscales based on the data (when
ηd = 0, the d-th dimension becomes totally irrelevant to the
covariance function value). This pruning is known as Auto-
matic Relevance Determination (ARD) and therefore this co-
variance is also called the ARD squared exponential. Note
that the covariance function value remains the same when
(x′ − x) is the same – regardless where x′ and x are. This
thus leads to a stationary GP model. For nonstationary data,
however, a stationary GP model is a misfit. Although nonsta-
tionary GP models have been developed and applied to real
world applications, they are often limited to low-dimensional
problems, such as applications in spatial statistics [Paciorek
and Schervish, 2004]. Constructing general nonstationary GP
models remains a challenging task.

For regression, we use a Gaussian likelihood function
p(yi|f) = N (yi|f(xi), σ

2), where σ2 is the variance of
the observation noise. Given the Gaussian process prior
over f and the data likelihood, the exact posterior process

is p(f |D,y) ∝ GP (f |0, k)
∏N
i=1 p(yi|f). Although the pos-

terior process for GP regression has an analytical form, we
need to store and invert an N by N matrix, which has the
computational complexity O(N3), rendering GP unfeasible
for big data analytics.

3 Model of EigenGP
To enable fast inference and obtain a nonstationary covari-
ance function, our new model EigenGP projects the GP prior
in an eigensubspace. Specifically, we set the latent function

f(x) =
M∑
j=1

αjφ
j(x) (1)

where M � N and {φj(x)} are eigenfunctions of the GP
prior. We assign a Gaussian prior over α = [α1, . . . , αM ],
α ∼ N (0,diag(w)), so that f follows a GP prior with zero
mean and the following covariance function

k̃(x,x′) =
M∑
j=1

wjφ
j(x)φj(x′). (2)

To compute the eigenfunctions {φj(x)}, we can use the
Galerkin projection to approximate them by Hermite poly-
nomials [Marzouk and Najm, 2009]. For high dimensional
problems, however, this approach requires a tensor product
of univariate Hermite polynomials that dramatically increases
the number of parameters.

To avoid this problem, we apply the Nyström method
[Williams and Seeger, 2001] that allows us to obtain an
approximation to the eigenfunctions in a high dimensional
space efficiently. Specifically, given inducing inputs (i.e. ba-
sis points) B = [b1, . . . ,bM ], we replace∫

k(x,x′)φj(x)p(x)dx = λjφ
j(x′) (3)

by its Monte Carlo approximation

1

M

M∑
i=1

k(x,bi)φ
j(bi) ≈ λjφj(x) (4)

Then, by evaluating this equation at B so that we can estimate
the values of φj(bi) and λj , we obtain the j-th eigenfunction
φj(x) as follows

φj(x) =

√
M

λ
(M)
j

k(x)u
(M)
j = k(x)uj (5)

where k(x) , [k(x,b1), . . . , k(x,bM )], λ(M)
j and u

(M)
j are

the j-th eigenvalue and eigenvector of the covariance func-
tion evaluated at B, and uj =

√
Mu

(M)
j /λ

(M)
j . Note that,

for simplicity, we have chosen the number of the inducing in-
puts to be the same as the number of the eigenfunctions; in
practice, we can use more inducing inputs while computing
only the topM eigenvectors. As shown in (5), our eigenfunc-
tion lives in a RKHS as a linear combination of the kernel
functions evaluated at B with weights uj .
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Inserting (5) into (1) we obtain

f(x) =
M∑
j=1

αj

M∑
i=1

uijk(x,bi) (6)

This equation reveals a two-layer structure of EigenGP. The
first layer linearly combines multiple kernel functions to gen-
erate each eigenfunction φj . The second layer takes these
eigenfunctions as the basis functions to generate the function
value f . Note that f is a Bayesian linear combination of {φj}
where the weights α are integrated out to avoid overfitting.

All the model hyperparameters are learned from data.
Specifically, for the first layer, to learn the eigenfunctions
{φi}, we estimate the inducing inputs B and the kernel hy-
perparameters (such as lengthscales η for the ARD kernel)
by maximizing the model marginal likelihood. For the second
layer, we marginalize out α to avoid overfitting and maximize
the model marginal likelihood to learn the hyperparameter w
of the prior.

With the estimated hyperparameters, the prior over f is
nonstationary because its covariance function in (2) varies at
different regions of x. This comes at no surprise since the
eigenfunctions are tied with p(x) in (3). This nonstationarity
reflects the fact that our model is adaptive to the distribution
of the explanatory variables x.

Note that to recover the full uncertainty captured by the
kernel function k, we can add the following term into the ker-
nel function of EigenGP:

δ(x− x′)(k(x,x′)− k̃(x,x′)) (7)

where δ(a) = 1 if and only if a = 0. Compared to the orig-
inal EigenGP model, which has a finite degree of freedom,
this modified model has the infinite number of basis functions
(assuming k has an infinite number of basis functions as the
ARD kernel). Thus, this model can accurately model the un-
certainty of a test point even when it is far from the training
set. We derive the optimization updates of all the hyperpa-
rameters for both the original and modified EigenGP mod-
els. But according to our experiments, the modified model
does not improve the prediction accuracy over the original
EigenGP (it even reduces the accuracy sometimes.). There-
fore, we will focus on the original EigenGP model in our pre-
sentation for its simplicity. Before we present details about
hyperparameter optimization, let us first look at an illustra-
tive example on the effect of hyperparameter optimization, in
particular, the optimization of the inducing inputs B.

3.1 Illustrative Example
For this example, we consider a toy dataset used by the FITC
algorithm [Snelson and Ghahramani, 2006]. It contains 200
one-dimensional training samples. We use 5 basis points
(M = 5) and choose the ARD kernel. We then compare the
basis functions {φj} and the corresponding predictive distri-
butions in two cases. For the first case, we use the kernel
width η learned from the full GP model as the kernel width
for EigenGP, and apply K-means to set the basis points B
as cluster centers. The idea of using K-means to set the ba-
sis points has been suggested by Zhang et al. [2008] to min-
imize an error bound for the Nyström approximation. For

Basis points learned
from K-means

Basis points estimated by
evidence maximization
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Figure 1: Illustration of the effect of optimizing basis points
(i.e., inducing inputs). In the first row, the pink dots represent
data points, the blue and red solid curves correspond to the
predictive mean of EigenGP and ± two standard deviations
around the mean, the black curve corresponds to the predic-
tive mean of the full GP, and the black crosses denote the
basis points. In the second row, the curves in various colors
represent the five eigenfunctions of EigenGP.

the second case, we optimize η, B and w by maximizing the
marginal likelihood of EigenGP.

The results are shown in Figure 1. The first row demon-
strates that, by optimizing the hyperparameters, EigenGP
achieves the predictions very close to what the full GP
achieves—but using only 5 basis functions. In contrast, when
the basis points are set to the cluster centers by K-means,
EigenGP leads to the prediction significantly different from
that of the full GP and fails to capture the data trend, in par-
ticular, for x ∈ (3, 5). The second row of Figure 1 shows that
K-means sets the basis points almost evenly spaced on y, and
accordingly the five eigenfunctions are smooth global basis
functions whose shapes are not directly linked to the func-
tion they fit. Evidence maximization, by contrast, sets the
basis points unevenly spaced to generate the basis functions
whose shapes are more localized and adaptive to the function
they fit; for example, the eigenfunction represented by the red
curve well matches the data on the right.

4 Learning Hyperparameters
In this section we describe how we optimize all the hyperpa-
rameters, denoted by θ, which include B in the covariance
function (2), and all the kernel hyperparameters (e.g., a0 and
η). To optimize θ, we maximize the marginal likelihood (i.e.
evidence) based on a conjugate Newton method1. We explore
two strategies for evidence maximization. The first one is se-
quential optimization, which first fixes w while updating all
the other hyperparameters, and then optimizes w while fixing
the other hyperparameters. The second strategy is to optimize

1We use the code from http://www.gaussianprocess.org/gpml/
code/matlab/doc
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all the hyperparameters jointly. Here we skip the details for
the more complicated joint optimization and describe the key
gradient formula for sequential optimization. The key com-
putation in our optimization is for the log marginal likelihood
and its gradient:

ln p(y|θ) = − 1
2
ln |CN | − 1

2
yTC−1

N y − N
2
ln(2π), (8)

d ln p(y|θ) = − 1
2

[
tr(C−1

N dCN )− tr(C−1
N yyTC−1

N dCN )
]
(9)

where CN = K̃ + σ2I, K̃ = Φdiag(w)ΦT, and Φ =

{φm(xn)} is an N by M matrix. Because the rank of K̃ is
M � N , we can compute ln |CN | and C−1N efficiently with
the cost of O(M2N) via the matrix inversion and determi-
nant lemmas. Even with the use of the matrix inverse lemma
for the low-rank computation, a naive calculation would be
very costly. We apply identities from computational linear al-
gebra [Minka, 2001; de Leeuw, 2007] to simplify the needed
computation dramatically.

To compute the derivative with respect to B, we first notice
that, when w is fixed, we have

CN = K̃ + σ2I = KXBKBB
−1KBX + σ2I (10)

where KXB is the cross-covariance matrix between the train-
ing data X and the inducing inputs B, and KBB is the covari-
ance matrix on B.

For the ARD squared exponential kernel, utilizing the fol-
lowing identities, tr(PTQ) = vec(P)Tvec(Q) and vec(P ◦
Q) = diag(vec(P))vec(Q), where vec(·) vectorizes a matrix
into a column vector, and ◦ represents the Hadamard product,
we can derive the derivative of the first trace term in (9)

tr(C−1
N dCN )

dB
= 4RXTdiag(η)− 4(R11T) ◦ (BTdiag(η))

− 4SBTdiag(η) + 4(S11T) ◦ (BTdiag(η)) (11)

where 1 is a column vector of all ones, and

R = (KBB
−1KBXC−1N ) ◦KBX (12)

S = (KBB
−1KBXC−1N KXBKBB

−1) ◦KBB (13)

Note that we can compute KBXC−1N efficiently via low-rank
updates. Also, R11T (S11T) can be implemented efficiently
by first summing over the columns of S (R) and then copying
it multiple times—without any multiplication operation. To

obtain tr(C−1
N yyTC−1

N dCN )

dB , we simply replace C−1N in (12)
and (13) by C−1N yyTC−1N .

Using similar derivations, we can obtain the derivatives
with respect to the lengthscale η, a0 and σ2 respectively.

To compute the derivative with respect to w, we can use
the formula tr(Pdiag(w)Q) = 1T(QT ◦ P)w to obtain the
two trace terms in (9) as follows:

tr(C−1
N dCN )

dw
= 1T(Φ ◦ (C−1

N Φ)) (14)

tr(C−1
N yyTC−1

N dCN )

dw
= 1T(Φ ◦ (C−1

N yyTC−1
N Φ)) (15)

For either sequential or joint optimization, the overall com-
putational complexity is O(max(M2, D)N) where D is the
data dimension.

5 Related Work

Our work is closely related to the seminal work by [Williams
and Seeger, 2001], but they differ in multiple aspects. First,
we define a valid probabilistic model based on an eigen-
decomposition of the GP prior. By contrast, the previous
approach [Williams and Seeger, 2001] aims at a low-rank
approximation to the finite covariance/kernel matrix used in
GP training—from a numerical approximation perspective—
and its predictive distribution is not well-formed in a prob-
abilistic framework (e.g., it may give a negative variance
of the predictive distribution.). Second, while the Nyström
method simply uses the first few eigenvectors, we maximize
the model marginal likelihood to adjust their weights in the
covariance function. Third, exploring the clustering property
of the eigenfunctions of the Gaussian kernel, our approach
can conduct semi-supervised learning, while the previous one
cannot. The semi-supervised learning capability of EigenGP
is investigated in another paper of us. Fourth, the Nyström
method lacks a principled way to learn model hyperparam-
eters including the kernel width and the basis points while
EigenGP does not.

Our work is also related to methods that use kernel princi-
ple component analysis (PCA) to speed up kernel machines
[Hoegaerts et al., 2005]. However, for these methods it can be
difficult—if not impossible—to learn important hyperparam-
eters including kernel width for each dimension and inducing
inputs (not a subset of the training samples). By contrast,
EigenGP learns all these hyperparameters from data based on
gradients of the model marginal likelihood.

6 Experimental Results

In this section, we compare EigenGP2 and alternative meth-
ods on synthetic and real benchmark datasets. The alternative
methods include the sparse GP methods—FITC, SSGP, and
the Nyström method—as well as RVMs. We implemented
the Nyström method ourselves and downloaded the software
implementations for the other methods from their authors’
websites. For RVMs, we used the fast fixed point algorithm
[Faul and Tipping, 2001]. We used the ARD kernel for all the
methods except RVMs (since they do not estimate the length-
scales in this kernel) and optimized all the hyperparameters
via evidence maximization. For RVMs, we chose the squared
exponential kernel with the same lengthscale for all the di-
mensions and applied a 10-fold cross-validation on the train-
ing data to select the lengthscale. On large real data, we used
the values of η, a0, and σ2 learned from the full GP on a
subset that was 1/10 of the training data to initialize all the
methods except RVMs. For the rest configurations, we used
the default setting of the downloaded software packages. For
our own model, we denote the versions with sequential and
joint optimization as EigenGP and EigenGP*, respectively.
To evaluate the test performance of each method, we measure
the Normalized Mean Square Error (NMSE) and the Mean

2The implementation is available at: https://github.com/hao-
peng/EigenGP
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Negative Log Probability (MNLP), defined as:

NMSE =
∑
i(yi − µi)2/

∑
i(µi − ȳ)2 (16)

MNLP = 1
2N

∑
i[(

yi−µi

σi
)2 + lnσ2

i + ln 2π] (17)

where yi, µi and σ2
i are the response value, the predictive

mean and variance for the i-th test point respectively, and ȳ is
the average response value of the training data.

6.1 Approximation Quality on Synthetic Data

(a) Nyström (b) SSGP
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(c) FITC (d) EigenGP
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Figure 2: Predictions of four sparse GP methods. Pink dots
represent training data; blue curves are predictive means; red
curves are two standard deviations above and below the mean
curves, and the black crosses indicate the inducing inputs.

As in Section 3.1, we use the synthetic data from the FITC
paper for the comparative study. To let all the methods have
the same computational complexity, we set the number of in-
ducing inputs M = 7. The results are summarized in Fig-
ure 2. For the Nyström method, we used the kernel width
learned from the full GP and applied K-means to choose the
basis locations [Zhang et al., 2008]. Figure 2(a) shows that it
does not fit well. Figure 2(b) demonstrates that the prediction
of SSGP oscillates outside the range of the training samples,
probably due to the fact that the sinusoidal components are
global and span the whole data range (increasing the number
of basis functions would improve SSGP’s predictive perfor-
mance, but increase the computational cost.). As shown by
Figure 2(c), FITC fails to capture the turns of the data accu-
rately for x near 4 while EigenGP can.

Using the full GP predictive mean as the label for x ∈
[−1, 7] (we do not have the true y values in the test data),
we compute the NMSE and MNLP of all the methods. The
average results from 10 runs are reported in Table 1 (dataset
1). We have the results from two versions of the Nyström
method. For the first version, the kernel width is learned from
the full GP and the basis locations are chosen by K-means as
before; for the second version, denoted as Nyström*, its hy-
perparameters are learned by evidence maximization. Note

Table 1: NMSE and MNLP on synthetic data

NMSE
Method dataset 1 dataset 2
Nyström 39± 18 1526± 769

Nyström* 2.41± 0.53 2721± 370
FITC 0.02± 0.005 0.50± 0.04
SSGP 0.54± 0.01 0.22± 0.05

EigenGP 0.006± 0.001 0.06± 0.02
EigenGP∗ 0.009± 0.002 0.06± 0.02

MNLP
Method dataset 1 dataset 2
Nyström 645± 56 2561± 1617

Nyström* 7.39± 1.66 40± 5
FITC −0.07± 0.01 0.88± 0.05
SSGP 1.22± 0.03 0.87± 0.09

EigenGP −0.33± 0.00 0.40± 0.07
EigenGP∗ −0.31± 0.01 0.44± 0.07

that the evidence maximization algorithm for the Nyström ap-
proximation is novel too—developed by us for the compara-
tive analysis. Table 1 shows that both EigenGP and EigenGP*
approximate the mean of the full GP model more accurately
than the other methods, in particular, several orders of mag-
nitude better than the Nyström method.

Furthermore, we add the difference term (7) into the ker-
nel function and denote this version of our algorithm as
EigenGP+. It gives better predictive variance when far from
the training data but its predictive mean is slightly worse than
the version without this term (7); the NMSE and MNLP of
EigenGP+ are 0.014± 0.001 and −0.081± 0.004. Thus, on
the other datasets, we only use the versions without this term
(EigenGP and EigenGP∗) for their simplicity and effective-
ness. We also examine the performance of all these methods
with a higher computational complexity. Specifically, we set
M = 10. Again, both versions of the Nyström method give
poor predictive distributions. And SSGP still leads to extra
wavy patterns outside the training data. FITC, EigenGP and
EigenGP+ give good predictions. Again, EigenGP+ gives
better predictive variance when far from the training data ,
but with a similar predictive mean as EigenGP.

Finally, we compare the RVM with EigenGP* on this
dataset. While the RVM gives NMSE = 0.048 in 2.0 seconds,
EigenGP* achieves NMSE = 0.039 ± 0.017 in 0.33 ± 0.04
second with M = 30 (EigenGP performs similarly), both
faster and more accurate.

6.2 Prediction Quality on Nonstationary Data
We then compare all the sparse GP methods on an one-
dimensional nonstationary synthetic dataset with 200 train-
ing and 500 test samples. The underlying function is f(x) =
x sin(x3) where x ∈ (0, 3) and the standard deviation of the
white noise is 0.5. This function is nonstationary in the sense
that its frequency and amplitude increase when x increases
from 0. We randomly generated the data 10 times and set the
number of basis points (functions) to be 14 for all the com-
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(a) SSGP (b) FITC (c) EigenGP
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Figure 3: Predictions on nonstationary data. The pink dots correspond to noisy data around the true function f(x) = x sin(x3),
represented by the green curves. The blue and red solid curves correspond to the predictive means and± two standard deviations
around the means. The black crosses near the bottom represent the estimated basis points for FITC and EigenGP.

petitive methods. Using the true function value as the label,
we compute the means and the standard errors of NMSE and
MNLP as in Table 1 (dataset 2). For the Nyström method, the
marginal likelihood optimization leads to much smaller error
than the K-means based approach. However, both of them
fare poorly when compared with the alternative methods. Ta-
ble 1 also shows that EigenGP and EigenGP∗ achieve a strik-
ing ∼25,000 fold error reduction compared with Nyström*,
and a ∼10-fold error reduction compared with the second
best method, SSGP. RVMs gave NMSE 0.0111±0.0004 with
1.4 ± 0.05 seconds, averaged over 10 runs, while the results
of EigenGP* with M = 50 are NMSE 0.0110± 0.0006 with
0.89± 0.1042 seconds (EigenGP gives similar results).

We further illustrate the predictive mean and standard de-
viation on a typical run in Figure 3. As shown in Figure 3(a),
the predictive mean of SSGP contains reasonable high fre-
quency components for x ∈ (2, 3) but, as a stationary GP
model, these high frequency components give extra wavy pat-
terns in the left region of x. In addition, the predictive mean
on the right is smaller than the true one, probably affected
by the small dynamic range of the data on the left. Figure
3(b) shows that the predictive mean of FITC at x ∈ (2, 3)
has lower frequency and smaller amplitude than the true
function—perhaps influenced by the low-frequency part on
the left x ∈ (0, 2). Actually because of the low-frequency
part, FITC learns a large kernel width η; the average kernel
width learned over the 10 runs is 207.75. This large value af-
fects the quality of learned basis points (e.g., lacking of basis
points for the high frequency region on the right). By con-
trast, using the same initial kernel width as FITC, EigenGP
learns a suitable kernel width—on average, η = 0.07—and
provides good predictions as shown in Figure 3(c).

6.3 Accuracy vs. Time on Real Data
To evaluate the trade-off between prediction accuracy and
computational cost, we use three large real datasets. The first
dataset is California Housing [Pace and Barry, 1997]. We
randomly split the 8 dimensional data into 10,000 training
and 10,640 test points. The second dataset is Physicochem-
ical Properties of Protein Tertiary Structures (PPPTS) which
can be obtained from Lichman [2013]. We randomly split
the 9 dimensional data into 20,000 training and 25,730 test
points. The third dataset is Pole Telecomm that was used in
Làzaro-Gredilla et al. [2010]. It contains 10,000 training

and 5000 test samples, each of which has 26 features. We
set M = 25, 50, 100, 200, 400, and the maximum number of
iterations in optimization to be 100 for all methods.

The NMSE, MNLP and the training time of these meth-
ods are shown in Figure 4. In addition, we ran the
Nyström method based on the marginal likelihood maxi-
mization, which is better than using K-means to set the ba-
sis points. Again, the Nyström method performed orders
of magnitude worse than the other methods: with M =
25, 50, 100, 200, 400, on California Housing, the Nyström
method uses 146, 183, 230, 359 and 751 seconds for train-
ing, respectively, and gives the NMSE 917, 120, 103, 317,
and 95; on PPPTS, the training times are 258, 304, 415, 853
and 2001 seconds and the NMSEs are 1.7 × 105, 6.4 × 104,
1.3× 104, 8.1× 103, and 8.1× 103; and on Pole Telecomm,
the training times are 179, 205, 267, 478, and 959 seconds
and the NMSEs are 2.3×104, 5.8×103, 3.8×103, 4.5×102

and 84. The MNLPs are consistently large, and are omitted
here for simplicity.

For RVMs, we include cross-validation in its training time
because choosing an appropriate kernel width is crucial for
RVM. Since RVM learns the number of basis functions auto-
matically from the data, in Figure 4 it shows a single result for
each dataset. EigenGP achieves the lowest prediction error
using shorter time. Compared with EigenGP based on the se-
quential optimization, EigenGP∗ achieves similar errors, but
takes longer because the joint optimization is more expensive.

7 Conclusions
In this paper we have presented a simple yet effective sparse
Gaussian process method, EigenGP, and applied it to regres-
sion. Despite its similarity to the Nyström method, EigenGP
can improve its prediction quality by several orders of mag-
nitude. EigenGP can be easily extended to conduct online
learning by either using stochastic gradient descent to update
the weights of the eigenfunctions or applying the online VB
idea for GPs [Hensman et al., 2013].
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Figure 4: NMSE and MNLP vs. training time. Each meth-
od (except RVMs) has five results associated with M =
25, 50, 100, 200, 400, respectively. In (c), the fifth result of
FITC is out of the range; the actual training time is 3485 sec-
onds, the NMSE 0.033, and the MNLP −1.27. The values of
MNLP for RVMs are 1.30, 1.25 and 0.95, respectively.
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