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Abstract

Clustering has been one of the most critical unsu-
pervised learning techniques that has been widely
applied in data mining problems. As one of its
branches, graph clustering enjoys its popularity due
to its appealing performance and strong theoretical
supports. However, the eigen-decomposition prob-
lems involved are computationally expensive. In
this paper, we propose a deep structure with a lin-
ear coder as the building block for fast graph clus-
tering, called Deep Linear Coding (DLC). Differ-
ent from conventional coding schemes, we jointly
learn the feature transform function and discrimi-
native codings, and guarantee that the learned codes
are robust in spite of local distortions. In addition,
we use the proposed linear coders as the building
blocks to formulate a deep structure to further re-
fine features in a layerwise fashion. Extensive ex-
periments on clustering tasks demonstrate that our
method performs well in terms of both time com-
plexity and clustering accuracy. On a large-scale
benchmark dataset (580K), our method runs 1500
times faster than the original spectral clustering.

1 Introduction

Clustering algorithms [Jain et al., 1999] have been widely
applied in Al problems: pattern recognition, computer vi-
sion, information retrieval, bioinformatics. Like other un-
supervised learning algorithms [Barlow, 1989], it is purely
data-driven, and therefore, requests least supervised knowl-
edge. There are a wide variety of clustering methods that
target at different problems or application scenarios [Jain et
al., 1999]. The most popular ones are K-means [Hartigan
and Wong, 1979] and spectral clustering [Ng er al., 2002;
Von Luxburg, 2007]. K-means keeps updating the cluster
centers by current cluster assignments and then updating the
assignments by the nearest neighbor rule. Although it only
ends up with local solutions, its fast implementation makes it
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a fundamental tool in data analysis. However, K-means suf-
fers from strong assumptions on the data, and local optimum.

Differently, spectral clustering has a solid theoretical foun-
dation [Chung, 1997], and is able to reach a global solu-
tion. Besides, it has close relations with other methods such
as graph cut [Shi and Malik, 2000], random walk [Meila
and Shi, 2001], and thus is more intuitive and understand-
able. In addition, the non-parametric property and many fast
implementations make it very suitable for large-scale data
analysis under complex distributions [Fowlkes et al., 2004].
However, the time-consuming graph construction and eigen-
decomposition make it still inferior to K-means in terms of
speed. Note there are also variations of K-means such as ker-
nel K-means that can identify non-linear structure; however,
they are proved equal to spectral clustering under mild condi-
tions [Dhillon et al., 2004].

Recently, deep structure has been widely applied in learn-
ing problems [Hinton et al., 2006; Bengio, 2009] as it can
extract better representations for learning tasks [Bengio et
al., 2013]. Tt is especially useful for clustering tasks since
it can disentangle explanatory factors in a low-dimensional
non-linear feature space in unsupervised fashion. In addition,
the greedy layerwise training strategy [Bengio et al., 2007]
and improvement of computing hardware make the fast im-
plementation of deep methods possible [Dean et al., 2012].
Notably, there are a few deep methods proposed recently
for clustering tasks [Song et al., 2013; Huang er al., 2014;
Tian et al., 2014]. In this paper, we propose a novel Deep Lin-
ear Coding (DLC) scheme for fast data clustering. Inspired
by the common objective of K-means and spectral cluster-
ing methods, we jointly learn a linear feature transform and
codings for the test data under single-layer marginalized de-
noising autoencoder framework, which can minimize the re-
construction error of the data/similarity graph. In addition,
we propose to refine the learned representations by feeding
them to the next layers and repeat the joint learning proce-
dure. Experimental results on clustering tasks demonstrate
the superiority of our method in terms of speed and accuracy.

2 Related Work

Spectral clustering utilizes both pairwise similarity graph and
spectral theory to cut the graph with the minimal loss, and
therefore is usually referred as graph clustering. The advan-
tage over conventional K-means is the locality awareness due



to the non-parametric formulation of graph. In the original
formulation of spectral clustering, a pairwise sparse graph is
built first based on the kNN rule, where non-zero values in the
graph are Gaussian similarities between two samples. Then
the graph is normalized and its first several smallest eigen-
vectors’s row space is considered as the new representations
in the embedding space. Finally K-means is implemented on
the new representations. Although it can identify the Non-
Gaussian data distributions, the graph construction and fol-
lowed eigen-decomposition are not cheap, which have the
time complexity of O(kn?) and O(n?), respectively, where
k is the number of neighbors, and n is the number of sam-
ples.

A straightforward way to speed up the problem above
is to exploit fast kNN implementation and sparse eigen-
decomposition [Chen er al., 2011]. Differently, Nystrom
method [Fowlkes et al., 2004] samples a few data, and builds
a dense graph containing the connections only between sam-
pled data and all data. Then eigenvectors of the original graph
can be approximated by this substantially small graph. Re-
cently, landmarks based methods either build a landmarks-
only graph [Yan et al., 2009] or a factor matrix of the orig-
inal graph [Chen and Cai, 2011], and significantly save the
running time of eigen-decomposition. However, none of
them can get rid of eigen-decomposition, and some of them
may even sacrifice certain performance due to the approxima-
tion operations [Yan er al., 2009]. Different from them, our
method enjoys the formulation of spectral clustering, but ex-
cludes the time-consuming eigen-decomposition operations.

Recently, deep learning methods have been applied on data
clustering. One of the pioneer work adds the pairwise con-
straint between data samples and current affiliated centers to
the loss function of the deep autoencoders [Song et al., 2013].
A more recent work uses the deep sparse autoencoders to ex-
plore the representations of the normalized similarity graph,
and proves that the deep model works similarly to the spec-
tral clustering on the graph reconstruction [Tian et al., 2014].
Finally, both locality constraint and group sparsity are intro-
duced to RBMs for the purpose of clustering [Huang er al.,
2014]. However, all these methods do not explicitly consider
the efficiency, especially for large-scale data. Thus, they may
suffer from extremely long running time in practice.

3 Methodology

3.1 Background and Motivations

The common idea of K-means and spectral methods is to re-
construct the data/graph and use the indicator vector/matrix
of the reconstruction as the new feature for clustering:

min || X — (3, A)[[%, (D)
where X is the data samples (K-means) or normalized affinity
graph (spectral clustering), ® is the reconstruction function,
> is approximate cluster centers (K-means), or singular val-
ues diagonal matrix (spectral clustering), and A is the indica-
tor vector/matrix. In K-means, the objective function essen-
tially minimize the average square distance between samples
and their affiliated center, where indicators play the roles of
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reconstruction coefficients. On the other hand, spectral clus-
tering manages to find a low-rank approximation of the nor-
malized affinity graph, and the eigenvectors are the indicators.

In our model, we also propose to find a new representation
of the data with minimal reconstruction loss that can be used
as the indicators for clustering. Recently, linear coding has
been widely used in high level feature extraction and data rep-
resentation [Lee ef al., 2006; Yang et al., 2009]. Specifically,
it has been adapted in the decomposition of affinity graph for
fast spectral clustering [Chen and Cai, 2011]. Typically, the
objective function of linear coding aims at minimizing the
following reconstruction loss:

. 2

min [[X — DA + 2(A), 2)
where D is the dictionary, A is the learned codes, and Z(A)
is a regularizer that encourages small magnitude or sparse
solutions of A. A popular choice of Z(A) is I; norm that
induces sparsity on the feature vectors. However, for data
clustering, especially large-scale problems, the weakness is
obvious: 1) the solution to Eq. (2) is computationally expen-
sive due to the non-smooth property of the objective function;
2) the sparse kernel approximation introduced in [Chen and
Cai, 2011] trades the approximation accuracy for speed.

In the proposed model, we manage to address the two prob-
lems above, and provide a fast coding scheme appropriate for
large-scale data clustering. We introduce a linear transform
matrix W for the coding part to compensate for the large re-
construction loss between X and DA due to the induced spar-
sity. In addition, our method is still able to provide low-rank
approximation of the affinity graph without time consuming
eigen-decomposition, which significantly saves running time.
Next, we detail the single-layer linear coding scheme.

3.2 Method Details

Given a set of data X € R?X", where d is the dimensionality
of the data and n is the number of data samples, the proposed
Single-layer Linear Coding (SLC) scheme can be written as:

. _ 2 2
%}RHX WDA(z + A[All%, 3)

where W € R4 ig the linear transform function, D €
RI*X™ ig the dictionary, A € R™*" is the codes for dataset
X, A is the weight of the regularizer, and in most cases
n > m,n > d. In our problem, D is also referred as a set
of m landmarks, and fixed during the optimization. There-
fore, the proposed model manages to solve two variables at
the same time; however, to the best of our knowledge, such
problem does not have a closed-form solution. In fact, the
objective in Eq. (3) is convex in either W or A, but not in
both. Therefore, we resort to an iterative solution that is able
to solve one unknown variable at a time by fixing the other.
First, suppose we have already obtained a dictionary D and
corresponding codes A for each data sample in X, then the
original SLC model is converted to:
min || X — WX|%, )
where X = DA represents the reconstructed data samples
through learned dictionary and codes. Intuitively, Eq. (4)



Input: Dataset X, number of landmarks m, number of
nearest neighbor k, threshold e.

Output: Codes A for X

Find m landmarks of X by K-means, and assign to D.

Compute the sparse codings by kernel approximations:

[Ali;(1<i<m,1<j<n) =200 x, s

within the first k£ nearest neighbors of x; in D,

x; € {x,}, and ¢(-, -) is the Gaussian kernel with

bandwidth o.

fort=1to1 do

(S

w

4 Fix dictionary D and codes A, and update linear
transform W by Eq. (4).
5 Fix linear transform W and dictionary D, and

update codes A by Eq. (6).
6 If |X — WDA||2F < €, terminate the algorithm.
7 end

Algorithm 1: Algorithm of Single-layer Linear Coding.

manages to find a linear transform (rotation) by which the re-
constructed data X can match the original data, despite of the
limit basis in D and sparse coefficients from A. Obviously,
this problem can be converted to ordinary least square prob-
lems [Hastie et al., 2009] with closed-form solutions as:

W =PQ 'whereP = XXT,Q = XX, 5)

Second, since we have already found the linear transform
‘W, we could achieve the new representation of the dictionary

D = WD and update the coding in the following way:
. = |2 2
mAHHX_DAHF—’_)\”A”F’ (6)

which is essentially a ridge regression problem, with A as the
balancing parameter. The closed-form solution for this prob-
lem is:

A=D'D+A)'D'X, (7

where I is a m x m identity matrix. The introduced regu-
larizer is able to suppress arbitrarily large coefficients in A
and avoid over-fitting. The updated coding and dictionary
can be used again to learn the new linear transform. We name
this algorithm as Single-layer Linear Coding (SLC), which is
summarized in Algorithm 1.

3.3 Relations to Existing Methods

Marginalized Denoising Autoencoder

People might be curious why the proposed SLC model is ap-
propriate for feature learning and data clustering. Here we
elaborate a few connections with existing methods, and there-
fore highlight the advantage of SLC.

Recall in the first step of SLC algorithm, we solve Eq. (4)
to find a linear transform, which is able to reconstruct the
original input by perturbed samples DA. This is essen-
tially a single-layer denoising autoencoder using DA as the
corrupted data. Arbitrary noises can not guarantee a stable
performance, but in general, more reasonable noisy samples

yield a much better result. However, this will add tremendous
computational burden when the noisy patterns go to infinity.

Recently, a marginalized denoising autoencoder has been
proposed to solve the computation problem above [Chen et
al., 2012]. Instead of exhaustedly sampling contaminated
data, they compute the empirical expectation over the orig-
inal data X, and find the linear transform in the following
way:

W = E[P]E[Q] ", where
E[P] = 2:)(1)(1T ® Ap,E[Q] = Zx,;xiT ® Aq, ®)

where Ap (Aq) is d x d matrix encoding joint survival ratios
of two single features from x; and x; (both from X;), and ® is
the element-wise multiplication. Although the proposed SLC
does not explicitly model the marginalization procedure, the
following the theorem demonstrates that SLC is also a single-
layer marginalized denoising autoencoder:

Theorem 1 Problem stated in Eq. (4) is a single-layer
marginalized denoising autoencoder, where factor matrix Q
is the empirical expectation of the covariance matrix of land-
marks up to a constant ¢, and P is the empirical expectation
of the covariance matrix of landmarks up to a constant cW.

Proof. For Q we can easily check that

Q = DAA_ATDT = ZDaiaiTDT ~ CE[DDT], (9)

where a; is the i-th column vector in A, and c¢ is a constant
compensating for different column sizes between D and DA..
Similar to Eq. (8), Eq. (9) is the empirical expectation of
DD ' with AAT encoding the joint survival probability of
every two features. Different from Eq. (8) that uses different
survival probability for features from the same data sample,
a; assigns the same probability to all features from a single
data sample. For P we have the following deductions:

P=XA'D' =WDAA'D" ~¢cWEDD'], (10)

where we take advantage of the fact that X ~ WDA in the
inner loop of Algorithm 1. Similar to Q, P is the empirical
expectation of covariance matrix of D up to a constant factor
matrix cW. This completes the proof. O

Spectral Clustering

From the reconstruction point of view, spectral clustering at-
tempts to minimize the following graph approximation loss
with a low-rank constraint:

min |G — G|, s.t. rank(G) < 7, (11)
G

where G is the approximate graph, r is a predefined matrix
rank. According to Eckart-Young-Mirsky theorem [Eckart
and Young, 1936], its solution is G = UXUT, where
U € R™7 are the first  eigenvectors of graph G, and X
is a matrix with corresponding eigenvalues on the diagonal.
Recall the loss function in Eq. (3), we also try to minimize the
reconstruction error, but on the original data X. Next propo-
sition shows that the proposed SLC also seeks a low-rank ap-
proximation of the linear similarity graph X T X € R"*",
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Proposition 1 The objective function in Eq. (3) seeks for
a low-rank approximation of linear similarity graph XX
in the sense of X X ~ ATSA, and rank(ATEA) <
min{m, d,n}, where X = DT WTWD.

We can see that the solution of SLC is also a low-rank approx-
imation of linear kernel similarity graph X "X, and its rank
depends on the values of m, d and n. In most cases, n is the
largest one, especially in the large-scale case. Therefore, SLC
essentially provides a rank (< min{d, m}) approximation of
X "X, which works in a similar way as spectral clustering.

3.4 Deep Layerwise Feature Learning

Recent works on representation learning take advantage of
deep structure to build discriminative features [Bengio et al.,
2013]. They usually use RBMs or autoencoders as the basic
building blocks to learn a deep structure, and employ greedy
layerwise training to obtain a better initializations for fine tun-
ing. Finally either hidden layers or supervised layer on top
will be used for classification tasks. The insight behind is
deep structure can gradually refine the features from coarse
to fine, and layerwise training helps to find better local solu-
tions for the non-convex objective [Bengio et al., 2007].

In the proposed SLC model, features can be refined in a
similar layerwise way, meaning the learned features A can
be considered as the input features of the second layer, and
is able to build new landmarks. Suppose the [-th layer’s
coding is A;, dictionary is D;, and linear transform is Wy,
then we first update the dictionary in the (I + 1)-th layer
by D;1; = K-means(A;). Second, we solve W; ; by
Wi = Yw(Dig1,A;), where Uy indicates Eq. (5).
Finally, we update the (I + 1)-th layer’s coding A;y; =
WA (Wii1,Diq1,A)), where U 5 indicates Eq. (7). We sum-
marize such layerwise feature learning procedure in Algo-
rithm 2, and name it Deep Linear Coding (DLC) in this paper.

Input: Dataset X, and the number of clusters.
Output: Codes A for dataset X, and cluster labels of
each sample.

1 for/ =1to L do

2 Use Algorithm 1 to learn Wy, D; and codes A;

3 Set Xl+1 =A;

4 end

5 Run K-means on the column space of A ;,, and obtain the
cluster labels.

Algorithm 2: Algorithm of Deep Linear Coding (DLC).

3.5 Time Complexity

The time cost of DLC mainly includes four parts:
1. Find landmarks D through K-means,
2. Find k nearest neighbors from D for each sample,
3. Solve the ordinary least square problem in Eq. (4),
4. Solve the ridge regression problem in Eq. (6).

3801

Table 1: Dataset details.

[ Name [[ Type [ #Samples [ #Features | #Classes |
Corel Image 2074 144 18
Coil20 Object 1440 1024 20
YaleB Face 5850 1200 10
Pendigit Number 10992 16 10
Letter Letter 15000 16 26
Mnist Number 70000 784 10
Covtype || Scientific 581012 54 7

First, K-means usually takes time of O(sdmn), where s is
the number of iterations of K-means. In our experiments, we
found that a small number of iterations, e.g., 10, will provide
good results. Therefore, it is less expensive compared to con-
ventional K-means algorithms for clustering purpose. Sec-
ond, the brute-force way of kNN search usually takes time of
O(kmn); however, many off-the-shelf algorithms can sub-
stantially speedup this process, €.g., FLANN library [Muja
and Lowe, 2014]. Third, the ordinary least square problem
includes a few matrix multiplications, and a matrix inverse
operation, and the total running time is O(d?(d + n)). Fi-
nally, similar to the last step, the time complexity of ridge
regression is O(m(2md + m? + dn)). Therefore, the total
time complexity for SLC is approximately equal to:

tsie = O(T(mn(d + sd + k) + d*n)), (12)

where T is the number of iterations in SLC. Then, total time
cost of DLC is: Ltg ¢, where L is the number of layers.

4 Experimental Results

In this section, we evaluate the proposed DLC method
through data clustering on seven benchmark datasets in terms
of both accuracy and running time. Dataset details are listed
in Table 1.

4.1 Datasets and Configurations

Corel The dataset has been widely used in computer vision
and image processing. We use its subset from [Chen et al.,
2011] as our test, where 2074 images, 144 features including
shape, texture, color, are chosen for evaluations.

Coil20 An object image database with 20 different objects.
Each of them has 72 images under different view point, with
5 degree as the interval. All images are resized to 32 x 32 pix-
els and we use the raw pixels as our features.

YaleB This database is popular in face recognition algorithms
evaluations, including 38 people, 64 lighting conditions, and
9 poses. A subset of 10 people, 5850 faces are adopted for
data clustering. 1200 features are extracted for each image.
Pendigit This is a handwritten digit data set including 10992
samples from 44 writers. A sampled coordination informa-
tion (16 features) is taken for the feature.

Letter The dataset consists of 26 capital letters in the En-
glish alphabet and 16 character image features are selected
for clustering task.

Mnist Another handwritten digits benchmark dataset widely
used in clustering evaluations. We use raw pixels including
784 features in the evaluations.



Table 2: Comparisons with fast spectral clustering methods
on accuracy. “Ours-L1” means the SLC method and “Ours-
L2” means a two-layer DLC.

[ Acc(%) | Corel [ Pendigit [ Letter [ Mnist [ Covtype |

Spectral 37.62 76.55 31.04 | 72.46 44.24
Nystrom || 36.89 73.94 30.11 | 53.70 22.31
KASP 34.32 72.47 29.49 | 56.51 2242
LSC-K 35.48 79.27 30.33 | 67.04 25.50
Ours-L1 || 39.41 79.34 3398 | 65.34 43.11
Ours-L2 || 40.28 80.18 35.15 | 66.48 44.19

Table 3: Comparisons with deep clustering methods on accu-
racy(%), NMI, and running time(s).

COIL20 YaleB
Method e T"NMT | Time | Acc [ NMI | Time
AEC ][ 70.83 [ 0.845 [ 8.78 [ 90.20 [ 0.923 | 40.84
LDR || 69.44 | 0.791 | 527 | 79.49 | 0.901 | 29.65
DEN || 7240 | 0870 | - | 8173 | 0920 | -
Ours-L1 || 71.04 | 0.853 | 031 | 92.17 | 0.924 | 2.39
Ours-L2 || 73.61 | 0.884 | 0.64 | 94.47 | 0.941 | 4.2

Covtype A large scale scientific dataset containing carto-
graphic variables for predicting forest cover type. Each sam-
ple has 54 attributes, and in total there are over 580k samples.

Note for all datasets, each data sample is normalized to
have unit length. We set the number of neighbors in ANN
search at 5, and the number of landmarks in the first and sec-
ond layers at 1000 unless otherwise specified. In addition,
we set both the balancing parameter A and Gaussian kernel
bandwidth o at 1. To balance the performance and speed,
the number of iterations in each layer is set to 7" = 5. In
all tests, we run our algorithm 20 times, and average results
are reported. For all compared methods, we strictly follow
their recommended configurations. Finally, we introduce two
performance measurement in our evaluations: clustering ac-
curacy and normalized mutual information (NMI).

Clustering accuracy is the average performance of label
matching results between resulted labels and ground truth la-
bels, which can formulated as: ) . (y; == f(I;))/n, where
f is a mapping function that maps category label to different
cluster labels. Since clustering is an unsupervised process,
we need f to work as a permutation operation, and maximize
this fraction as the final clustering accuracy.

Normalized mutual information (NMI) measures the
mutual information entropy between resulted cluster labels
and ground truth labels, followed by a normalization opera-
tion which guarantees that NMI ranges from O to 1. Mathe-
matically, it can be written as:

> Zj n;,; log( nin )
V/(Zimilog 2)(5, m; log 32)

where n; and n; denotes the number of data in cluster 4 and
category j, and n; ; denotes the number of data in both clus-
ter ¢ and category j. Therefore, if the data are randomly par-
titioned, NMI is inclined to 0.

meng j

NMI = 13)

)
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Table 4: Comparisons with fast spectral clustering methods
on running time. ‘“Ours-L1” means the SLC method and
“Ours-L2” means a two-layer DLC.

[ Time(s) [[ Corel | Pendigit [ Letter [ Mnist [ Covtype |

Spectral 2.12 60.48 195.63 | 36549 | 1.8x10°
Nystrom 1.05 11.49 24.43 48.88 258.25
KASP 1.12 22.15 66.65 | 416.66 | 360.07
LSC-K 1.27 28.58 61.59 | 468.17 | 615.84
Ours-L1 0.78 3.11 4.64 17.41 80.2
Ours-L2 1.26 6.83 8.39 28.62 116.1

4.2 Experimental Results

Comparisons with Spectral Methods
First, we compare our method with state-of-the-art graph
clustering methods, as ours enjoys the similar formulation of
these methods; however, the linear coding scheme is able to
significantly speed up the process. We compare with the fol-
lowing methods in the experiments:
Spectral Original spectral clustering method with Gaussian
similarity kernel. Sparse kNN graph is used for graph con-
struction, and k is set to a small number, following the con-
ventional configuration [Von Luxburg, 2007].
KASP A divide and conquer based fast spectral clustering
method proposed in [Yan et al., 2009], which uses K-means
for landmarks. For efficiency and a fair comparison, we take
a Matlab implementation of the multi-way partition version
in the evaluations.
Nystrom It uses sampled data to approximate the original
graph, and the eigen-decomposition, which saves substantial
time. We choose the Matlab implementation with orthogo-
nalization as our evaluation method [Chen ef al., 2011].
LSC-K Landmark-based spectral clustering using K-means
for landmark-selection [Chen and Cai, 2011]. It takes advan-
tage of graph factorization for fast eigen-decomposition.
Results from Table 2 and 4 demonstrate that our method
provides comparable accuracy (Pendigit, Mnist, Covtype) or
even better accuracy (Corel, Letter) with reduced running
time. The advantage of our method lies in the flexible feature
dimensions and linear coding scheme instead of time con-
suming eigen-decomposition. Specifically, the relative high
dimension features fed to K-means in the last step are favored
by the natural scene/color images. However, in most of fast
implementations of spectral methods, the final feature dimen-
sions for K-means usually depend on the number of clusters.
In addition, the linear coding scheme substantially reduces
the time complexity and makes large-scale clustering easy.
Compared to the original spectral clustering, our method is
1500 times faster, and compared to Nystrom, ours only needs
less than half of its running time, but with large improvement.

Comparisons with Deep Methods

Second, since our method also utilizes the deep structure
to further refine the representation for clustering tasks, we
compare with the most recent state-of-the-art deep clustering
methods. The details of them are listed below:

AEC A deep autoencoder with compactness constraint added
on the top layer, which is specifically tailored for clustering
tasks [Song et al., 2013].
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LDR A deep sparse autoencoder to refine the normalized
affinity graph, followed by a K-means clustering [Tian et al.,
2014]. We evaluate on a Matlab implementation with recom-
mended configurations.

DEN A deep structure with RBM as building blocks, and
takes advantage of locality preserving constraint and group
sparsity for clustering purpose [Huang et al., 2014].

From Table 3, we can see that the proposed method is sig-
nificantly faster than other competitors, while achieves com-
parable performance. The main reason is our method does
not need time-consuming back propagation, pre-training and
fine tuning techniques that are frequently used in the deep
approaches. Admittedly, those learning tricks are critical in
learning deep non-linear features; however they are too ex-
pensive in fast clustering tasks. In addition, the clustering
tasks usually prefer transductive learning fashion, and the in-
ductive model learned from deep methods seems too “heavy”
for the problem.

Model Discussions

There are a few model parameters to be tuned in DLC: num-
ber of landmarks and number of layers in the deep structure.
To find the appropriate settings, we conduct two experiments
by setting one parameter fixed while changing the other.
First, we experiment by Single-layer Linear Coding (SLC)
scheme and vary the number of landmarks from 100 to 1500,
which is shown in Figure 1. In each subfigure, “Layer-1”
means the results of SLC, and the Y-Axis illustrates the clus-
tering accuracy or running time. Apparently, more landmarks
takes more running time, but it also improves the final cluster-
ing performance. Without loss of generality, we set the num-
ber of landmarks in the first layer at 1000, which also provides
acceptable performance, and add the second layer on top to
further refine the feature. In four subfigures, we use “Layer-

(a) Corel. (b) YaleB.

Figure 3: Convergence of the proposed objective function.

2” to indicate such settings. It can be seen that a moderate
number of landmarks leads to better results. Thus, we still set
the number of landmarks in this layer at 1000. Although we
may obtain better results by other settings, the current ones
have already been comparable with existing methods.

Second, we conduct experiments to find out the appropri-
ate number of layers used in DLC. Similar to last experiment,
we set the the number of landmarks in each layer at 1000, and
gradually add the layer of the deep structure. Clustering ac-
curacy results on a few datasets are shown in Figure 2. From
this result, we can conclude that a two-layer DLC is a good
choice in terms of both accuracy and time cost.

Finally, since DLC is iteratively solved in two sub-
problems, and there are no closed-form solutions, we need to
guarantee the objective is monotonously decreased. To this
end, we experiment on Corel and YaleB datasets with SLC
and a two-layer DLC, and show the objective values in differ-
ent iterations in Figure 3. Note in this experiment value in the
X-Axis indicates the number of iterations for both SLC and
DLC. Clearly, the objective values are gradually decreased,
and a deeper model can significantly speed up this process.

5 Conclusions

In this paper, we proposed a novel deep linear coding scheme
for fast graph clustering. Different from previous methods ei-
ther relying on eigen-decomposition or time consuming deep
autoencoders, our method jointly learned a linear transform
and codings at the same time, and utilized deep structure to
further refine the discriminative features. Extensive evalua-
tions on seven benchmark datasets demonstrated the effec-
tiveness of our methods, especially for large-scale data.
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