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Abstract
Many clustering methods highly depend on ex-
tracted features. In this paper, we propose a joint
optimization framework in terms of both feature ex-
traction and discriminative clustering. We utilize
graph regularized sparse codes as the features, and
formulate sparse coding as the constraint for clus-
tering. Two cost functions are developed based on
entropy-minimization and maximum-margin clus-
tering principles, respectively, as the objectives to
be minimized. Solving such a bi-level optimization
mutually reinforces both sparse coding and clus-
tering steps. Experiments on several benchmark
datasets verify remarkable performance improve-
ments led by the proposed joint optimization.

1 Introduction
Clustering [Yang et al., 2014a] plays an important role in
many real world data mining applications. To learn the
hidden patterns of the dataset in an unsupervised way,
existing clustering algorithms can be described as either
generative or discriminative in nature. Generative clustering
algorithms model categories in terms of their geometric
properties in feature spaces, or as statistical processes of
data. Examples include K-means and Gaussian mixture
model (GMM) clustering [Biernacki et al., 2000], which
assume a parametric form of the underlying category dis-
tributions. Discriminative clustering techniques search for
the boundaries or distinctions between categories. With
fewer assumptions being made, these methods are powerful
and flexible in practice. For example, maximum-margin
clustering [Xu et al., 2004], [Xu and Schuurmans, 2005],
[Zhao et al., 2008] aims to find the hyperplane, that can sep-
arate the data from different classes with maximum margins.
Information theoretic clustering [Li et al., 2004], [Barber
and Agakov, 2005] minimize the conditional entropy of all
samples. Many recent discriminative clustering methods
have achievedsatisfactory performances [Zhao et al., 2008].

Moreover, many clustering methods extract discriminative
features from data prior to clustering. The Principal Com-
ponent Analysis (PCA) feature is a common choice but not
necessarily discriminative [Zheng et al., 2011]. In [Roth and

Lange, 2003], the features are selected for optimizing the dis-
criminativity by Linear Discriminant Analysis (LDA). More
recently, sparse codes prove to be both robust to noise and
scalable to high dimensional data [Wright et al., 2009]. Fur-
thermore, `1-graph [Cheng et al., 2010] builds the graph by
reconstructing each data point sparsely and locally with other
data. A spectral clustering [Ng et al., 2002] is followed based
on the constructed graph matrix. In [Sprechmann and Sapiro,
2010], dictionary learning is combined with the clustering
process, which makes the use of Lloyds-type algorithms that
iteratively re-assign data to clusters and then optimize the dic-
tionary associated with each cluster. In [Zheng et al., 2011],
the authors learned the sparse codes that explicitly consider
the local data manifold structures. Their results indicate that
encoding geometrical information will significantly enhance
the learning performance. However, their clustering step is
neither discriminative nor jointly optimized.

In this paper, we propose to jointly optimize feature ex-
traction and discriminative clustering, in which way they mu-
tually reinforce each other. We focus on sparse codes as
the extracted features, and develop our loss functions based
on two representative discriminative clustering methods, the
entropy-minimization [Li et al., 2004] and maximum-margin
[Xu et al., 2004] clustering, respectively. A task-driven bi-
level optimization model [Mairal et al., 2012], [Wang et al.,
2015] is then built upon the proposed framework. The sparse
coding step is formulated as the lower-level constraint, where
a graph regularization is enforced to preserve the local man-
ifold structure [Zheng et al., 2011]. The clustering-oriented
cost functions are considered as the upper-level objectives to
be minimized. Stochastic gradient descent algorithms are de-
veloped to solve both bi-level models. Experiments on sev-
eral popular real datasets verify the noticeable performance
improvement led by such a joint optimization framework.

2 Model Formulation
2.1 Sparse Coding with Graph Regularization
Sparse codes prove to be an effective feature for clustering.
In [Cheng et al., 2010], the authors suggested that the contri-
bution of one sample to the reconstruction of another sample
was a good indicator of similarity between these two sam-
ples. Therefore, the reconstruction coefficients (sparse codes)
can be used to constitute the similarity graph for spectral
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clustering. `1-graph performs sparse representation for each
data point separately without considering the geometric in-
formation and manifold structure of the entire data. Further
research shows that the graph regularized sparse representa-
tions produce superior results in various clustering and clas-
sification tasks [Zheng et al., 2011], [Yang et al., 2014c]. In
this paper, we adopt the graph regularized sparse codes as the
features for clustering.

We assume that all the data samples X =
[x1,x2, · · · ,xn],xi ∈ Rm×1, i = 1, 2, · · · , n, are encoded
into their corresponding sparse codes A = [a1,a2, · · · ,an],
ai ∈ Rp×1, i = 1, 2, · · · , n, using a learned dictionary
D = [d1,d2, · · · ,dp], where di ∈ Rm×1, i = 1, 2, · · · , p
are the learned atoms. Moreover, given a pairwise sim-
ilarity matrix W, the sparse representations that capture
the geometric structure of the data according to the
manifold assumption should minimize the following ob-
jective: 1

2

∑n
i=1

∑n
j=1 Wij ||ai − aj ||22 = Tr(ALAT),

where L is the graph Laplacian matrix constructed from
W. In this paper, W is chosen as the Gaussian Kernel:
Wij = exp(− ||xi−xj ||22

δ2 ), where δ is the controlling
parameter selected by cross-validation.

The graph regularized sparse codes are obtained by solving
the following convex optimization

A = arg minA
1
2 ||X−DA||2F + λ

∑
i ||ai||1

+αTr(ALAT) + λ2||A||2F .
(1)

Note λ2 > 0 is necessary for proving the differentiability of
the objective function (see [7.1] in the Appendix). However,
setting λ2 = 0 proves to work well in practice, and thus the
term λ2||A||2F will be omitted by default hereinafter (except
for the differentiability proof).

Obviously, the effect of sparse codes A largely depends
on the quality of dictionary D. Dictionary learning meth-
ods, such as K-SVD algorithm [Elad and Aharon, 2006], are
widely used in sparse coding literature. In regard to cluster-
ing, the authors in [Cheng et al., 2010], [Yang et al., 2014c],
[Yang et al., 2014b] constructed the dictionary by directly se-
lecting atoms from data samples. [Zheng et al., 2011] learned
the dictionary that can reconstruct input data well. However,
it does not necessarily lead to discriminative features. In con-
trast, we will optimize D together with the clustering task.

2.2 Bi-level Optimization Formulation
The objective cost function for the joint framework can be
expressed by the following bi-level optimization:

min
D,w

C(A,w)

s.t. A = arg minA
1
2 ||X−DA||2F + λ

∑
i ||ai||1

+αTr(ALAT).

(2)

where C(A,w) is a cost function evaluating the loss of clus-
tering, with A as its input and w as the parameter. It can be
formulated differently based on various clustering principles,
two of which will be discussed and solved in Section 3.

Bilevel optimization [Yang et al., 2012] has been investi-
gated in both theory and application sides. In [Yang et al.,
2012], the authors proposed a general bilevel sparse coding

model for learning dictionaries across coupled signal spaces.
Another similar formulation has been studied in [Mairal et
al., 2012] for general regression tasks.

3 Clustering-oriented Cost Functions
3.1 Entropy-Minimization Loss
Maximization of the mutual information with respect to pa-
rameters of the encoder model effectively defines a discrim-
inative unsupervised optimization framework. The model is
parameterized similarly to a conditionally trained classifier,
but the cluster allocations are unknown [Barber and Agakov,
2005]. In [Dai and Hu, 2010], [Li et al., 2004], the authors
adopted an information-theoretic framework as an implemen-
tation of the low-density separation assumption by minimiz-
ing the conditional entropy. By substituting the logistic pos-
terior probability into the minimum conditional entropy prin-
ciple, the authors got the logistics clustering algorithm, which
is equivalent to find a labelling strategy so that the total en-
tropy of data clustering is minimized.

AssumingK clusters, since the true cluster label of each xi

is unknown, we introduce the predicted confidence probabil-
ity pij that sample xi belongs to cluster j, i = 1, 2, · · · , N ,
j = 1, 2, · · · ,K, which is set as the likelihood of multino-
mial logistic (softmax) regression:

pij = p(j|w,ai) = e−jwT ai∑K
l=1 e

−lwT ai
, (3)

The loss function for all data could be defined accordingly in
a entropy-like form:

C(A,w) = −
∑n
i=1

∑K
j=1 pij log pij . (4)

The predicted cluster label of ai is the cluster j where it
achieves the largest likelihood probability pij . The logis-
tics regression can deal with multi-class problems more easily
compared with the support vector machine (SVM). The next
important thing we need to study is the differentiability of (2).
Theorem 3.1. The objective C(A,w) defined in (4) is differ-
entiable on D×w.

Proof: Denote X ∈ X , and D ∈ D. Also let the objec-
tive function C(A,w) in (4) be denoted as C for short. The
differentiability of C with respect to w is easy to show, as-
suming the compactness of X , as well as the fact that C is
twice differentiable.

We will therefore focus on showing that C is differentiable
with respect to D, which is more difficult since A, and thus
ai, is not differentiable everywhere. Without loss of gen-
erality, we use a vector a instead of A for simplifying the
derivations hereinafter. In some cases, we may equivalently
express a as a(D,w) in order to emphasize the functional
dependence. Based on [7.1] in Appendix, and given a small
perturbation E ∈ Rm×p, it follows that

C(a(D + E),w)− C(a(D),w) =
∇zC

T
w(a(D + E)− a(D)) +O(||E||2F ),

(5)

where the term O(||E||2F ) is based on the fact that a(D,x) is
uniformly Lipschitz and X ×D is compact. It is then possible
to show that

C(a(D + E),w)− C(a(D),w) =
Tr(ET g(a(D + E),w)) +O(||E||2F ),

(6)
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where g has the form given in Algorithm I. This shows that C
is differentiable on D.�

Building on the differentiability proof, we are able to solve
(1) using a projected first order stochastic gradient descent
(SGD) algorithm, whose detailed steps are outlined in Algo-
rithm 1. At a high level overview, it consists of an outer SGD
loop that incrementally samples the training data. It uses each
sample to approximate gradients with respect to w and D,
which are then used to update them.

Convergence and Complexity Analysis SGD converges to
stationary points under a few stricter assumptions than ones
satisfied in this paper. A non-convex convergence proof as-
sumes three times differentiable cost functions [Mairal et al.,
2012]. As a typical case in machine learning, we use SGD in
a setting where it is not guaranteed to converge in theory, but
behaves well in practice.

Assuming n samples and dictionary size p, in each itera-
tion of Algorithm 1, step 8 takes O(n) time. Step 4 is solved
by the feature-sign algorithm [Lee et al., 2006], which is re-
duced to a series of quadratic programming (QP) problems.
The computational bottleneck lies in solving the inverse of
matrix DTD of size p× p, where applying the Gauss-Jordan
elimination method takes O(p3) time per sample. Thus, Al-
gorithm 1 takes O(np3) time per iteration, and O(Cnp3) in
total (C is a constant absorbing epoch numbers, etc.). Further,
if p is a constant, Algorithm I reaches O(Cn) time complexity.

3.2 Maximum-Margin Loss
Xu et al. [Xu et al., 2004] proposed maximum margin clus-
tering (MMC), which borrows the idea from the SVM theory.
Their experimental results showed that the MMC technique
could often obtain more accurate results than conventional
clustering methods. Technically, what MMC does is just to
find a way to label the samples by running an SVM implic-
itly, and the SVM margin obtained would be maximized over
all possible labelings [Zhao et al., 2008]. However, unlike su-
pervised large margin methods which are usually formulated
as convex optimization problems, maximum margin cluster-
ing is a non-convex integer optimization problem, which is
much more difficult to solve. [Li et al., 2009] made several
relaxations to the original MMC problem and reformulated it
as a semi-definite programming (SDP) problem. The cutting
plane maximum margin clustering (CPMMC) algorithm was
presented in [Zhao et al., 2008] to solve MMC with a much
improved efficiency.

To develop the multi-class max-margin loss of cluster-
ing, we refer to the classical multi-class SVM formulation
in [Crammer and Singer, 2002]. Given the sparse code ai are
the features to be clustered, we define the multi-class model:

f(ai) = arg max
j=1,...,K

f j(ai) = arg max
j=1,...,K

(wT
j ai), (7)

where f j is the prototype for the j-th cluster and wj is its
corresponding weight vector. The predicted cluster label of ai
is the cluster of the weight vector that achieves the maximum
value wT

j ai. Let w = [w1, ...,wK ], the multi-class max-

margin loss for ai could be defined as:

C(ai,w) = max(0, 1 + fri(ai)− fyi(ai))
where yi = arg max

j=1,...,K
f j(ai)

ri = arg max
j=1,...,K,j 6=yi

f j(ai).
(8)

Note that different from training a multi-class SVM classier,
where yi is given as a training label, the clustering scenario
requires us to jointly estimate yi as a variable. The overall
max-margin loss to be minimized is (λ as the coefficient):

C(A,w) = λ
2 ||w||

2 +
∑n
i=1 C(ai,w). (9)

But to solve (8) or (9) with respect to the same framework
as logistic loss will involve two additional concerns, which
needs to be handled specifically.

First, the hinge loss of the form (8) is non-differentiable,
with only subgradients existing. That makes the objective
function C(A,w) non-differentiable on D×w, and further
the analysis in Theorem [3.1] proof can not be applied. We
could have used the squared hinge loss or modified Huber
loss for a quadratically smoothed loss function [Lee and Lin,
2013]. However, as we checked in the experiments, the
quadratically smoothed loss is not as good as hinge loss in
training time and sparsity. Also, though not theoretically
guaranteed, using the subgradient of C(A,w) works well in
our case.

Second, given that w is fixed, it should be noted that yi
and ri are both functions of ai. Therefore, calculating the
derivative of (8) over ai would involve expanding both ri
and yi, and become quite complicated. Instead, we borrow
ideas from the regularity of the elastic net solution [Mairal et
al., 2012], that the set of non-zero coefficients of the elastic
net solution should not change for small perturbations. Simi-
larly, due to the continuity of the objective, it is assumed that
a sufficiently small perturbation over the current ai will not
change yi and ri. Therefore in each iteration, we could di-
rectly pre-calculate yi and ri using the current w and ai and
fix them for ai updates 1.

Given the above two handling, for a single sample ai, if the
hinge loss is above 0, the derivative of (8) over w is:

∆j
i =


λwj

i − ai if j = yi
λwj

i + ai if j = ri
λwj

i otherwise,
(10)

where ∆j
i denote the j-th element of the derivative for the

sample ai. If the hinge loss is less than 0, then ∆j
i = λwj

i .
The derivative of (8) over ai is wri − wyi if the hinge loss
is over 0, and 0 otherwise. Note the above deduction can
be conducted in a batch mode. It is then similarly solved
using a projected SGD algorithm, whose steps are outlined
in Algorithm 2. The convergence and complexity analysis is
similar to Algorithm 1.
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Algorithm 1 Stochastic gradient descent algorithm for solving (2), with C(A,w) as defined in (4)
Require: X, σ; λ; D0 and w0 (initial dictionary and classifier parameter); ITER (number of iterations); t0, ρ (learning rate)

1: Construct the matrix L from X and σ.
2: FOR t=1 to ITER DO
3: Draw a subset (Xt,Yt) from (X,Y)
4: Graph-regularized sparse coding: computer A∗:

A∗ = arg minA
1
2 ||X−DA||2F + λ

∑
i ||ai||1 + Tr(ALAT).

5: Compute the active set S (the nonzero support of A∗)
6: Compute β∗: Set β∗SC = 0 and β∗S = (DT

SDS + λ2I)
−1∇AS

[C(A,w)]

7: Choose the learning rate ρt = min(ρ, ρ t0t )
8: Update D and W by a projected gradient step:

w =
∏

w[w − ρt∇wC(A,w)]

D =
∏

D[D− ρt(∇D(−Dβ∗AT + (Xt −DA)β∗T )]
where

∏
w and

∏
D are respectively orthogonal projections on the embedding spaces of w and D.

9: END FOR
Ensure: D and w

Table 2: Accuracy and NMI performance comparisons on all datasets
KM KM + SC EMC EMC + SC MMC MMC + SC joint EMC joint MMC

ORL Acc 0.5250 0.5887 0.6011 0.6404 0.6460 0.6968 0.7250 0.7458
NMI 0.7182 0.7396 0.7502 0.7795 0.8050 0.8043 0.8125 0.8728

MNIST Acc 0.6248 0.6407 0.6377 0.6493 0.6468 0.6581 0.6550 0.6784
NMI 0.5142 0.5397 0.5274 0.5671 0.5934 0.6161 0.6150 0.6451

COIL20 Acc 0.6280 0.7880 0.7399 0.7633 0.8075 0.8493 0.8225 0.8658
NMI 0.7621 0.9010 0.8621 0.8887 0.8922 0.8977 0.8850 0.9127

CMU-PIE Acc 0.3176 0.8457 0.7627 0.7836 0.8482 0.8491 0.8250 0.8783
NMI 0.6383 0.9557 0.8043 0.8410 0.9237 0.9489 0.9020 0.9675

Algorithm 2 Stochastic gradient descent algorithm for solv-
ing (2), with C(A,w) as defined in (9)
Require: X, σ; λ; D0 and w0 (initial dictionary and classi-

fier parameter); ITER (number of iterations); t0, ρ (learn-
ing rate)

1: Construct the matrix L from X and σ.
2: Estimate the initialization of yi and ri by pre-clustering,
i = 1, 2, ..., N

3: FOR t=1 to ITER DO
4: Conduct the same step 4-7 in Algorithm 1.
5: Update D and W by a projected gradient step, based on

the derivates of (9) over ai and w (10).
6: Update yi and ri using the current w and ai, i =

1, 2, ..., N .
7: END FOR

Ensure: D and w

4 Experiments
4.1 Dataset and Evaluation
We conduct our clustering experiments on four popular real
datasets, which are summarized in Table 1. We apply two
widely-used measures to evaluate the performance of the

1To avoid ambiguity, if yi and ri are the same, i.e., the max value
is reached by two cluster prototypes simultaneously in current itera-
tion, then we ignore the gradient update corresponding to ai.

Table 1: Comparison of all datasets
Name Number of Images Class Dimension
ORL 400 10 1,024

MNIST 70,000 10 784
COIL20 1,440 20 1,024

CMU-PIE 41,368 68 1,024

clustering methods: the accuracy and the Normalized Mutual
Information(NMI) [Zheng et al., 2011], [Cheng et al., 2010].
Suppose the predicted label of the xi is ŷi which is produced
by the clustering method, and yi is the ground truth label. The
accuracy is defined as:

Acc =
1Φ(ŷi)6=yi

n , (11)

where 1 is the indicator function, and Φ is the best permuta-
tion mapping function [Lovász and Plummer, 2009]. On the
other hand, suppose the clusters obtained from the predicted
labels {ŷi}ni=1 and {yi}ni=1 as Ĉ and C, respectively. The
mutual information between Ĉ and C is defined as:

MI(Ĉ, C) =
∑

ĉ∈Ĉ,c∈C
p(ĉ, c) log p(ĉ,c)

p(ĉ)p(c) , (12)

where p(ĉ) and p(c) are the probabilities that a data point
belongs to the clusters Ĉ and C, respectively, and p(ĉ, c) is
the probability that a data point jointly belongs to Ĉ and C.
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The normalized mutual information(NMI) is defined as:

NMI(Ĉ, C) = MI(Ĉ,C)

max{H(Ĉ),H(C)} , (13)

whereH(Ĉ) andH(C) are the entropies of Ĉ and C, respec-
tively. NMI takes values between [0,1].

4.2 Comparison Experiments
Comparison Methods We compare the following eight
methods on all four datasets:
• KM: K-Means clustering on the input data.
• KM + SC: A dictionary D is first learned from the input

data by K-SVD [Elad and Aharon, 2006]. Then KM is
performed on the graph-regularized sparse code features
(1) over D
• EMC: Entropy-minimization clustering, by minimizing

(4) on the input data.
• EMC + SC: EMC performed on the graph-regularized

sparse codes over the pre-learned K-SVD dictionary D.
• MMC: Maximum-margin clustering [Xu and Schuur-

mans, 2005].
• MMC + SC: MMC performed on the graph-regularized

sparse codes over the pre-learned K-SVD dictionary D.
• Joint EMC: The proposed joint optimization (2), with
C(A,w) as defined in (4).
• Joint MMC: The proposed joint optimization (2), with
C(A,w) as defined in (9).

All images are first reshaped into vectors, and PCA is then
applied to reducing the data dimensionality by keeping 98%
information, which is also used in [Zheng et al., 2011] to im-
proving efficiency. The multi-class MMC algorithm is im-
plemented based on the publicly available CPMMC code for
two-class clustering [Zhao et al., 2008], following the multi-
class case descriptions in the original paper. For all algo-
rithms that involve graph-regularized sparse coding, the graph
regularization parameter α is fixed to be 1, and the dictionary
size p is 128 by default. For joint EMC and joint MMC, we
set ITER as 30, ρ as 0.9, and t0 as 5. Other parameters in com-
peting methods are tuned in cross-validation experiments.

Comparison Analysis All the comparison results (accu-
racy and NMI) are listed in Table. 2, from which we could
conclude the following:
• 1: The joint EMC and joint MMC methods each out-

perform their “non-joint” counterparts, e.g., EMC + SC
and MMC + SC, respectively. For example, on the ORL
dataset, joint MMC surpasses MMC + SC by around 5%
in accuracy and 7% in NMI. Those demonstrate that the
key contribution of this paper, i.e., jointly optimizing the
sparse coding and clustering steps, indeed leads to im-
proved performances.
• 2: KM + SC, EMC + SC, and MMC + SC all outperform

their counterparts using raw input data, which verifies
that sparse codes are effective features that help improve
the clustering discriminability.

Figure 1: The clustering accuracy and NMI measurements
versus the number of clusters K.

• 3: The joint MMC obtains the best performances in all
cases, outperforming the others, including joint EMC,
with significant margins. The MMC + SC obtains the
second best performance for the last three datasets (for
ORL, it is joint EMC that ranks the second). The above
facts reveal the power of the max-margin loss (9).

Varying the number of clusters On the COIL20 dataset,
We re-conduct the clustering experiments with the cluster
number K ranging from 2 to 20, using EMC + SC, MMC
+ SC, joint EMC, and joint MMC. For each K except for 20,
10 test runs are conducted on different randomly chosen clus-
ters, and the final scores are obtained by averaging over the 10
tests. Fig. 1 shows the clustering accuracy and NMI measure-
ments versus the number of clusters. It is revealed that the two
joint methods consistently outperforms their non-joint coun-
terparts. WhenK goes up, the performances of joint methods
seem to degrade less slowly.

Initialization and Parameters As observed in our experi-
ments, a good initialization of D and w can affect the final re-
sults notably. We initialize Joint EMC by the D and w solved
from EMC + SC, and Joint MMC by the solutions from MMC
+ SC, respectively.

There are two parameters that we need to set empirically:
the graph regularization parameter α, and the dictionary size
p. The regularization term imposes stronger smoothness con-
straints on the sparse codes when α grows larger. Also, while
a compact dictionary is more desirable computationally, more
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Figure 2: The clustering accuracy and NMI measurements
versus the parameter choices of α.

redundant dictionaries may lead to less cluttered features that
can be better discriminated. We investigate how the cluster-
ing performances EMC + SC, MMC + SC, joint EMC, and
joint MMC change on the ORL dataset, with various α and p
values. As depicted in Fig. 2 and 3, we observe that:

• 1: While α goes up, the accuracy result will first grow up
then go down (the peak is around α =1). That could be
interpreted as when α is too small, the local manifold
information is not sufficiently encoded. On the other
hand, when α turns overly large, the sparse codes are
“over-smoothened” with a reduced discriminability.

• 2: Increasing dictionary size p will first improve the ac-
curacy sharply, which however soon reaches a plateau.
Thus in practice, we keep a medium dictionary size p
=128 for all experiments.

5 Conclusion

We propose a joint framework to optimize sparse coding and
discriminative clustering simultaneously. We adopt graph
regularized sparse codes as the feature to be learned, and
design two clustering-oriented cost functions, by entropy-
minimization and maximum-margin principles, respectively.
The task-driven bi-level optimization mutually reinforces
both sparse coding and clustering steps. Experiments on sev-
eral benchmark datasets verify the remarkable performance
improvements led by the proposed joint optimization.

Figure 3: The clustering accuracy and NMI measurements
versus the parameter choices of p.

6 Acknowledgement
We sincerely appreciate the great help from Associate Profes-
sor Linli Xu, affiliated with University of Science and Tech-
nology of China (USTC), for sharing with us her original im-
plementation of multi-class MMC algorithm [Xu and Schu-
urmans, 2005].

7 Appendix
We recall the following lemma [7.1] in [Mairal et al., 2012]:

Theorem 7.1 (Regularity of the elastic net solution). Con-
sider the formulation in (1) (we may drop the last term to
obtain the exact elastic net form, without affecting the differ-
entiability conclusions). Let λ2 > 0 , and X is assumed to be
compact. Then,

• a is uniformly Lipschitz on X ×D
• Let D ∈ D, σ be a positive scalar and s be a vector

in {−1, 0, 1}p. Define Ks(D, σ) as the set of vectors x
satisfying for all j in {1, ..., p},

|dTj (x−Da)− λ2a[j]| ≤ λ1 − σ if s[j] = 0
s[j]a[j] ≥ σ if s[j] 6= 0

(14)
Then there exists κ > 0 independent of s,D and σ so
that for all x ∈ Ks(D, σ), the function a is twice con-
tinuously differentiable on Bκσ(x) × Bκσ(D), where
Bκσ(x) and Bκσ(D) denote the open balls of radius κσ
respectively centered on x and D.
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