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Abstract

Inspired by recent successes of deep learning
in computer vision, we propose a novel frame-
work for encoding time series as different types
of images, namely, Gramian Angular Summa-
tion/Difference Fields (GASF/GADF) and Markov
Transition Fields (MTF). This enables the use of
techniques from computer vision for time series
classification and imputation. We used Tiled Con-
volutional Neural Networks (tiled CNNs) on 20
standard datasets to learn high-level features from
the individual and compound GASF-GADF-MTF
images. Our approaches achieve highly competi-
tive results when compared to nine of the current
best time series classification approaches. Inspired
by the bijection property of GASF on 0/1 rescaled
data, we train Denoised Auto-encoders (DA) on the
GASF images of four standard and one synthesized
compound dataset. The imputation MSE on test
data is reduced by 12.18%-48.02% when compared
to using the raw data. An analysis of the features
and weights learned via tiled CNNs and DAs ex-
plains why the approaches work.

1 Introduction

Since 2006, the techniques developed from deep neural net-
works (or, deep learning) have greatly impacted natural lan-
guage processing, speech recognition and computer vision
research [Bengio, 2009; Deng and Yu, 2014]. One suc-
cessful deep learning architecture used in computer vision is
convolutional neural networks (CNN) [LeCun et al., 1998].
CNNs exploit translational invariance by extracting features
through receptive fields [Hubel and Wiesel, 1962] and learn-
ing with weight sharing, becoming the state-of-the-art ap-
proach in various image recognition and computer vision
tasks [Krizhevsky et al., 2012]. Since unsupervised pretrain-
ing has been shown to improve performance [Erhan et al.,
20101, sparse coding and Topographic Independent Compo-
nent Analysis (TICA) are integrated as unsupervised pretrain-
ing approaches to learn more diverse features with complex
invariances [Kavukcuoglu et al., 2010; Ngiam et al., 2010].
Along with the success of unsupervised pretraining applied
in deep learning, others are studying unsupervised learning
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algorithms for generative models, such as Deep Belief Net-
works (DBN) and Denoised Auto-encoders (DA) [Hinton
et al., 2006; Vincent et al., 2008]. Many deep generative
models are developed based on energy-based model or auto-
encoders. Temporal autoencoding is integrated with Restrict
Boltzmann Machines (RBMs) to improve generative mod-
els [Hiusler er al., 2013]. A training strategy inspired by
recent work on optimization-based learning is proposed to
train complex neural networks for imputation tasks [Brakel
et al., 2013]. A generalized Denoised Auto-encoder ex-
tends the theoretical framework and is applied to Deep Gen-
erative Stochastic Networks (DGSN) [Bengio er al., 2013;
Bengio and Thibodeau-Laufer, 2013].

Inspired by recent successes of supervised and unsuper-
vised learning techniques in computer vision, we consider the
problem of encoding time series as images to allow machines
to “visually” recognize, classify and learn structures and pat-
terns. Reformulating features of time series as visual clues
has raised much attention in computer science and physics. In
speech recognition systems, acoustic/speech data input is typ-
ically represented by concatenating Mel-frequency cepstral
coefficients (MFCCs) or perceptual linear predictive coeffi-
cient (PLPs) [Hermansky, 1990]. Recently, researchers are
trying to build different network structures from time series
for visual inspection or designing distance measures. Re-
currence Networks were proposed to analyze the structural
properties of time series from complex systems [Donner et
al., 2010; 2011]. They build adjacency matrices from the
predefined recurrence functions to interpret the time series as
complex networks. Silva er al. extended the recurrence plot
paradigm for time series classification using compression dis-
tance [Silva ef al., 2013]. Another way to build a weighted
adjacency matrix is extracting transition dynamics from the
first order Markov matrix [Campanharo et al., 2011]. Al-
though these maps demonstrate distinct topological proper-
ties among different time series, it remains unclear how these
topological properties relate to the original time series since
they have no exact inverse operations.

We present three novel representations for encoding time
series as images that we call the Gramian Angular Summa-
tion/Difference Field (GASF/GADF) and the Markov Transi-
tion Field (MTF). We applied deep Tiled Convolutional Neu-
ral Networks (Tiled CNN) [Ngiam et al., 2010] to classify
time series images on 20 standard datasets. Our experimental
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Figure 1: Illustration of the proposed encoding map of
Gramian Angular Fields. X is a sequence of rescaled time se-
ries in the "Fish’ dataset. We transform X into a polar coordi-
nate system by eq. (3) and finally calculate its GASF/GADF
images with eqgs. (5) and (7). In this example, we build GAFs
without PAA smoothing, so the GAFs both have high resolu-
tion.

results demonstrate our approaches achieve the best perfor-
mance on 9 of 20 standard dataset compared with 9 previous
and current best classification methods. Inspired by the bi-
jection property of GASF on 0/1 rescaled data, we train the
Denoised Auto-encoder (DA) on the GASF images of 4 stan-
dard and a synthesized compound dataset. The imputation
MSE on test data is reduced by 12.18%-48.02% compared to
using the raw data. An analysis of the features and weights
learned via tiled CNNs and DA explains why the approaches
work.

2 Imaging Time Series

We first introduce our two frameworks for encoding time se-
ries as images. The first type of image is a Gramian Angular
Field (GAF), in which we represent time series in a polar co-
ordinate system instead of the typical Cartesian coordinates.
In the Gramian matrix, each element is actually the cosine of
the summation of angles. Inspired by previous work on the
duality between time series and complex networks [Campan-
haro et al., 2011], the main idea of the second framework,
the Markov Transition Field (MTF), is to build the Markov
matrix of quantile bins after discretization and encode the dy-
namic transition probability in a quasi-Gramian matrix.

2.1 Gramian Angular Field

Given a time series X = {1, xa, ..., Z, } of n real-valued ob-
servations, we rescale X so that all values fall in the interval
[-1,1] or [0, 1] by:

~i  _ (zi—max(X)+(z;,—min(X
To1= max((X)f(min(X) b (D
~3 x; —min(X
or Lo = Wn&in)()() @)

Thus we can represent the rescaled time series X in polar
coordinates by encoding the value as the angular cosine and
the time stamp as the radius with the equation below:

{gi) = arccos (4;),—1 < z; < 1,4; € X

; 3)
r= tﬁ,ti eN
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In the equation above, ¢; is the time stamp and N is a con-
stant factor to regularize the span of the polar coordinate sys-
tem. This polar coordinate based representation is a novel
way to understand time series. As time increases, correspond-
ing values warp among different angular points on the span-
ning circles, like water rippling. The encoding map of equa-
tion 3 has two important properties. First, it is bijective as
cos(¢) is monotonic when ¢ € [0, 7]. Given a time series,
the proposed map produces one and only one result in the po-
lar coordinate system with a unique inverse map. Second, as
opposed to Cartesian coordinates, polar coordinates preserve
absolute temporal relations. We will discuss this in more de-
tail in future work.

Rescaled data in different intervals have different angular
bounds. [0, 1] corresponds to the cosine function in [0, 7],
while cosine values in the interval [—1, 1] fall into the angu-
lar bounds [0, 7]. As we will discuss later, they provide dif-
ferent information granularity in the Gramian Angular Field
for classification tasks, and the Gramian Angular Difference
Field (GADF) of [0, 1] rescaled data has the accurate inverse
map. This property actually lays the foundation for imputing
missing value of time series by recovering the images.

After transforming the rescaled time series into the polar
coordinate system, we can easily exploit the angular perspec-
tive by considering the trigonometric sum/difference between
each point to identify the temporal correlation within differ-
ent time intervals. The Gramian Summation Angular Field
(GASF) and Gramian Difference Angular Field (GADF) are
defined as follows:

GASF = [cos(¢i + ¢;)] 4)
_ XX VI-x2 VI-x2 5
GADF = [sin(¢; — ¢;)] (6)
_ VI—xX? XX NI-x2

I is the unit row vector [1,1, ..., 1]. After transforming to
the polar coordinate system, we take time series at each time
step as a 1-D metric space. By defining the inner product <

r,y>=x-y—vV1—22-\/1—y?2and < z,y >= 1 — a?-
y—x-4/1 — y2, two types of Gramian Angular Fields (GAFs)
are actually quasi-Gramian matrices [< 77, 71 >]. !

The GAFs have several advantages. First, they provide a
way to preserve temporal dependency, since time increases as
the position moves from top-left to bottom-right. The GAFs
contain temporal correlations because G(; j||i—j|=k) Tepre-
sents the relative correlation by superposition/difference of
directions with respect to time interval k. The main diago-
nal G; ; is the special case when £ = 0, which contains the
original value/angular information. From the main diagonal,
we can reconstruct the time series from the high level features
learned by the deep neural network. However, the GAFs are
large because the size of the Gramian matrix is 7 X n when
the length of the raw time series is n. To reduce the size of

>quasi’ because the functions < x,y > we defined do not sat-
isfy the property of linearity in inner-product space.
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Figure 2: Tllustration of the proposed encoding map of
Markov Transition Fields. X is a sequence of time-series in
the "ECG’ dataset . X is first discretized into () quantile bins.
Then we calculate its Markov Transition Matrix W and fi-
nally build its MTF with eq. (8).

the GAFs, we apply Piecewise Aggregation Approximation
(PAA) [Keogh and Pazzani, 2000] to smooth the time series
while preserving the trends. The full pipeline for generating
the GAFs is illustrated in Figure 1.

2.2 Markov Transition Field

We propose a framework similar to Campanharo et al. for
encoding dynamical transition statistics, but we extend that
idea by representing the Markov transition probabilities se-
quentially to preserve information in the time domain.

Given a time series X, we identify its () quantile bins and
assign each z; to the corresponding bins ¢; (j € [1, @Q]). Thus
we construct a () X () weighted adjacency matrix W by count-
ing transitions among quantile bins in the manner of a first-
order Markov chain along the time axis. wj_; is given by the
frequency with which a point in quantile ¢; is followed by a
point in quantile g;. After normalization by jwij =1 W
is the Markov transition matrix. It is insensitive to the distri-
bution of X and temporal dependency on time steps ¢;. How-
ever, our experimental results on W demonstrate that getting
rid of the temporal dependency results in too much informa-
tion loss in matrix W. To overcome this drawback, we define
the Markov Transition Field (MTF) as follows:

Wij|z1€q;,21€q; Wijlax1 €qs,xn €q;

Wij|za€qi,w1€q; Wij|ze€q; xn €q;

e : : .

wl]|$n €qi,Tn€q;

We build a @ x @ Markov transition matrix (W) by divid-
ing the data (magnitude) into () quantile bins. The quantile
bins that contain the data at time stamp ¢ and j (temporal axis)
are ¢; and ¢; (¢ € [1,Q)]). M;; in the MTF denotes the tran-
sition probability of ¢; — ¢;. That is, we spread out matrix
W which contains the transition probability on the magnitude
axis into the MTF matrix by considering the temporal posi-
tions.

By assigning the probability from the quantile at time step
1 to the quantile at time step j at each pixel M;;, the MTF
M actually encodes the multi-span transition probabilities of

wij|$neqi7x1 €q;
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Figure 3: Structure of the tiled convolutional neural networks.
We fix the size of receptive fields to 8 x 8 in the first convolu-
tional layer and 3 x 3 in the second convolutional layer. Each
TICA pooling layer pools over a block of 3 x 3 input units
in the previous layer without warping around the borders to
optimize for sparsity of the pooling units. The number of
pooling units in each map is exactly the same as the number
of input units. The last layer is a linear SVM for classifica-
tion. We construct this network by stacking two Tiled CNNgs,
each with 6 maps (I = 6) and tiling size k = 1,2, 3.

the time series. M ;|;—;—« denotes the transition probabil-
ity between the points with time interval k. For example,
M;j)j—i=1 illustrates the transition process along the time
axis with a skip step. The main diagonal M;;, which is a
special case when k = 0 captures the probability from each
quantile to itself (the self-transition probability) at time step
1. To make the image size manageable and computation more
efficient, we reduce the MTF size by averaging the pixels in
each non-overlapping m x m patch with the blurring kernel
{1} xm- That is, we aggregate the transition probabilities
in each subsequence of length m together. Figure 2 shows the
procedure to encode time series to MTF.

3 Classify Time Series Using GAF/MTF with
Tiled CNNs

We apply Tiled CNNs to classify time series using GAF and
MTF representations on 20 datasets from [Keogh et al., 2011]
in different domains such as medicine, entomology, engineer-
ing, astronomy, signal processing, and others. The datasets
are pre-split into training and testing sets to facilitate ex-
perimental comparisons. We compare the classification er-
ror rate of our GASF-GADF-MTF approach with previously
published results of 3 competing methods and 6 best ap-
proaches proposed recently: early state-of-the-art 1NN clas-
sifiers based on Euclidean distance and DTW (Best Warp-
ing Window and no Warping Window), Fast-Shapelets[Rak-
thanmanon and Keogh, 2013], a INN classifier based on
SAX with Bag-of-Patterns (SAX-BoP) [Lin et al., 2012], a
SAX based Vector Space Model (SAX-VSM)[Senin and Ma-
linchik, 2013], a classifier based on the Recurrence Patterns
Compression Distance(RPCD) [Silva er al., 2013], a tree-
based symbolic representation for multivariate time series
(SMTS) [Baydogan and Runger, 2014] and a SVM classifier
based on a bag-of-features representation (TSBF) [Baydogan



Table 1: Summary of error rates for 3 classic baselines, 6 recently published best results and our approach. The symbols <, *,
1 and e represent datasets generated from human motions, figure shapes, synthetically predefined procedures and all remaining
temporal signals, respectively. For our approach, the numbers in brackets are the optimal PAA size and quantile size.

Dataset 1NN- INN-DTW- INN-DTW- Fast- SAX- SAX- RPCD SMTS TSBF GASF-GADF-
RAW BWW nWW  Shapelet BoP VSM MTF
50words ¢ 0.369 0.242 0.31 N/A  0.466 N/A  0.2264 0.289  0.209  0.301 (16, 32)
Adiac *  0.389 0.391 0.396 0.514 0432 0.381 0.3836 0.248 0.245 0.373(32,48)
Beefe 0.467 0.467 0.5 0.447 0433 0.33  0.3667 0.26  0.287 0.233 (64, 40)
CBF{ 0.148 0.004 0.003 0.053 0.013 0.02 N/A 0.02  0.009 0.009 (32, 24)
Coffee o 0.25 0.179 0.179 0.068 0.036 0 0 0.029  0.004 0 (64, 48)
ECG e 0.12 0.12 0.23 0.227 0.15 0.14 0.14 0.159 0.145 0.09 (8, 32)
FaceAll *  0.286 0.192 0.192 0411 0.219 0.207  0.1905 0.191 0.234 0.237 (8, 48)
FaceFour x  0.216 0.114 0.17 0.090 0.023 0 0.0568 0.165 0.051 0.068 (8, 16)
fish «  0.217 0.16 0.167 0.197 0.074 0.017 0.1257 0.147 0.08 0.114 (8, 40)
Gun_Point<  0.087 0.087 0.093 0.061 0.027 0.007 0 0.011  0.011 0.08 (32, 32)
Lighting2 ¢ 0.246 0.131 0.131 0.295 0.164 0.196  0.2459 0.269  0.257 0.114 (16, 40)
Lighting7 ¢ 0.425 0.288 0.274 0.403 0.466 0.301 0.3562 0.255 0.262  0.260 (16, 48)
OliveOil e 0.133 0.167 0.133 0.213  0.133 0.1 0.1667 0.177 0.09 0.2 (8, 48)
OSULeaf * 0.483 0.384 0.409 0.359 0.256 0.107 0.3554 0.377 0.329 0.358 (16, 32)
SwedishLeaf x  0.213 0.157 0.21 0.269 0.198 0.01 0.0976 0.08 0.075 0.065 (16, 48)
synthetic control 0.12 0.017 0.007 0.081 0.037 0.251 N/A 0.025 0.008 0.007 (64, 48)
Trace t 0.24 0.01 0 0.002 0 0 N/A 0 0.02 0 (64, 48)
Two Patterns | 0.09 0.0015 0 0.113  0.129 0.004 N/A 0.003  0.001 0.091 (64, 32)
wafer ¢ 0.005 0.005 0.02 0.004 0.003 0.0006 0.0034 0 0.004 0 (64, 16)
yoga * 0.17 0.155 0.164 0.249 0.17 0.164 0.134 0.094 0.149 0.196 (8, 32)
#wins 0 0 3 0 1 5 3 4 4 9

etal., 2013]. For each input of image size Sgar or Syrr and quan-

3.1 Tiled Convolutional Neural Networks

Tiled Convolutional Neural Networks are a variation of Con-
volutional Neural Networks that use tiles and multiple fea-
ture maps to learn invariant features. Tiles are parame-
terized by a tile size k to control the distance over which
weights are shared. By producing multiple feature maps,
Tiled CNNs learn overcomplete representations through un-
supervised pretraining with Topographic ICA (TICA). For the
sake of space, please refer to [Ngiam et al., 2010] for more
details. The structure of Tiled CNNs applied in this paper is
illustrated in Figure 3.

3.2 Experiment Setting

In our experiments, the size of the GAF image is regulated
by the the number of PAA bins Sgar. Given a time se-
ries X of size n, we divide the time series into Sgap ad-
jacent, non-overlapping windows along the time axis and ex-
tract the means of each bin. This enables us to construct the
smaller GAF matrix Gsg . xSqcar- MTF requires the time
series to be discretized into () quantile bins to calculate the
@ x @Q Markov transition matrix, from which we construct
the raw MTF image M, «, afterwards. Before classifica-
tion, we shrink the MTF image size to Syrp X Syrr by

the blurring kernel {13 };nxm where m = [g—]. The

Tiled CNN is trained with image size {Sgar, SuTr} €
{16, 24, 32, 40, 48} and quantile size ) € {8,16,32,64}. At
the last layer of the Tiled CNN, we use a linear soft margin
SVM [Fan et al., 2008] and select C' by 5-fold cross valida-
tion over {107%,1072,...,10*} on the training set.
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tile size ), we pretrain the Tiled CNN with the full unlabeled
dataset (both training and test set) to learn the initial weights
W through TICA. Then we train the SVM at the last layer
by selecting the penalty factor C' with cross validation. Fi-
nally, we classify the test set using the optimal hyperparame-
ters {.9, @, C'} with the lowest error rate on the training set. If
two or more models tie, we prefer the larger S and () because
larger S helps preserve more information through the PAA
procedure and larger () encodes the dynamic transition statis-
tics with more detail. Our model selection approach provides
generalization without being overly expensive computation-
ally.

3.3 Results and Discussion

We use Tiled CNNss to classify the single GASF, GADF and
MTF images as well as the compound GASF-GADF-MTF
images on 20 datasets. For the sake of space, we do not show
the full results on single-channel images. Generally, our ap-
proach is not prone to overfitting by the relatively small dif-
ference between training and test set errors. One exception is
the Olive Oil dataset with the MTF approach where the test
error is significantly higher.

In addition to the risk of potential overfitting, we found
that MTF has generally higher error rates than GAFs. This
is most likely because of the uncertainty in the inverse map
of MTF. Note that the encoding function from —1/1 rescaled
time series to GAFs and MTF are both surjections. The map
functions of GAFs and MTF will each produce only one im-
age with fixed S and @ for each given time series X . Be-
cause they are both surjective mapping functions, the inverse
image of both mapping functions is not fixed. However, the



Figure 4: Pipeline of time series imputation by image re-
covery. Raw GASF — “broken” GASF — recovered GASF
(top), Raw time series — corrupted time series with missing
value — predicted time series (bottom) on dataset ”Swedish-
Leaf” (left) and "ECG” (right).
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mapping function of GAFs on 0/1 rescaled time series are
bijective. As shown in a later section, we can reconstruct
the raw time series from the diagonal of GASF, but it is very
hard to even roughly recover the signal from MTF. Even for
—1/1 rescaled data, the GAFs have smaller uncertainty in
the inverse image of their mapping function because such
randomness only comes from the ambiguity of cos(¢) when
¢ € [0,27]. MTF, on the other hand, has a much larger in-
verse image space, which results in large variations when we
try to recover the signal. Although MTF encodes the transi-
tion dynamics which are important features of time series,
such features alone seem not to be sufficient for recogni-
tion/classification tasks.

Note that at each pixel, G;; denotes the supersti-
tion/difference of the directions at ¢; and ¢;, M;; is the tran-
sition probability from the quantile at ¢; to the quantile at ¢;.
GAF encodes static information while MTF depicts informa-
tion about dynamics. From this point of view, we consider
them as three “orthogonal” channels, like different colors in
the RGB image space. Thus, we can combine GAFs and MTF
images of the same size (i.e. Sgars = Syr) to construct a
triple-channel image (GASF-GADF-MTF). It combines both
the static and dynamic statistics embedded in the raw time
series, and we posit that it will be able to enhance classifica-
tion performance. In the experiments below, we pretrain and
tune the Tiled CNN on the compound GASF-GADF-MTF
images. Then, we report the classification error rate on test
sets. In Table 1, the Tiled CNN classifiers on GASF-GADF-
MTF images achieved significantly competitive results with
9 other state-of-the-art time series classification approaches.

4 Image Recovery on GASF for Time Series
Imputation with Denoised Auto-encoder

As previously mentioned, the mapping functions from —1/1
rescaled time series to GAFs are surjections. The uncertainty
among the inverse images come from the ambiguity of the
cos(¢) when ¢ € [0,2n]. However the mapping functions
of 0/1 rescaled time series are bijections. The main diagonal
of GASF, i.e. {G;;} = {cos(2¢;)} allows us to precisely
reconstruct the original time series by

cos(¢) = % ¢ €0, g}

Thus, we can predict missing values among time series

€))
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through recovering the “broken”” GASF images. During train-
ing, we manually add “salt-and-pepper” noise (i.e., randomly
set a number of points to 0) to the raw time series and trans-
form the data to GASF images. Then a single layer Denoised
Auto-encoder (DA) is fully trained as a generative model to
reconstruct GASF images. Note that at the input layer, we
do not add noise again to the “broken” GASF images. A
Sigmoid function helps to learn the nonlinear features at the
hidden layer. At the last layer we compute the Mean Square
Error (MSE) between the original and “broken” GASF im-
ages as the loss function to evaluate fitting performance. To
train the models simple batch gradient descent is applied to
back propagate the inference loss. For testing, after we cor-
rupt the time series and transform the noisy data to “broken”
GASEF, the trained DA helps recover the image, on which we
extract the main diagonal to reconstruct the recovered time
series. To compare the imputation performance, we also test
standard DA with the raw time series data as input to recover
the missing values (Figure. 4).

4.1 Experiment Setting

For the DA models we use batch gradient descent with a batch
size of 20. Optimization iterations run until the MSE changed
less than a threshold of 102 for GASF and 10~° for raw
time series. A single hidden layer has 500 hidden neurons
with sigmoid functions. We choose four dataset of different
types from the UCR time series repository for the imputation
task: ”Gun Point” (human motion), "CBF” (synthetic data),
”SwedishLeaf” (figure shapes) and "ECG” (other remaining
temporal signals). To explore if the statistical dependency
learned by the DA can be generalized to unknown data, we
use the above four datasets and the ”Adiac” dataset together
to train the DA to impute two totally unknown test datasets,
”Two Patterns” and "wafer” (We name these synthetic miscel-
laneous datasets 7 Misc”). To add randomness to the input of
DA, we randomly set 20% of the raw data among a specific
time series to be zero (salt-and-pepper noise). Our experi-
ments for imputation are implemented with Theano [Bastien
et al., 2012]. To control for the random initialization of the
parameters and the randomness induced by gradient descent,
we repeated every experiment 10 times and report the average
MSE.

4.2 Results and Discussion

Table 2: MSE of imputation on time series using raw data and
GASF images.

Dataset Full MSE Interpolation MSE

Raw GASF Raw GASF
ECG 0.01001 0.01148 0.02301 0.01196
CBF 0.02009 0.03520 0.04116 0.03119

Gun Point  0.00693  0.00894 0.01069 0.00841
SwedishLeaf 0.00606 0.00889 0.01117 0.00981
7Misc 0.06134 0.10130 0.10998 0.07077

In Table 2, ”Full MSE” means the MSE between the com-
plete recovered and original sequence and “Imputation MSE”



Figure 5: (a) Original GASF and its six learned feature maps
before the SVM layer in Tiled CNNs (left). (b) Raw time
series and its reconstructions from the main diagonal of six
feature maps on *’50Words’ dataset (right).

means the MSE of only the unknown points among each time
series. Interestingly, DA on the raw data perform well on the
whole sequence, generally, but there is a gap between the full
MSE and imputation MSE. That is, DA on raw time series
can fit the known data much better than predicting the un-
known data (like overfitting). Predicting the missing value
using GASF always achieves slightly higher full MSE but the
imputation MSE is reduced by 12.18%-48.02%. We can ob-
serve that the difference between the full MSE and imputation
MSE is much smaller on GASF than on the raw data. Inter-
polation with GASF has more stable performance than on the
raw data.

Why does predicting missing values using GASF have
more stable performance than using raw time series? Actu-
ally, the transformation maps of GAFs are generally equiva-
lent to a kernel trick. By defining the inner product k(x;, x;),
we achieve data augmentation by increasing the dimension-
ality of the raw data. By preserving the temporal and spatial
information in GASF images, the DA utilizes both temporal
and spatial dependencies by considering the missing points as
well as their relations to other data that has been explicitly en-
coded in the GASF images. Because the entire sequence, in-
stead of a short subsequence, helps predict the missing value,
the performance is more stable as the full MSE and imputa-
tion MSE are close.

5 Analysis on Features and Weights Learned
by Tiled CNNs and DA

In contrast to the cases in which the CNNss is applied in nat-
ural image recognition tasks, neither GAFs nor MTF have
natural interpretations of visual concepts like “edges” or “an-
gles”. In this section we analyze the features and weights
learned through Tiled CNNs to explain why our approach
works.

Figure 5 illustrates the reconstruction results from six fea-
ture maps learned through the Tiled CNNs on GASF (by Eqn
9). The Tiled CNNs extracts the color patch, which is essen-
tially a moving average that enhances several receptive fields
within the nonlinear units by different trained weights. It is
not a simple moving average but the synthetic integration by
considering the 2D temporal dependencies among different
time intervals, which is a benefit from the Gramian matrix
structure that helps preserve the temporal information. By ob-
serving the orthogonal reconstruction from each layer of the
feature maps, we can clearly observe that the tiled CNNs can
extract the multi-frequency dependencies through the convo-
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Figure 6: All 500 filters learned by DA on the "Gun Point”
(left) and 7 Misc” (right) dataset.

lution and pooling architecture on the GAF and MTF images
to preserve the trend while addressing more details in differ-
ent subphases. The high-leveled feature maps learned by the
Tiled CNN are equivalent to a multi-frequency approxima-
tor of the original curve. Our experiments also demonstrates
the learned weight matrix W with the constraint WIW7T = I,
which makes effective use of local orthogonality. The TICA
pretraining provides the built-in advantage that the function
w.r.t the parameter space is not likely to be ill-conditioned as
WWT = 1. The weight matrix W is quasi-orthogonal and
approaching 0 without large magnitude. This implies that the
condition number of W approaches 1 and helps the system to
be well-conditioned.

As for imputation, because the GASF images have no con-
cept of “angle” and "edge”, DA actually learned different pro-
totypes of the GASF images (Table 6). We find that there is
significant noise in the filters on the 7 Misc” dataset because
the training set is relatively small to better learn different fil-
ters. Actually, all the noisy filters with no patterns work like
one Gaussian noise filter.

6 Conclusions and Future Work

We created a pipeline for converting time series into novel
representations, GASF, GADF and MTF images, and ex-
tracted multi-level features from these using Tiled CNN and
DA for classification and imputation. We demonstrated
that our approach yields competitive results for classifica-
tion when compared to recently best methods. Imputation
using GASF achieved better and more stable performance
than on the raw data using DA. Our analysis of the features
learned from Tiled CNN suggested that Tiled CNN works like
a multi-frequency moving average that benefits from the 2D
temporal dependency that is preserved by Gramian matrix.
Features learned by DA on GASF is shown to be different
prototype, as correlated basis to construct the raw images.

Important future work will involve developing recurrent
neural nets to process streaming data. We are also quite inter-
ested in how different deep learning architectures perform on
the GAFs and MTF images. Another important future work
is to learn deep generative models with more high-level fea-
tures on GAFs images. We aim to further apply our time se-
ries models in real world regression/imputation and anomaly
detection tasks.
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