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Abstract

Exploration strategy is an essential part of learn-
ing agents in model-based Reinforcement Learn-
ing. R-MAX and V-MAX are PAC-MDP strategies
proved to have polynomial sample complexity; yet,
their exploration behavior tend to be overly cau-
tious in practice. We propose the principle of In-
creasingly Cautious Optimism (ICO) to automat-
ically cut off unnecessarily cautious exploration,
and apply ICO to R-MAX and V-MAX, yielding
two new strategies, namely Increasingly Cautious
R-MAX (ICR) and Increasingly Cautious V-MAX
(ICV). We prove that both ICR and ICV are PAC-
MDP, and show that their improvement is guaran-
teed by a tighter sample complexity upper bound.
Then, we demonstrate their significantly improved
performance through empirical results.

1 Introduction

In Reinforcement Learning (RL) [Sutton and Barto, 1998],
exploration strategy is a key component of learning algo-
rithms. By following an exploration strategy, the agent in
model-based RL interacts with an initially unknown environ-
ment, often formulated as a Markov Decision Process (MDP),
to collect information in the form of samples of the dynamics.
The collected samples are used to build a model of the MDP,
and the model is used to derive a policy that yields maxi-
mal expected cumulative rewards received from the environ-
ment. Simple undirected strategies such as ε-greedy could
lead to exponentially inefficient exploration and poor perfor-
mance [Whitehead, 1991; Li, 2012], and therefore, numerous
strategies have been proposed and studied.

Efficiency of exploration strategies can be quantified and
analyzed formally in the framework of sample complex-
ity [Kakade, 2003] and Probably Approximately Correct in
Markov Decision Process (PAC-MDP) [Strehl et al., 2009].
The sample complexity of an exploration strategy is the num-
ber of timesteps that the strategy, seen as a policy, is not near-
optimal in an infinite-length learning process. An exploration
strategy is said to be PAC-MDP if it has a sample complexity
bounded by some polynomial in the relevant quantities of the
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learning task with high probability. Various strategies have
been proved to be PAC-MDP, such as R-MAX [Brafman and
Tennenholtz, 2002], Model-Based Interval Estimation [Strehl
and Littman, 2005], Delayed Q-Learning [Strehl et al., 2006],
Optimistic Initial Model (OIM) [Szita and Lőrincz, 2008],
MoRMAX [Szita and Szepesvári, 2010], V-MAX [Rao and
Whiteson, 2012], and UCRLγ [Lattimore and Hutter, 2014].

One major drawback of most PAC-MDP strategies is that
their exploration behavior can be overly cautious [Kolter and
Ng, 2009]. Under these strategies, the agent is encouraged
to sample every state-action pair repeatedly until the model
is sure to be near-accurate. However, a near-accurate model
is not always necessary for deriving a near-optimal policy
[Kakade, 2003]. Consequently, existing PAC-MDP strategies
may re-visit partly known state-action pairs too often, and
miss the chance of discovering the near-optimal policy ear-
lier. In practical use, this problem can be partially alleviated
by manually setting the cautiousness to some insufficient de-
gree compared to the degree required by the PAC-MDP theo-
rems of these strategies. However, doing so actually removes
the PAC-MDP property from the strategies and increases the
risk of convergence to undesirable policies.

In this paper, we provide an effective solution to this
dilemma by proposing the principle of Increasingly Cautious
Optimism (ICO). The key idea of ICO is to set the initial
cautiousness of optimistic exploration to extremely low, and
gradually increase the cautiousness during the learning pro-
cess. In this way, unnecessary exploration can be effectively
reduced, leading to high practical efficiency, while the PAC-
MDP property of the strategy is kept undamaged, avoiding
any additional risk of undesirable convergence.

By applying the principle of ICO, we propose a modified
version of R-MAX and V-MAX respectively, namely Increas-
ingly Cautious R-MAX (ICR) and Increasingly Cautious V-
MAX (ICV). We prove that the existing sample complexity
upper bound for R-MAX and V-MAX holds for ICR and ICV.
Then, we derive a tighter upper bound for ICR and ICV un-
der an additional assumption to show that their improvement
is theoretically supported. Finally, we display their signifi-
cantly improved practical performance through experiments.

2 Background

A finite MDP is a tuple (S,A, T,R, γ) that describes the dy-
namics of an environment, where S is a finite set of states,
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A is a finite set of actions, T : S × A × S �→ [0, 1] is the
transition probability to next states given current state and
action, R : S × A × S �→ R is the deterministic immedi-
ate reward for every possible transition, and γ ∈ [0, 1) is a
discounted factor to future rewards. A policy π : S �→ A in-
structs which action should be taken given the current state. A
state-action value Qπ(s, a) is the expected discounted cumu-
lative reward starting from the state-action pair (s, a) and fol-
lowing π afterwards; a state value V π(s) is the maximum of
Qπ(s, a) with the same s. Without loss of generality, we as-
sume R is bounded in [0, Rmax]; then it follows that the maxi-
mum possible state value Vmax is no larger than Rmax/(1−γ).
An optimal policy π∗ selects actions that yield best expected
discounted cumulative rewards at any possible states, and its
value functions are denoted by Q∗ and V ∗. A more detailed
introduction can be found in [Sutton and Barto, 1998].

In model-based reinforcement learning, the agent contin-
uously interacts with the environment, and collects samples
in the form of (s, a, s′, r). The multiset of collected samples,
denoted by ψ, is used to construct a model to estimate the
dynamics of the MDP, and a policy π can be derived from
the model using a planning algorithm. An exploration strat-
egy σ : Ψ × S �→ A maps a multiset of collected samples
and a state to an action, where Ψ is the set of all possible ψ.
The role of exploration strategies is to guide the agent during
learning so that it could collect samples efficiently.

In this paper, we consider the common basic setting that the
model is built using maximum likelihood estimation (MLE):

T̄ (s, a, s′) = nψ(s, a, s
′)/nψ(s, a) (1)

R̄(s, a, s′) = rψ(s, a, s
′)/nψ(s, a, s′) (2)

where nψ(s, a) and nψ(s, a, s
′) stand for the numbers of

corresponding transitions in the collected samples ψ, and
rψ(s, a, s

′) stands for the total reward obtained along with
the transitions (subscript ψ will be omitted if no ambigu-
ity occurs). For concreteness and convenience, we always
use Value Iteration (VI) [Puterman, 1994; Sutton and Barto,
1998] as the planning algorithm in this paper. However, the
results can be applied to other planning algorithms easily as
long as they have some sufficient accuracy guarantee.

Sample complexity is a theoretical framework for analyz-
ing efficiency of an exploration strategy. Given an arbitrary
ε > 0, the sample complexity of a strategy σ is the number of
timesteps that σ(ψt) seen as a policy is not ε-optimal at the
current state, that is, V σ(ψt)(st) ≥ V ∗(st)− ε does not hold,
during the whole learning process [Kakade, 2003]. A strategy
σ is said to be PAC-MDP if for any ε > 0 and 0 < δ < 1,
the sample complexity of σ is bounded by some polynomial
in the relevant quantities (|S|, |A|, Vmax, 1/ε, 1/δ, 1/(1− γ)),
with probability at least 1− δ [Strehl et al., 2009].

R-MAX [Brafman and Tennenholtz, 2002] is a famous
PAC-MDP exploration strategy based on the principle of op-
timism in the face of uncertainty [Kaelbling et al., 1996]. R-
MAX explicitly distinguishes known state-action pairs from
unknown ones. Initially, all possible state-action pairs are
marked as unknown; a state-action pair becomes known if
it has been sampled at least m times, where m is a parame-
ter of the strategy and needs to be set manually. The agent

always chooses greedy actions at = argmaxaQ̂(st, a) at ev-
ery timestep t. Instead of a model built purely by MLE, here
Q̂ is calculated from an optimistic model:

T̂ (s, a, s′) =
{
T̄ (s, a, s′) n(s, a) ≥ m

I(s′ = sI) n(s, a) < m
(3)

R̂(s, a, s′) =
{
R̄(s, a, s′) s′ �= sI
(1− γ)Vmax s′ = sI

(4)

where sI is a fictitious absorbing state where the agent al-
ways receives rewards as large as (1 − γ)Vmax. By using
Bellman Equation (see [Sutton and Barto, 1998]), it can be
derived that Q̂(s, a) = Vmax holds for all unknown (s, a);
this forces the agent to explore unknown state-action pairs
before re-visiting known ones. Additionally, any further sam-
ples gained for known state-action pairs will be discarded
and not be used in the optimistic model, so that the to-
tal times of update is bounded. The upper bound on sam-
ple complexity Õ(

|S|2|A|V 3
max

ε3(1−γ)3 ) holds for R-MAX with some

m = Õ(
|S|V 2

max
ε2(1−γ)2 ) [Strehl et al., 2009].

The performance of R-MAX tends to be poor in prac-
tice due to its unbiased exploration among unknown state-
action pairs, no matter if they are promising or clearly non-
promising [Strehl and Littman, 2004]. To achieve better per-
formance, V-MAX [Rao and Whiteson, 2012], a state-of-
the-art PAC-MDP strategy, encourages exploration to more
promising unknown state-action pairs by biasing its optimism
with experience. Specifically, the optimistic bonus is mixed
linearly with the realistic MLE by a modified estimation:

T̂ (s, a, s′) =

⎧⎪⎨
⎪⎩

min(n(s, a),m)

m
T̄ (s, a, s′) s′ �= sI

1− min(n(s, a),m)

m
s′ = sI

(5)

so that the unknown state-action pairs with fewer samples and
greater estimated values will be visited first. The upper bound
on sample complexity for R-MAX Õ(

|S|2|A|V 3
max

ε3(1−γ)3 ) holds for V-
MAX subject to the same condition of m.

3 Increasingly Cautious Optimism

The other face of the extreme optimism in R-MAX and V-
MAX is extreme cautiousness: the agent is forced to sample
every state-action pair repeatedly unless it is convinced that
the collected samples are sufficient to make a near-accurate
estimate of the dynamics with high probability.

Unfortunately, this cautiousness is not always necessary.
According to [Kakade, 2003], if a generative model for the
MDP is available, which allows the agent to obtain samples
of any state-action pairs at anytime, then the sample com-
plexity is only linear to |S||A|. As the size of the full transi-
tion matrix is |S|2|A|, this suggests that an ε-optimal policy
can be derived from a very coarse model. Therefore, these
overly cautious PAC-MDP exploration strategies can be far
from efficient, in the sense that they aim to build up near-
accurate model from the beginning, and consequently miss
the chance to find out ε-optimal policy earlier. This problem
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can be partly alleviated by carefully hand-tuning the cautious-
ness parameters of the strategies. However, doing so usually
breaks the precondition of the PAC-MDP property, and may
considerably increase the risk of early convergence to non-ε-
optimal policies [Strehl and Littman, 2004].

To solve this problem more effectively, we propose the
principle of Increasingly Cautious Optimism (ICO). Specif-
ically, an ICO strategy initially presume that the learning task
is very easy, in the sense that an extremely careless optimistic
exploration is sufficient to build a model which is accurate
enough to be used to derive an ε-optimal policy. If the agent
is lucky enough to find out an ε-optimal policy quickly, then
the excessive sampling has already been reduced. Yet this ini-
tial exploration scheme might not be sufficient; to avoid con-
vergence to undesirable policies, ICO increases the degree of
cautious optimism over time, forcing the agent to sample ev-
ery state-action pair gradually more often.

In this way, the agent explores with a much lower degree
of cautiousness in general, reducing the possible overly cau-
tious sampling encouraged by the original strategies. Mean-
while, the PAC-MDP property is still undamaged, as the de-
gree of cautiousness eventually grows to the level required by
the original theorems in bounded timesteps.

3.1 Increasingly Cautious R-MAX (ICR)

By applying the principle of ICO to R-MAX, we invent the
novel exploration strategy of Increasingly Cautious R-MAX
(ICR). We denote the original fixed m of R-MAX as mmax,
and introduce a positive real number mt ≤ mmax to represent
the current cautiousness of optimistic exploration. The mt

increases linearly with a fixed real number Δm > 0 along
with timestep t. Naturally, m0 corresponds to the initial care-
less setting. The optimistic modeling in R-MAX is altered by
replacing the original fixed m with the increasing �mt	:

T̃ (s, a, s′) =
{
T̄ (s, a, s′) n(s, a) ≥ �mt	
I(s′ = sI) n(s, a) < �mt	 (6)

The resulting pseudo-code for ICR is given in Algorithm 1.

Algorithm 1 Increasingly Cautious R-MAX(m0,Δm,mmax)

1: Multiset of collected samples ψ ← ∅

2: Initialize T̃ , R̃ using Equation 6, 4
3: Q̃(s, a) ← Vmax for all (s, a)
4: for timestep t = 1, 2, 3, ... do
5: Observe current state st
6: Execute greedy action at ← argmaxaQ̃(st, a)
7: Receive reward rt and transit to the next state st+1

8: ψ ← ψ ∪ (st, at, st+1, rt)
9: mt ←min(mt−1 +Δm,mmax)

10: if �mt	 > �mt−1	 then

11: Update T̃ for all (s, a) that n(s, a) < �mt	 using
Equation 6

12: if �mt	 ≤ n(st, at) ≤ mmax then

13: Update T̃ (st, at, ·), R̃(st, at, ·) using Equation 6, 4
14: Update Q̃ by VI if T̃ has been updated

We focus on the new mechanisms of ICR in this part; the
parameter setting for m0,Δm, and mmax will be discussed

in Section 3.2. Each time line 14 finishes, every (s, a) falls
into one of the three exclusive status: unknown (n(s, a) <
�mt	), known-for-now (�mt	 ≤ n(s, a) < mmax), and known
(n(s, a) ≥ mmax), named after the manners in R-MAX.

All unknown (s, a) have a value of Vmax and will be opti-
mistically explored by the agent as in R-MAX. However, as
soon as the (s, a) turns into known-for-now, the optimistic T̃ ,
R̃ and Q̃ will be replaced by their realistic estimates based on
the collected samples ψ in line 12-14. This leads to a rela-
tively careless sampling scheme, which may increase the risk
of convergence to non-ε-optimal policies.

Fortunately, any possible premature convergence will be
corrected by ICR, as known-for-now (s, a) will turn back
to unknown when the increasing �mt	 exceeds n(s, a). To
regain optimism, a re-optimisticalization operation, which
overwrite realistic estimates again by the optimistic ones, will
be performed on these newly unknown (s, a) as in line 10-11.
This will not lead to a loss in collected information, since all
the samples are kept in ψ for future use.

Finally, all (s, a) will eventually become known; after that,
they are treated exactly as in R-MAX, where all further col-
lected samples will be ignored.

3.2 Sample Complexity Analysis for ICR

First, we prove that the existing sample complexity upper
bound for R-MAX holds for ICR. We then introduce the con-
cept of relaxed tasks, and use the first bound to derive a tighter
upper bound for ICR under an additional assumption.

Theorem 3.1. Given arbitrary MDP M = (S,A, T,R, γ),
ε > 0, and 0 < δ < 1, there exists mmax = Õ(

|S|V 2
max

ε2(1−γ)2 ),
such that for all (m0,Δm) satisfying 1 ≤ m0 ≤ mmax and
mmax−m0

Δm = Õ(
|S|2|A|V 3

max
ε3(1−γ)3 ), the following holds. If ICR is

executed on M with parameter (m0,Δm,mmax), then with
probability at least 1 − δ, the sample complexity of ICR is
bounded by Õ(

|S|2|A|V 3
max

ε3(1−γ)3 ).

Proof. (sketch) As m0 ≤ mmax and Δm > 0, ICR can be
seen as a two-stage algorithm: mt < mmax, and mt = mmax.

In the most agnostic situation, ICR is non-ε-optimal in all
steps before mt reaches mmax, resulting in an additional over-
head to the sample complexity. Under the parameter setting
for ICR in Theorem 3.1, this additional overhead of the first
stage is at most mmax−m0

Δm = Õ(
|S|2|A|V 3

max
ε3(1−γ)3 ) steps.

Then, ICR starts behaving exactly as an R-MAX with pa-
rameter m = mmax, except that it has already collected
mmax−m0

Δm samples. In the proof of sample complexity up-
per bound of R-MAX in [Strehl et al., 2009], it is irrelevant
whether the R-MAX starts with a non-empty multiset of sam-
ples or not, as long as the optimistic model is maintained cor-
rectly, which is properly handled by ICR. Moreover, every
sample ICR collected in the first stage is as useful as in R-
MAX for modeling, and this actually decreases the number
of sampling needed thereafter. Therefore, ICR in the sec-
ond stage requires at most Õ(

|S|2|A|V 3
max

ε3(1−γ)3 ) non-ε-optimal ex-
plorations as R-MAX with m = mmax.
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Putting the two stages together, ICR with (m0,Δm,mmax)
has an upper bound on sample complexity of Õ(

|S|2|A|V 3
max

ε3(1−γ)3 )+

Õ(
|S|2|A|V 3

max
ε3(1−γ)3 ) = Õ(

|S|2|A|V 3
max

ε3(1−γ)3 ).

The original bound for R-MAX we used in this theorem is
essentially Õ( |S||A|Vmax

ε(1−γ) m) with m = Õ(
|S|V 2

max
ε2(1−γ)2 ). For clar-

ity and convenience, we denote |S||A|Vmax
ε(1−γ) as C and rewrite

this bound as Õ(Cm). Intuitively, the mechanism of increas-
ing mt in ICR should help improve the bound on the factor
m. Inspired by this idea, we derive a tighter upper bound for
ICR in the remainder of this section. First we introduce the
concept of relaxed tasks.

Definition 3.2. Let L = (S,A, T,R, γ, ε, δ) be a learning
task for R-MAX. A relaxed task of L is a tuple (L′, pL′ ,mL′ )
where L′ = (S,A, T ′, R, γ′, ε, δ), such that (1) R-MAX
with m = mL′ is PAC-MDP in L′, (2) given any tra-
jectory (s0, a0, r0, s1, a1, r1, ...) produced by R-MAX with
m = mL′ in L′, at every t ≥ 0 that V σ(ψt)

L′ (st) ≥ V ∗
L′(st)−ε,

it follows V σ(ψt)
L (st) ≥ V ∗

L (st)− ε, and (3) a trajectory pro-
duced by R-MAX with m = mL′ in L is, with probabil-
ity pL′ , a trajectory that can be produced by R-MAX with
m = mL′ in L′.

Because pL′ and mL′ can be determined by L and L′, we
simply write the relaxed task (L′, pL′ ,mL′ ) as L′ if there is
no ambiguity. Trivially, if L′ = L, then we have pL′ = 1.

Lemma 3.3. If R-MAX with m = mL′ executed in L success-
fully yields a trajectory that could be yielded in relaxed task
L′, then with probability at least 1−δ, the sample complexity
of this run is Õ(CL′mL′).

Proof. As R-MAX with m = mL′ is PAC-MDP in L′, it
holds that with probability at least 1 − δ, V

σ(ψt)
L′ (st) ≥

V ∗
L′(st) − ε is true for all but Õ(CL′mL′) step t. By Def-

inition 3.2, any ε-optimal steps in L′ is ε-optimal in L, and
therefore, this trajectory has the same property in L. By the
definition of sample complexity, it follows Lemma 3.3.

We are especially interested in some L′ easier than L, in the
sense that R-MAX is PAC-MDP in L′ with m = mL′ ≤ mL.
As mL′ = Õ(

|S|(V ′
max)

2

ε2(1−γ′)2 ), this can be realized by γ′ ≤ γ or
some T ′ �= T . Although T ′ does not explicitly appear in mL′ ,
it directly affects the value space of the relaxed task, and thus
has impact on V ′

max and the possible choices of γ′.
One obvious relaxed task for a given task is the determin-

istic version of the original task that preserves the set of near-
optimal policies. Figure 1 shows an example where the opti-
mal policy of the deterministic relaxed task L′ is the optimal
policy of the original L. Clearly, it is far easier to find out
the optimal policy in L′ than in L. By Lemma 3.3, if R-
MAX explores in L with m = mL′ = 1 as if it is in L′,
it may converge to the optimal policy of L with much fewer
samples. However, if the self-transition (s1, a2, s1) happens
before (s1, a2, s2) in L, then the resulting trajectory can never
be yielded in the corresponding deterministic L′, and it is

s1 s2

(a2, 0.2, 0)

(a1, 1, 0.1)

(a2, 0.8, 0)

(a2, 1, 1)

(a1, 1, 0)

(a)

s1 s2

(a2, 1, 0)

(a1, 1, 0.1) (a2, 1, 1)

(a1, 1, 0)

(b)

Figure 1: (a) A learning task L with γ = 0.9. (a, t, r) stands
for by taking action a, the state transits with probability t and
reward r. (b) A deterministic relaxed task L′ with γ′ = 0.9.

less likely that R-MAX still keeps to be PAC-MDP there-
after. Therefore, the corresponding probability pL′ can be
fairly small in this case.

Usually, the non-deterministic relaxed tasks can have much
higher pL′ than the deterministic one. Nevertheless, because
the probability 1−pL′ is still non-trivial, if any strategy wants
to exploit these relaxed tasks and be PAC-MDP simultane-
ously, it must have some mechanisms to correct undesirable
exploration behavior caused by the difference between the
original task and its relaxed tasks. This is the reason we in-
troduce the re-optimisticalization operation to ICR.

Now we are ready for the new upper bound for ICR.
Theorem 3.4. Given an arbitrary learning task
L = (S,A, T,R, γ, ε, δ) and its K + 1 relaxed tasks
(L0, pL0 ,mL0 ), (L1, pL1 ,mL1 ), ..., (LK , pLK

,mLK
) where

LK = L and pLK
= 1. Without loss of generality, assume

that mL0 < mL1 < ... < mLK
. If the environment is able

to accurately predict whether the executing ICR with current
mt = mLi

, seen as an R-MAX with m = mLi
, is producing

a trajectory in L which could be produced in Li as well,
and send this information as a signal to ICR, so that ICR
can stop increasing mt by setting mmax ← mt, then with
probability at least 1− δ, the expected sample complexity for
ICR executed in L with initial parameter setting according to
Theorem 3.1 is bounded by

Õ(
|S||A|Vmax

ε(1− γ)
(pL0

mL0
+

K∑
k=1

[

k−1∏
j=0

(1− pLj
)]pLk

mLk
)).

Proof. (sketch) The whole learning process can be seen as a
binary process with different success probability pL0 , pL1 , ...,
pLK

, where ICR tries successively to produce a trajectory that
can be produced by R-MAX in L0, L1, ..., LK respectively
with m = mL0

,mL1
, ...,mLK

. Therefore, the probability
of ICR getting its first success at �mt	 = mLi

is given by
P0 = pL0

for i = 0 and Pi = [
∏i−1
j=0(1− pLj

)]pLi
for i > 0.

After a success event at mt = mLi , ICR starts behaving
exactly as R-MAX with m = mLi

in L as if it is in Li. By
Theorem 3.1 and Lemma 3.3, with probability at least 1− δ,
the sample complexity of this sub-trajectory is Õ(CLi

mLi
).

With a linear increasing method, the additional overhead be-
fore mt reaches mLi

is Õ(CLmLi
), which is no larger than

Õ(CLi
mLi

). Therefore, with probability at least (1 − δ)Pi,
ICR has a sample complexity of Õ(CLmLi

). Then Theorem
3.4 follows immediately.

4036



At first glance, the assumption of additional signal seems
unrealistic. However, in practical use, an algorithm is halted
subject to some predefined conditions rather than runs for in-
finite steps. This halting signal is actually more informative
than the one appeared in Theorem 3.4, as the halting signal
contains information related to the performance of the current
policy. Still, the sample complexity theories concern infinite-
step situations, and consequently the halting signal needs to
be revised into a non-stopping form, resulting in the weaker
signal in Theorem 3.4.

Generally speaking, specifying all possible relaxed tasks
for a given task is non-trivial, as there can be infinitely many
relaxed tasks. Fortunately, there is no need for ICR to know
them in prior, since a linear increasing mt eventually covers
all possible integers between m0 and mL, and thus covers
all relaxed tasks that is useful for ICR. Therefore, given an
arbitrary task L, its relaxed tasks can be simply seen as a vec-
tor of probabilities (p1, p2, ..., pmmax ) where pk corresponds
to pL′ that mL′ = k. Then the new bound can be writ-
ten as Õ( |S||A|Vmax

ε(1−γ) (p1 +
∑mmax
k=2 [

∏k−1
j=1 (1 − pj)]pkk)). The

probabilities (p1, p2, ..., pmmax ) can be obtained from empir-
ical results as in Section 4.2. In many real-world domains,
the non-deterministic property of the dynamics comes mostly
from sensor noise or partial observability. Learning tasks in
these domains can be easily relaxed to the easier ones where
the agent could receive more accurate information, and thus
it is very likely that most of the p1, p2, ..., pmmax are non-zero
for these tasks. As the term [

∏k−1
j=1 (1 − pj)]pkk decays al-

most exponentially with k, the main part of the bound above
is almost linear to the relevant quantities of the learning task,
showing that ICR is able to cut off overly cautious exploration
efficiently most of the time.

3.3 Increasingly Cautious V-MAX (ICV)

The principle of ICO can also be applied to V-MAX, yield-
ing the new exploration strategy of Increasingly Cautious V-
MAX (ICV). We replace the fixed m in the original biased
transition in Equation 5 with the increasing �mt	:

T̃ (s, a, s′) =

⎧⎪⎪⎨
⎪⎪⎩

min(n(s, a), �mt	)
�mt	 T̄ (s, a, s′) s′ �= sI

1− min(n(s, a), �mt	)
�mt	 s′ = sI

(7)
The resulting pseudo-code for ICV is given in Algorithm 2.

By combining the mechanism of V-MAX and ICO, ICV
not only makes use of learned knowledge in early stages as
V-MAX, but also reduces possible overly cautious sampling.
PAC-MDP analysis for ICV can be done in the same way as
ICR, showing that the bounds in Theorem 3.1 and Theorem
3.4 holds for ICV subject to the same conditions as ICR.

4 Experiments

In this section, we first introduce the basic settings of our
experiments, then present the results in two parts. The first
part demonstrates the overall performance improvement of
ICR and ICV in complex problems; the second part illustrates
how ICO utilizes the properties of a learning task in detail.

Algorithm 2 Increasingly Cautious V-MAX(m0,Δm,mmax)

1: Multiset of collected samples ψ ← ∅

2: Initialize T̃ , R̃ using Equation 7, 4
3: Q̃(s, a) ← Vmax for all (s, a)
4: for timestep t = 1, 2, 3, ... do
5: Observe current state st
6: Execute greedy action at ← argmaxaQ̃(st, a)
7: Receive reward rt and transit to the next state st+1

8: ψ ← ψ ∪ (st, at, st+1, rt)
9: mt ←min(mt−1 +Δm,mmax)

10: if �mt	 > �mt−1	 then

11: Update T̃ for all (s, a) that n(s, a) ≤ �mt	 using
Equation 7

12: if n(st, at) ≤ mmax then

13: Update T̃ (st, at, ·), R̃(st, at, ·) using Equation 7, 4
14: Update Q̃ by VI if T̃ has been updated

In our experiments, the average number of timesteps the
agent needs to discover a near-optimal policy, rather than the
average cumulative reward, is used as performance metric, as
the former is more suitable in the context of comparing the
sampling efficiency of exploration strategies. Specifically, in
each independent run of a learning process, the agent starts
learning from a fixed start state, and a separate test process
is carried out for every 100 learning steps to check if the
agent has discovered a near-optimal policy. In the test pro-
cess, the current policy πt is calculated by VI from a model
built from all collected samples (even if the strategy has dis-
carded them) without any optimism (so that exploration is
turned off). Then, πt is assessed in 20 independent test runs,
each for 1000 steps from the start state; the average per-step
reward ρπt can be estimated from these test runs. If the result
is no less than 0.9ρ∗, where ρ∗ is the average per-step re-
ward of the optimal policy, then we say that the agent yields
a success in discovering a 0.1ρ∗-optimal policy, and the cur-
rent timestep τ is reported as the final result of this learning
process. If the agent fails to find out a 0.1ρ∗-optimal policy
within tmax = 300000 steps, then a timeout is reported.

We conducted our experiments in a maze-style domain
called ComplexMaze, which combines the key elements of
FlagMaze [Dearden et al., 1998] and MazeWithPits [Leffler
et al., 2007]. In a ComplexMaze, the task of the learning
agent is to find out sufficient policies that collect all flags
and reach goal in fewer steps without falling into any pits.
Flags and pits are compact alternatives respectively for sub-
optimal goals [Wiering and Schmidhuber, 1998] and combi-
nation locks [Whitehead, 1991; Li, 2012], which make ex-
ploration more challenging. Some examples of the Complex-
Maze we used are shown in Figure 2.

We used a continuing task setting with γ = 0.998. The
agent starts from the grid marked as ‘S’ with no collected
flags; in every time step, the agent must choose to move to
one of the four possible directions. The probability p of slip-
ping events, where an agent slips into one of the two wrong
directions perpendicular to the chosen direction, was set to
0.1 as in FlagMaze. The reward for reaching the goal ‘G’,
rgoal, is in the form of cnflags , where c is a constant and nflags
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(a) (b)

Figure 2: (a) A ComplexMaze with three flags (‘F’) and six
pits (gray grids). (b) A maze-style Chain.

is the number of collected flags. After receiving the goal re-
ward, all collected flags will be reset and the agent will be
sent back to ‘S’. Pits (displayed as gray grids) work in the
same way as the goal, except their rewards are always zero.
Walking toward blocks (displayed as black grids) or borders
of the maze has no effect on position, flags or reward. As
long as γ < 1, longer paths are penalized by the discount, so
a trivial step penalty is not necessary. The threshold of the
Bellman error in Value Iteration was set to 0.01.

4.1 Experiments for overall performance

We compared the performance of ICR and ICV with R-MAX,
V-MAX, as well as OIM [Szita and Lőrincz, 2008], which is
reported to have good empirical results in various domains,
and MoRMAX [Szita and Szepesvári, 2010], which has a bet-
ter sample complexity upper bound than R-MAX. The maze
shown in Figure 2 (a) was used with rgoal = 10nflags . Under
this setting, a 0.1ρ∗-optimal policy must collect all flags and
avoid all pits before reaching the goal, and only about 4 sub-
optimal roundabout steps is allowed in the path connecting
the start and the goal. Without a surprise, ε-greedy yielded
timeouts in all 20 runs respectively under all tested parame-
ters, indicating that the learning task is far from trivial.

By trial-and-error on the parameters, we found that set-
ting m = 5 for R-MAX and V-MAX produces best results
in this learning task. Setting m < 5, on the other hand, will
notably increase the chances of timeouts. Rao and White-
son [2012] suggest that unlike R-MAX, setting m large for
V-MAX will not worsen its performance. However, with
m = 1000, m = 10000 and m = tmax, V-MAX (as well
as R-MAX) yielded timeouts in all 20 runs in both mazes
shown in Figure 2 (a) and (b), indicating that V-MAX with
large m performs as poorly as R-MAX against combination
locks. The best parameter found for OIM is R0 = 0.05Rmax,
and for MoRMAX is m = 3. For ICR and ICV, although
there seem to be three parameters, we found that a trivial set-
ting of m0 = 2, mmax = tmax is sufficient for all tasks in our
experiments. Meanwhile, the best Δm found was 1/7000 for
ICR and 1/5000 for ICV.

The results of success time τ in the 20 runs are shown in
the box plot in Figure 3. On average, ICR and ICV had an
improvement of 71.0% and 59.1% respectively to their origi-
nal versions. The result of Friedman test is p = 3.9× 10−10,
suggesting the difference between the strategies is significant;

0 5000 10000 15000 20000 25000 30000 35000
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Figure 3: Success time τ in the maze shown in Figure 2 (a).
The small cubes represent the mean of the results.
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Figure 4: Success time τ in 20 generated mazes. Timeouts
and outliers are not shown for the sake of clarity.

further multiple comparison by Tukey’s range test shows that
at significance level 0.1, ICV outperformed all other strate-
gies, while ICR outperformed R-MAX and matched the per-
formance of OIM, MoRMAX, and V-MAX.

We also conducted the same experiment on a set of 20 ran-
domly generated 8×8 ComplexMazes.1 Different patterns
were observed: in some mazes, pits and flags are highly con-
centrated, requiring more cautious exploration, while in some
others, pits and flags are clearly separated, and thus a careless
exploration might be sufficient.

Considering that the scale of the problems are nearly iden-
tical, we used the same parameter settings as in the former
experiment. As a result, R-MAX, V-MAX, and MoRMAX
respectively yielded 5, 6, and 9 timeouts in 9 of the 20 mazes,
while no timeout was reported for OIM, ICR or ICV. This in-
dicates that compared with OIM, ICR and ICV, the optimal
settings of parameter for R-MAX, V-MAX, and MoRMAX
are more sensitive to the dynamics of the problems, and there-
fore careful parameter tuning is required for these strategies.
The success time τ in 20 mazes are shown in the box plots in
Figure 4.

Two-way rank transform ANOVA test with an additive
model shows that the p-values for the strategies, the mazes,
and the interaction between them are all less than 1.7×10−17.

1Details can be found at http://staff.ustc.edu.cn/~ketang/codes/
IJCAI15ICO.html
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This suggests that all of these factors had significant impact
on the results, and thus our 20-maze setting is meaningful
for comparing overall performance of the strategies. Further
multiple comparison shows that at significance level 0.05,
ICV outperformed all other strategies, ICR outperformed all
except ICV, while OIM, MoRMAX and V-MAX were in a
tie, and R-MAX was dominated by all.

4.2 Illustrating the Utilization of Relaxed Tasks

In Section 3.2, we mentioned that given an arbitrary learn-
ing task, its relaxed task probability vector can be obtained
from empirical results. In this experiment, we measure this
probability vector for the maze domain shown in Figure 2 (b)
to demonstrate how this can be done, and use the results to
illustrate how ICO works in detail.

Under our experiment setting, the relaxed tasks can be seen
as a relationship between τLi

, mLi
and pLi

, such that (1)
τLi

is positively related to mLi
, and (2) for R-MAX with

m = mLi
, with probability pLi

, it finds out a 0.1ρ∗-optimal
policy with τLi

steps in average; otherwise it converges to
an undesirable policy and yields a timeout. Then the proba-
bility ICR discovers a 0.1ρ∗-optimal policy at �mt	 = mLi

can be estimated from the observed p̄Li
by P̂0 = p̄L0

and
P̂i = [

∏i−1
j=0(1 − p̄Lj

)]p̄Li
for i > 0. The estimated value

of P̂i should be consistent with the observed P̃i if the prob-
ability pLi

we measure here is essentially the same thing in
Definition 3.2.

The experiment was carried out in the ComplexMaze
shown in Figure 2 (b) with rgoal = 1000nflags ; this task resem-
bles the widely used Chain domain [Meuleau and Bourgine,
1999]. As our ICR does not discard samples collected for
known-for-now state-action pairs, in order to reduce the vari-
ables of the experiment, we compared ICR with a non-
discarding version of R-MAX. The results of 40 independent
runs for R-MAX respectively with m = 2, 3, 4, 5 and ICR
with m0 = 2,Δm = 1/2400,mmax = tmax are shown in
Table 1.

mLi
2 3 4 5

R-MAX τ̄Li 2600.0 3676.5 4700.0 5905.0
p̄Li 19/40 34/40 39/40 40/40
P̂i 47.5% 44.6% 7.7% 0.2%

ICR τ̃Li 2252.6 3841.2 6725.0 0.0
P̃i 47.5% 42.5% 10.0% 0.0%

Table 1: Results for illustrating the mechanisms of ICO.

From the results of R-MAX, it can be observed that τ̄i
increases with mLi

almost linearly, which is sensible be-
cause the possible route of exploration is highly constrained
in this maze. The results of p̄Li

suggests that the relaxed
task probability vector of this maze domain is approximately
(0, 0.475, 0.85, 0.975, 1). It can be inferred reasonably that
the terms after p5 are also 1. The observed P̃i of ICR is
very close to their estimated value P̂i made from p̄Li

, sup-
porting that the probability vector obtained above is a suffi-
cient approximation to the true one defined in Section 3.2.

On the other hand, τ̃i of ICR is not strictly consistent with
τ̄i of R-MAX due to the additional overheads in ICR and the
non-overlapping intervals of τ̃i. This suggests that the mech-
anisms of ICO is still improvable, as there is no mechanism
for explicitly controlling the additional overheads yet.

The mean value of τ in all 40 runs for ICR is 3375.0 with
no timeout occurred, outperforming R-MAX with any fixed
m in probability (since timeouts indicate τ → +∞). These
results support that by utilizing the relaxed task property of
the learning problem, ICO is able to control the degree of
cautiousness effectively and automatically.

5 Conclusion and Discussion

We have presented that by applying the principle of ICO to
R-MAX and V-MAX, the newly proposed strategies ICR and
ICV improve their original versions respectively both in the-
oretical guarantee and in empirical performance. Still, there
is space for further improving ICR and ICV. The proof of the
sample complexity bound for ICR in Theorem 3.1 actually
does not concretely rely on certain style of increasing mt,
and can be generalized to polynomial, logarithmic, or more
complicated style of increasing with slight modification. This
may help reducing the additional overheads caused by the lin-
ear style currently used in ICR and ICV.

The ICO is a general principle and could be applied to other
PAC-MDP strategies, such as OIM, MBIE, MoRMAX, or
even non-PAC-MDP strategies such as Bayesian Exploration
Bonus [Kolter and Ng, 2009] which utilizes optimism under
the Bayesian framework. We are particularly interested in ap-
plying ICO to MoRMAX, which may produce a strategy with
the tightest sample complexity bound among the PAC-MDP
strategies ever been published.

Finally, a combination of ICO and Knows What It Knows
framework [Li et al., 2011] may lead to discovery of new
strategies that are strong both in theory and in practice in
continuous-space problems, as ICR and ICV in the discrete
ones.
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