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Abstract

In multi-label learning, each object is represented
by a single instance while associated with a set of
class labels. Due to the huge (exponential) num-
ber of possible label sets for prediction, existing ap-
proaches mainly focus on how to exploit label cor-
relations to facilitate the learning process. Never-
theless, an intrinsic characteristic of learning from
multi-label data, i.e. the widely-existing class-
imbalance among labels, has not been well inves-
tigated. Generally, the number of positive train-
ing instances w.r.t. each class label is far less than
its negative counterparts, which may lead to per-
formance degradation for most multi-label learn-
ing techniques. In this paper, a new multi-label
learning approach named Cross-Coupling Aggre-
gation (COCOA) is proposed, which aims at lever-
aging the exploitation of label correlations as well
as the exploration of class-imbalance. Briefly, to
induce the predictive model on each class label,
one binary-class imbalance learner corresponding
to the current label and several multi-class imbal-
ance learners coupling with other labels are aggre-
gated for prediction. Extensive experiments clearly
validate the effectiveness of the proposed approach,
especially in terms of imbalance-specific evalua-
tion metrics such as F-measure and area under the
ROC curve.

1 Introduction
Under the multi-label learning setting, each example is rep-
resented by a single instance (feature vector) while associ-
ated with multiple class labels simultaneously [Tsoumakas et
al., 2010; Zhang and Zhou, 2014]. Formally speaking, let
X = Rd denote the input space of d-dimensional feature
vectors and Y = {y1, y2, . . . , yq} denote the output space
of q class labels. Given the multi-label training set D =
{(xi, Yi) | 1 ≤ i ≤ N}, where xi ∈ X is a d-dimensional
feature vector and Yi ⊆ Y is the set of labels associated with
xi, the task is to learn a multi-label classifier h : X → 2Y

from D which maps from the space of feature vectors to the
space of label sets.

The key challenge to learn from multi-label data lies in the
huge number of possible label sets for prediction, which is
exponential to the size of label space (i.e. 2q). To take on
this challenge, existing approaches mainly focus on exploit-
ing correlations among class labels to facilitate the learning
process [Tsoumakas et al., 2010; Zhang and Zhou, 2014].
Based on the order of correlations being considered, existing
approaches can be roughly grouped into three categories, i.e.
first-order approaches which assume independence among
class labels, second-order approaches which consider cor-
relations between a pair of class labels, and high-order ap-
proaches which consider correlations among all the class la-
bels or subsets of class labels.

On the other hand, an inherent property of learning from
multi-label data, i.e. the class-imbalance among labels, has
not been fully taken into consideration by most existing ap-
proaches. For each class label yj ∈ Y , let D+

j = {(xi,+1) |
yj ∈ Yi, 1 ≤ i ≤ N} and D−j = {(xi,−1) | yj /∈
Yi, 1 ≤ i ≤ N} denote the positive and negative training
examples w.r.t. yj . Generally, the corresponding imbalance
ratio ImRj = max(|D+

j |, |D
−
j |)/min(|D+

j |, |D
−
j |) would

be high.1 For instance, among the thirteen benchmark multi-
label data sets used in this paper (Table 2), the average
imbalance ratio across the label space (i.e. 1

q

∑q
j=1 ImRj)

ranges from 2.1 to 17.9 (with nine of them greater than 5.0),
and the maximum imbalance ratio across the label space (i.e.
max1≤j≤q ImRj) ranges from 3.0 to 50.0 (with eleven of
them greater than 10.0).

Class-imbalance has long been regarded as one fundamen-
tal threat to compromise the performance of standard ma-
chine learning algorithms, which would also lead to perfor-
mance degradation for most multi-label learning approaches
[He and Garcia, 2009; Zhang and Zhou, 2014]. Therefore, a
favorable practice towards designing multi-label learning al-
gorithm should cautiously leverage the exploitation of label
correlations as well as the exploration of class-imbalance. In
this paper, a novel class-imbalance aware algorithm named
COCOA, i.e. CrOss-COupling Aggregation, is proposed to
learning from multi-label data. For each class label, CO-
COA builds one binary-class imbalance learner correspond-
ing to the current label and also several multi-class imbalance

1In most cases, |D+
j | < |D

−
j | holds.
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learners coupling with other labels. After that, the final pre-
diction on each class label is obtained by aggregating the out-
puts yielded by the binary learner and the multi-class learn-
ers. Comparative studies across thirteen publicly-available
multi-label data sets show that COCOA achieves highly com-
petitive performance, especially in terms of appropriate eval-
uation metrics under class-imbalance scenario.

The rest of this paper is organized as follows. Section 2
presents technical details of the proposed COCOA approach.
Section 3 discusses existing works related to COCOA. Section
4 reports the experimental results of comparative studies. Fi-
nally, Section 5 concludes.

2 The COCOA Approach
As shown in Section 1, the task of multi-label learning is to
induce a multi-label classifier h : X → 2Y from the training
set D = {(xi, Yi) | 1 ≤ i ≤ N}. This is equivalent to learn
q real-valued functions fj : X → R (1 ≤ j ≤ q), each
accompanied by a thresholding function tj : X → R. For any
example x ∈ X , fj(x) returns the confidence of associating
x with class label yj , and the predicted label set is determined
according to:

h(x) = {yj | fj(x) > tj(x), 1 ≤ j ≤ q} (1)

Let Dj denote the binary training set derived from D for the
j-th class label yj :

Dj = {(xi, φ(Yi, yj)) | 1 ≤ i ≤ N} (2)

where φ(Yi, yj) =

{
+1, if yj ∈ Yi
−1, otherwise

Therefore, the derived binary training set consists of a sub-
set of positive training examples (D+

j ) and a subset of nega-
tive training examples (D−j ), i.e. Dj = D+

j

⋃
D−j . To deal

with the issue of having skewed distribution betweenD+
j and

D−j , one straightforward solution is to apply some binary-
class imbalance learner B on Dj to induce a binary classifier
gj , i.e. gj ← B(Dj). Let gj(+1 |x) denote the predictive
confidence that x should be regarded as a positive example
for yj , the real-valued function fj(·) can then be instantiated
as fj(x) = gj(+1 |x). In addition, the thresholding func-
tion tj(·) can be simply set to some constant function such as
tj(x) = 0.

In the above class-imbalance handling strategy, the predic-
tive model fj(·) for each class label yj is built in an indepen-
dent manner. To incorporate label correlations into the learn-
ing process, we choose to randomly couple another class label
yk (k 6= j) with yj as follows. Given the label pair (yj , yk),
a multi-class training set Djk can be derived from D:

Djk = {(xi, ψ(Yi, yj , yk)) | 1 ≤ i ≤ N} (3)

where ψ(Yi, yj , yk) =


0, if yj /∈ Yi and yk /∈ Yi

+1, if yj /∈ Yi and yk ∈ Yi
+2, if yj ∈ Yi and yk /∈ Yi
+3, if yj ∈ Yi and yk ∈ Yi

Table 1: The pseudo-code of COCOA.

Inputs:
D: the multi-label training set {(xi, Yi) | 1 ≤ i ≤ N}

(xi ∈ X , Yi ⊆ Y,X = Rd,Y = {y1, y2, . . . , yq})
B: the binary-class imbalance learner
M: the multi-class imbalance learner
K: the number of coupling class labels
x: the test example (x ∈ X )
Outputs:
Y : the predicted label set for x
Process:
1: for j = 1 to q do
2: Form the binary training set Dj according to Eq.(2);
3: gj ← B(Dj);
4: Draw a random subset IK ⊂ Y \ {yj} containing K class

labels;
5: for yk ∈ IK do
6: Form the tri-class training set Dtri

jk according to Eq.(4);
7: gjk ←M(Dtri

jk );
8: end for
9: Set the real-valued function fj(·) according to Eq.(5);

10: Set the constant thresholding function tj(·), with the constant
aj being determined according to Eq.(6);

11: end for
12: Return Y = h(x) according to Eq.(1);

Here, the class label ψ(Yi, yj , yk) for the derived four-class
learning problem is determined by the joint assignment of yj
and yk w.r.t. Yi.

Note that although label correlations can be exploited by
making use of Djk in the learning process, the issue of class-
imbalance may be amplified by jointly considering yj and
yk. Without loss of generality, suppose that positive ex-
amples D+

j (D+
k ) correspond to the minority class in the

binary training set Dj (Dk). Accordingly, the first class
(ψ(Yi, yk, yk) = 0) and the fourth class (ψ(Yi, yk, yk) = +3)
in Djk would contain the largest and the smallest number of
examples. Compared to the original imbalance ratios ImRj

and ImRk in binary training sets Dj and Dk, the imbalance
ratio between the largest class and the smallest class would
roughly turn into ImRj ·ImRk in four-class training setDjk.
To deal with this potential problem, COCOA transforms the
four-class data set Djk into a tri-class data set Dtri

jk by merg-
ing the third class and the fourth class (both with positive
assignment for yj):

Dtri
jk = {

(
xi, ψ

tri(Yi, yj , yk)
)
| 1 ≤ i ≤ N} (4)

where ψtri(Yi, yj , yk) =


0, if yj /∈ Yi and yk /∈ Yi

+1, if yj /∈ Yi and yk ∈ Yi
+2, if yj ∈ Yi

Here, for the newly-merged class (ψtri(Yi, yj , yk) = +2), its
imbalance ratios w.r.t. the first class (ψtri(Yi, yj , yk) = 0)
and the second class (ψtri(Yi, yj , yk) = +1) would roughly
be ImRj ·ImRk

1+ImRk
and ImRj

1+ImRk
, which is much smaller than the

worst-case imbalance ratio ImRj · ImRk in the four-class
training set.
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Table 2: Characteristics of the benchmark multi-label data sets.

Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Imbalance Ratio
min max avg

CAL500 502 68 124 numeric 25.058 0.202 502 1.000 1.040 24.390 3.846
Emotions 593 72 6 numeric 1.869 0.311 27 0.046 1.247 3.003 2.146
Medical 978 144 14 numeric 1.075 0.077 42 0.043 2.674 43.478 11.236
Enron 1702 50 24 nominal 3.113 0.130 547 0.321 1.000 43.478 5.348
Scene 2407 294 6 numeric 1.074 0.179 15 0.006 3.521 5.618 4.566
Yeast 2417 103 13 numeric 4.233 0.325 189 0.078 1.328 12.500 2.778
Slashdot 3782 53 14 nominal 1.134 0.081 118 0.031 5.464 35.714 10.989
Corel5k 5000 499 44 nominal 2.214 0.050 1037 0.207 3.460 50.000 17.857
Rcv1 (subset 1) 6000 472 42 numeric 2.458 0.059 574 0.096 3.344 50.000 15.152
Rcv1 (subset 2) 6000 472 39 numeric 2.170 0.056 489 0.082 3.215 47.619 15.873
Eurlex-sm 19348 250 27 numeric 1.492 0.055 497 0.026 3.509 47.619 16.393
Tmc2007 28596 500 15 nominal 2.100 0.140 637 0.022 1.447 34.483 5.848
Mediamill 43907 120 29 numeric 4.010 0.138 3540 0.079 1.748 45.455 7.092

By applying some multi-class imbalance learner M on
Dtri

jk , one multi-class classifier gjk can be induced, i.e. gjk ←
M(Dtri

jk ). Correspondingly, let gjk(+2 |x) denote the pre-
dictive confidence that x should have positive assignment
w.r.t. yj , regardless of x having positive or negative assign-
ment w.r.t. yk. For each class label yj , COCOA draws a ran-
dom subset of K class labels IK ⊂ Y \ {yj} for pairwise
coupling. The real-valued function fj(·) is then instantiated
by aggregating the predictive confidences of one binary-class
imbalance learner and K multi-class imbalance learners:

fj(x) = gj(+1 |x) +
∑

yk∈IK
gjk(+2 |x) (5)

For the thresholding function tj(·), COCOA chooses to set it
as a constant function tj(x) = aj . By accompanying the
constant aj with fj , any example x is predicted to be posi-
tive for yj if fj(x) > aj , and negative otherwise. Specifi-
cally, the “goodness” of aj is evaluated based on certain met-
ric which measures how well fj can classify examples in Dj

by using aj as the bipartition threshold. In this paper, we em-
ploy the F-measure metric (i.e. harmonic mean of precision
and recall) which is popular for evaluating the performance
of binary classifier, especially for the case of skewed class
distribution. Let F (fj , a,Dj) denote the F-measure value
achieved by applying {fj , a} over the binary training set Dj ,
the thresholding constant aj is determined by maximizing the
corresponding F-measure:

aj = argmaxa∈R F (fj , a,Dj) (6)

Table 1 summarizes the complete procedure of the pro-
posed COCOA approach. For each class label yj ∈ Y , one
binary-class imbalance learner (Steps 2-3) and K coupling
multi-class imbalance learners (Steps 4-8) are induced by ma-
nipulating the multi-label training set D. After that, the pre-
dictive model for yj is produced by aggregating the predictive
confidences of the induced binary and multi-class classifiers
(Steps 9-10). Finally, the predicted label set for the test exam-
ple is obtained by querying the predictive models of all class
labels (Step 12).

It is worth noting that although pairwise coupling (Step 6)
only considers second-order correlations among labels, the

overall label correlations exploited by COCOA are actually
high-order as controlled by the parameter K. Here, CO-
COA fulfills high-order label correlations by imposing pair-
wise coupling for K times instead of combining all K cou-
pling labels simultaneously, as the latter strategy may lead to
severe class-imbalance due to the combinatorial effects.

3 Related Work
In this section, we briefly discuss existing works related to
COCOA. More comprehensive reviews on multi-label learn-
ing can be found in survey literatures such as [Tsoumakas et
al., 2010; Zhang and Zhou, 2014; Gibaja and Ventura, 2015].

As mentioned in Section 2, one intuitive solution towards
class-imbalance multi-label learning is to firstly decompose
the multi-label learning problem into q independent binary
learning problems, one per class label (a.k.a. binary rele-
vance). And then, for each decomposed binary learning prob-
lem, the skewness between the positive and negative train-
ing examples can be dealt with via popular binary imbal-
ance learning techniques such as random or synthetic un-
dersampling/oversampling [Spyromitros-Xioufis et al., 2011;
Tahir et al., 2012]. However, useful information regarding
label correlations will be ignored in this decomposition pro-
cess.

Different from binary decomposition, one can also trans-
form the multi-label learning problem into a multi-class prob-
lem by treating any distinct label combinations appearing in
the training set as a new class (a.k.a. label powerset). After
that, the skewness among the transformed classes can be dealt
with via off-the-shelf multi-class imbalance learning tech-
niques [Wang and Yao, 2012; Liu et al., 2013]. Although
label correlations can be exploited in this transformation pro-
cess, the number of transformed classes (upper-bounded by
min(N, 2q)) may be too large for any multi-class learner to
work well.

Besides applying class-imbalance learning techniques to
the transformed binary or multi-class problems, one can
also make the multi-label learning algorithm be aware of
the class-imbalance issue via parameter tuning. For CO-
COA, the thresholding constant is calibrated by maximiz-
ing imbalance-specific metric such as F-measure based on
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Table 3: Performance of each comparing algorithm (mean±std. deviation) in terms of macro-averaging F-measure (MACRO-F).
In addition, •/◦ indicates whether COCOA is statistically superior/inferior to the comparing algorithm on each data set (pairwise
t-test at 1% significance level).

Algorithm Data Set
CAL500 Emotions Medical Enron Scene Yeast Slashdot

COCOA 0.207±0.009 0.662±0.013 0.690±0.015 0.324±0.009 0.732±0.013 0.457±0.015 0.327±0.009
USAM 0.217±0.006◦ 0.591±0.016• 0.670±0.012• 0.266±0.011• 0.624±0.008• 0.432±0.010• 0.259±0.010•
USAM-EN 0.246±0.004◦ 0.590±0.018• 0.665±0.025• 0.274±0.010• 0.620±0.011• 0.437±0.012 0.296±0.007•
SMOTE 0.237±0.006◦ 0.584±0.020• 0.672±0.022 0.266±0.006• 0.619±0.007• 0.430±0.006• 0.326±0.005
SMOTE-EN 0.239±0.004◦ 0.582±0.017• 0.672±0.022 0.275±0.004• 0.624±0.007• 0.431±0.005• 0.315±0.007
RML 0.209±0.008 0.645±0.016 0.666±0.018 0.309±0.010• 0.684±0.013• 0.471±0.014 0.311±0.009•
ML-KNN 0.074±0.002• 0.592±0.026• 0.474±0.031• 0.174±0.011• 0.715±0.011 0.380±0.008• 0.198±0.014•
CLR 0.081±0.007• 0.595±0.017• 0.650±0.012• 0.229±0.006• 0.631±0.013• 0.413±0.010• 0.233±0.007•
ECC 0.102±0.004• 0.642±0.014• 0.647±0.021• 0.241±0.006• 0.716±0.009 0.394±0.008• 0.250±0.007•
RAKEL 0.193±0.003• 0.613±0.018• 0.576±0.014• 0.256±0.006• 0.686±0.008• 0.420±0.005• 0.248±0.006•

Data Set win/tie/loss

Algorithm Corel5k Rcv1 Rcv1 Eurlex-sm Tmc2007 Mediamill counts for
(subset 1) (subset 2) COCOA

COCOA 0.195±0.004 0.363±0.008 0.337±0.009 0.703±0.007 0.669±0.002 0.459±0.004 /
USAM 0.141±0.004• 0.318±0.005• 0.306±0.005• 0.562±0.007• 0.607±0.002• 0.337±0.003• 12/0/1
USAM-EN 0.150±0.002• 0.317±0.005• 0.303±0.005• 0.563±0.004• 0.608±0.002• 0.337±0.003• 11/1/1
SMOTE 0.125±0.003• 0.314±0.006• 0.305±0.004• 0.552±0.003• 0.566±0.003• 0.338±0.001• 10/2/1
SMOTE-EN 0.126±0.002• 0.313±0.004• 0.304±0.004• 0.553±0.003• 0.567±0.003• 0.341±0.001• 10/2/1
RML 0.215±0.009◦ 0.387±0.020◦ 0.363±0.029◦ 0.059±0.003• 0.568±0.039• 0.268±0.019• 6/4/3
ML-KNN 0.028±0.004• 0.122±0.008• 0.103±0.008• 0.525±0.012• 0.479±0.008• 0.245±0.004• 12/1/0
CLR 0.049±0.004• 0.227±0.007• 0.226±0.006• 0.599±0.006• 0.623±0.003• 0.268±0.004• 13/0/0
ECC 0.064±0.004• 0.216±0.007• 0.199±0.004• 0.619±0.009• 0.642±0.003• 0.277±0.002• 12/1/0
RAKEL 0.084±0.005• 0.272±0.007• 0.263±0.005• 0.632±0.008• 0.643±0.004• 0.378±0.002• 13/0/0

the training set, which could also be calibrated based on
some held-out validation set [Fan and Lin, 2007] or be opti-
mized with an extra learning procedure [Quevedo et al., 2012;
Pillai et al., 2013]. Furthermore, instead of only tuning
the thresholding parameter, another sophisticated choice is
to design multi-label learning algorithms directly optimizing
the macro-averaging F-measure [Dembczyński et al., 2013;
Petterson and Caetano, 2010].

In view of the randomness in pairwise coupling, COCOA
makes use of ensemble learning to aggregate the predictions
of K randomly-generated imbalance learners. There have
been multi-label learning methods which also utilize ensem-
ble learning to deal with their inherent random factors, such
as ensembling chaining classifier with random order [Read
et al., 2011] or ensembling multi-class learner derived from
random k-labelsets [Tsoumakas et al., 2011a]. Furthermore,
ensemble learning can be employed as a meta-strategy to im-
prove generalization with homogeneous [Shi et al., 2011]
or heterogeneous [Tahir et al., 2010] component multi-label
learners.

4 Experiments
4.1 Experimental Setup
Data Sets
To serve as a solid basis for performance evaluation, a total of
thirteen benchmark multi-label data sets have been collected
for experimental studies. For each multi-label data set S, we
use |S|, L(S), dim(S) and F (S) to represent its number of

examples, number of class labels, number of features and fea-
ture type respectively. In addition, several multi-label statis-
tics are further used to characterize properties of S, whose
definitions can be found in [Read et al., 2011] while not de-
tailed here due to page limit.

Let ImRj denote the imbalance ratio on the j-th class label
(1 ≤ j ≤ q), the level of class-imbalance on S can be char-
acterized by the average imbalance ratio (1q

∑q
j=1 ImRj),

minimum imbalance ratio (min1≤j≤q ImRj) and maximum
imbalance ratio (max1≤j≤q ImRj) across the label space. As
a common practice in class-imbalance studies [He and Gar-
cia, 2009], extreme imbalance is not considered in this pa-
per. Specifically, any class label with rare appearance (less
than 20 positive examples) or with overly-high imbalance ra-
tio (ImRj ≥ 50) is excluded from the label space.

Table 2 summarizes characteristics of the experimen-
tal data sets, which are roughly ordered according to |S|.
As shown in Table 2, the thirteen data sets exhibit di-
versified properties from different aspects. These data
sets cover a broad range of scenarios, including music
(CAL500, Emotions), image (Scene, Corel5k), video
(Mediamill), biology (Yeast), and text (the others).
Here, dimensionality reduction is performed on text data sets
by retaining features with high document frequency.

Comparing Algorithms
In this paper, COCOA is compared against two series of algo-
rithms. As discussed in Section 3, the first series include sev-
eral approaches which are capable of dealing with the class-
imbalance issue in multi-label data:
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Table 4: Performance of each comparing algorithm (mean±std. deviation) in terms of macro-averaging AUC (MACRO-AUC).
In addition, •/◦ indicates whether COCOA is statistically superior/inferior to the comparing algorithm on each data set (pairwise
t-test at 1% significance level).

Algorithm Data Set
CAL500 Emotions Medical Enron Scene Yeast Slashdot

COCOA 0.557±0.005 0.843±0.010 0.958±0.006 0.731±0.006 0.943±0.003 0.710±0.006 0.736±0.005
USAM 0.514±0.005• 0.708±0.019• 0.855±0.012• 0.606±0.010• 0.790±0.009• 0.578±0.006• 0.617±0.004•
USAM-EN 0.513±0.004• 0.708±0.015• 0.860±0.024• 0.600±0.004• 0.788±0.009• 0.583±0.006• 0.618±0.004•
SMOTE 0.513±0.005• 0.703±0.019• 0.874±0.019• 0.617±0.007• 0.776±0.008• 0.579±0.006• 0.688±0.008•
SMOTE-EN 0.513±0.004• 0.704±0.013• 0.874±0.019• 0.617±0.007• 0.777±0.011• 0.581±0.007• 0.686±0.008•
RML − − − − − − −
ML-KNN 0.516±0.007• 0.806±0.015• 0.909±0.008• 0.663±0.006• 0.926±0.005• 0.679±0.004• 0.676±0.006•
CLR 0.561±0.004◦ 0.796±0.010• 0.948±0.008• 0.709±0.007• 0.894±0.005• 0.650±0.004• 0.698±0.009•
ECC 0.549±0.007• 0.841±0.009 0.925±0.009• 0.723±0.006• 0.938±0.003• 0.689±0.006• 0.706±0.009•
RAKEL 0.528±0.005• 0.797±0.015• 0.828±0.006• 0.640±0.003• 0.892±0.004• 0.640±0.004• 0.612±0.002•

Data Set win/tie/loss

Algorithm Corel5k Rcv1 Rcv1 Eurlex-sm Tmc2007 Mediamill counts for
(subset 1) (subset 2) COCOA

COCOA 0.719±0.004 0.889±0.003 0.882±0.002 0.957±0.002 0.930±0.001 0.843±0.001 /
USAM 0.572±0.003• 0.674±0.010• 0.672±0.009• 0.788±0.009• 0.801±0.003• 0.655±0.004• 13/0/0/
USAM-EN 0.574±0.002• 0.676±0.010• 0.671±0.010• 0.789±0.006• 0.800±0.003• 0.654±0.006• 13/0/0/
SMOTE 0.597±0.004• 0.625±0.009• 0.620±0.008• 0.795±0.005• 0.793±0.003• 0.669±0.002• 13/0/0/
SMOTE-EN 0.596±0.004• 0.626±0.006• 0.620±0.009• 0.795±0.004• 0.793±0.003• 0.670±0.002• 13/0/0/
RML − − − − − − −
ML-KNN 0.590±0.005• 0.718±0.009• 0.710±0.009• 0.887±0.004• 0.849±0.003• 0.767±0.001• 13/0/0/
CLR 0.740±0.002◦ 0.891±0.003 0.882±0.002 0.944±0.001 0.906±0.001• 0.805±0.001• 8/3/2
ECC 0.697±0.006• 0.864±0.002• 0.855±0.003• 0.945±0.002• 0.921±0.001• 0.826±0.001• 12/1/0
RAKEL 0.552±0.002• 0.728±0.003• 0.721±0.003• 0.872±0.005• 0.859±0.002• 0.737±0.001• 13/0/0/
* MACRO-AUC not applicable to RML, which does not yield real-valued outputs on each class label [Petterson and Caetano, 2010].

• Undersampling (USAM): The multi-label learning prob-
lem is decomposed into q binary learning problems, and
the majority class in each binary problem is randomly
undersampled to form the new binary training set.

• SMOTE: The multi-label learning problem is decom-
posed into q binary learning problems, and the minor-
ity class in each binary problem is oversampled via the
SMOTE method [Chawla et al., 2002] to form the new
binary training set.
Considering that COCOA utilizes ensemble learning in
its learning process, an ensemble version of USAM and
SMOTE are also employed for comparison (named as
USAM-EN and SMOTE-EN).

• RML: Besides integrating binary decomposition with
undersampling/oversampling, another way to handle
class-imbalance is to design learning system which can
directly optimize imbalance-specific metric. Here, the
RML approach [Petterson and Caetano, 2010] is em-
ployed as another comparing algorithm, which maxi-
mizes macro-averaging F-measure on multi-label data
via convex relaxation.

In addition to the above algorithms, the second series in-
clude several well-established multi-label learning algorithms
[Zhang and Zhou, 2014], including first-order approach ML-
KNN [Zhang and Zhou, 2007], second-order approach CLR
[Fürnkranz et al., 2008], and high-order approaches ECC
[Read et al., 2011] and RAKEL [Tsoumakas et al., 2011a].

In this paper, all the comparing algorithms are instanti-
ated as follows: 1) For USAM, SMOTE and their ensem-
ble versions, decision tree is used as the base learner due
to its popularity in class-imbalance studies [He and Garcia,
2009]. Specifically, these algorithms adopt implementations
provided by the widely-used Weka platform with J48 deci-
sion tree (C4.5 implementation in Weka) as their base learner
[Hall et al., 2009]; 2) For RML, the original implementation
provided in the literature is used; 3) For the second series
of algorithms (ML-KNN, CLR, ECC and RAKEL), we adopt
their canonical implementations provided by the MULAN
multi-label learning library (upon Weka platform) with sug-
gested parameter configurations [Tsoumakas et al., 2011b];
4) For COCOA, both the binary-class and multi-class im-
balance learners (B and M) are implemented in Weka us-
ing J48 decision tree with undersampling [Hall et al., 2009].
Furthermore, the number of coupling class labels is set as
K = min(q − 1, 10). For fair comparison, the ensemble size
for USAM-EN and SMOTE-EN is also set to be 10.

4.2 Experimental Results

Under class-imbalance scenarios, F-measure and Area Un-
der the ROC Curve (AUC) are the mostly-used evaluation
metrics which can provide more insights on the classifica-
tion performance than conventional metrics such as accuracy
[He and Garcia, 2009]. In this paper, the multi-label clas-
sification performance is accordingly evaluated by macro-
averaging the metric values across all class labels [Zhang and

4045
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Figure 1: Performance gain between COCOA and the comparing algorithm (PGk) changes as the level of imbalance ratio (Ik)
increases. On either data set, the performance of each algorithm is evaluated based on F-measure.

Zhou, 2014]. For either macro-averaging metric, the higher
the metric value the better the performance.

Tables 3 and 4 give the detailed experimental results in
terms of each evaluation metric respectively. Each data set is
randomly split for training and testing, where 50% examples
are chosen to form the training set and the remaining ones
form the test set. The random train/test splits are repeated for
ten times and the mean metric value as well as the standard
deviation are recorded.

Furthermore, to show whether COCOA performs signifi-
cantly better/worse than the comparing algorithm, pairwise
t-test at 1% significance level is conducted. Accordingly,
a win/loss is counted and a marker •/◦ is shown in the ta-
ble whenever COCOA achieves significantly superior/inferior
performance on one data set. Otherwise, a tie is counted and
no marker is given. The overall win/tie/loss counts across all
data sets are summarized at the last column of each table.

In terms of MACRO-F (Table 3), COCOA significantly out-
performs the comparing algorithms in 46.2% (RML), 76.9%
(SMOTE, SMOTE-EN), 84.6% (USAM-EN), 92.3% (USAM,
ML-KNN, ECC) and 100% (CLR, RAKEL) cases, and hasn’t
been outperformed by algorithms in the second series. These
results indicate that COCOA is capable of achieving good bal-
ance between predictive exactness (precision) and complete-
ness (recall) in handling class-imbalance multi-label learning.

In terms of MACRO-AUC (Table 4), COCOA signif-
icantly outperforms the comparing algorithms in 61.5%
(CLR), 92.3% (ECC) and 100% (USAM, USAM-EN, SMOTE,
SMOTE-EN, ML-KNN, RAKEL) cases, while has only been
outperformed by CLR twice. These results indicate that the
real-valued functions fj(·) (1 ≤ j ≤ q) learned by COCOA
is capable of yielding reasonable predictive confidence, and
better classification performance can be further expected if
it is combined with more sophisticated thresholding strategy
other than the constant function (Table 1, Step 10).

To further investigate how COCOA works under different
levels of imbalance ratios, we roughly group the imbalance

ratio ImRj into five intervals Ik (1 ≤ k ≤ 5) in ascending
orders, i.e. I1 = [1, 5], I2 = [5, 10], I3 = [10, 15], I4 =
[15, 25] and I5 = [25, 50]. Given one multi-label data set,
let Ak denote the average performance of COCOA over class
labels whose imbalance ratios fall into Ik, and Bk denote the
average performance of another comparing algorithm over
class labels in the same interval. Accordingly, the percentage
of performance gain, i.e. PGk = [(Ak−Bk)/Bk]×100%, is
computed to reflect the relative performance between COCOA
and the comparing algorithm within the given interval.

Figure 1 illustrates how PGk changes as the imbal-
ance level Ik moves from I1 to I5. Due to page limit,
the performance is evaluated by choosing the F-measure
metric

(
1
|Ik|
∑

ImRj∈Ik Fj

)
and two data sets Enron and

Eurlex-sm are considered. For brevity, the relative per-
formance against four comparing algorithms (USAM-EN,
SMOTE-EN, ECC and RAKEL) has been depicted. Similar
trends can be observed for other evaluation metrics and com-
paring algorithms.

As shown in Figure 1, COCOA maintains good relative
performance against the comparing algorithms across dif-
ferent imbalance levels, where the curves hardly drop be-
low the baseline (PGk = 0). Furthermore, it is interesting
that the performance advantage of COCOA becomes more
pronounced when the level of imbalance ratio is high (for
I4 = [15, 25] and I5 = [25, 50]). These results indicate that
COCOA can provide robust and preferable solutions in diverse
class-imbalance scenarios.

5 Conclusion
In this paper, the class-imbalance issue in learning from
multi-label data is studied. Accordingly, a novel class-
imbalance multi-label learning algorithm named COCOA is
proposed, which works by leveraging the exploitation of label
correlations and the exploration of class-imbalance. Specifi-
cally, one binary-class imbalance learner and several coupling
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multi-class imbalance learners are combined to yield the pre-
dictive model. Extensive experiments across thirteen bench-
mark data sets show that COCOA performs favorably against
the comparing algorithms, especially in terms of imbalance-
specific metrics such as MACRO-F and MACRO-AUC.
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