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Abstract

Multi-task clustering and multi-view clustering
have severally found wide applications and re-
ceived much attention in recent years. Neverthe-
less, there are many clustering problems that in-
volve both multi-task clustering and multi-view
clustering, i.e., the tasks are closely related and
each task can be analyzed from multiple views. In
this paper, for non-negative data (e.g., documents),
we introduce a multi-task multi-view clustering
(MTMVC) framework which integrates within-
view-task clustering, multi-view relationship learn-
ing and multi-task relationship learning. We then
propose a specific algorithm to optimize the MT-
MVC framework. Experimental results show the
superiority of the proposed algorithm over either
multi-task clustering algorithms or multi-view clus-
tering algorithms for multi-task clustering of multi-
view data.

1 Introduction

Multi-task clustering improves individual clustering perfor-
mance by learning the relationship among related tasks.
Multi-view clustering makes use of the consistency among
different views to achieve better performance. Both multi-
task clustering and multi-view clustering have severally
found wide applications and received much attention in re-
cent years. Nevertheless, there are many practical problems
that involve both multi-task clustering and multi-view clus-
tering, i.e., the tasks are closely related and each task can
be analyzed from multiple views. For example, the tasks for
clustering the web pages from four universities are four re-
lated tasks. The four tasks all have word features in the main
texts, they also have many other features, such as the words
in the hyperlinks pointing to the web pages, and the words in
the titles of the web pages. For another example, the tasks for
clustering the web images collected from Chinese web sites
and English web sites are two related tasks. The two tasks
both have visual features in the images, they also have word
features in the surrounding texts in Chinese and English re-
spectively. To tackle the clustering problem of such data sets,
existing algorithms can only utilize limited information, i.e.,
multi-view clustering algorithms only use the information of
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the views in a single task, multi-task clustering algorithms
only exploit the mutual information shared by all the related
tasks from a single view. However, we can get better per-
formance if both the multi-task and multi-view information
could be utilized.

Recently, multi-task multi-view learning algorithms, which
learn multiple related tasks with multi-view data, have been
proposed. The graph-based framework in [He and Lawrence,
2011] takes full advantages of both the feature heterogene-
ity and task heterogeneity. Within each task, the consistency
among different views is obtained by requiring them to pro-
duce the same classification function, and across different
tasks, the relationship is established by utilizing the similar-
ity constraint on the common views. The inductive learning
framework in [Zhang and Huan, 2012] uses co-regularization
and task relationship learning, which increases the practi-
cality of multi-task multi-view learning. These methods
have demonstrated their superiorities over either multi-task
or multi-view learning algorithms. However, they all tackle
classification. To the best of our knowledge, there is no exist-
ing approach to the multi-task multi-view clustering problem.

In this paper, we aim to deal with the multi-task multi-view
clustering of non-negative data, which arises in many appli-
cations, such as various types of documents. Based on the ob-
servation that the related tasks have both common views and
task specific views, we propose a bipartite graph based multi-
task multi-view clustering (MTMVC) framework, which con-
sists of three parts. (1) Within-view-task clustering: this part
clusters the data of each view in each task. It is the base
of the framework and mutually boosts with the other two
parts. (2) Multi-view relationship learning: this part uses
the consistency among different views to improve the clus-
tering performance. (3) Multi-task relationship learning: this
part learns the relationship among related tasks to improve
the clustering performance. We integrate the three parts into
one objective function and optimize it with a gradient as-
cent method. Because of the unitary constraints, we further
solve the optimization problem by mapping the variables to
the Stiefel manifold [Manton, 2002]. Experimental results on
several real data sets show the superiority of the proposed al-
gorithm over either multi-task clustering algorithms or multi-
view clustering algorithms for multi-task clustering of multi-
view data.



2 Related Work

Multi-task Clustering: Multi-task clustering improves the
clustering performance by learning the information shared
among multiple related tasks. The approach in [Gu and Zhou,
2009] learns a subspace shared by the related tasks. The
method in [Gu ef al., 2011] handles the multi-task cluster-
ing problem by learning a kernel. Unlike the above meth-
ods which focus on cross-domain multi-task clustering, some
multi-task clustering methods are proposed to deal with the
case of the related tasks from a same distribution or similar
distributions [Zhang and Zhang, 2010; 2013].

Multi-view Clustering: Multi-view clustering achieves better
performance by using the consistency among different views.
The method in [de Sa, 2005] is based on the minimizing-
disagreement idea. The method in [Kumar et al., 2011]
co-regularizes the clustering hypotheses across views. The
method in [Kumar and Daumé, 2011] applies the idea of co-
training, which uses the spectral embedding from one view to
constrain the similarity graph used for the other view.
Multi-task Multi-view Learning: Multi-task multi-view
learning deals with the learning problem of multiple related
tasks with multiple views. There are mainly two algorithms
proposed recently [He and Lawrence, 2011; Zhang and Huan,
2012]. As far as we know, there is no existing approach to the
multi-task multi-view clustering problem.

Co-clustering: Co-clustering has received a lot of attention
in several practical applications such as text mining [Dhillon,
2001], genes [Cho et al., 2004] and recommender systems
[George and Merugu, 2005]. Co-clustering clusters the sam-
ples and features simultaneously so that the clustering per-
formance of samples can be improved by the clustering of
features, and vice versa [Banerjee er al., 2007].

3 MTMVC Framework

3.1 Problem Formulation

We are given T clustering tasks, each with V; views, i.e.,

X = (a2, ey e RET e ¢ =1, T
v =1,...,V,, where n; is the number of samples in the ¢-
th task, d§“> is the feature number of the v-th view in task
t. Each task ¢ is to be partitioned into c; clusters. In multi-
task multi-view applications, the related tasks can be ana-
lyzed from multiple views. It can be observed that from
some views, the related tasks share a lot of features [He and
Lawrence, 2011], we call such views common views, and call
the other views task specific views. S is the index collection
of common views. T, is the index collection of tasks un-
der the common view v. The common view v consists of
the features in the tasks belonging to 7T, under view v. We
assume the related tasks share at least one common view,
and the number of clusters in each task is the same, i.e.,
c1 = ¢y = ... = cp = c. The first c eigenvectors represent
the eigenvectors corresponding to the c largest eigenvalues.

3.2 Framework Overview

Based on the characteristics of the multi-task multi-view ap-
plications, we integrate the features in the common view of
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Task 1 specific view 1
Common view

Task 2 specific view 1
Task 2

- Shared features
Task 1 specific view 2

Figure 1: The MTMVC framework. The samples (black cir-
cles) of task 1 and task 2 have a common view which consists
of task shared features (gray-filled diamonds) and task spe-
cific features (hollow diamonds). Task 1 also has two task
specific views (upper triangles and squares), task 2 has one
task specific view (lower triangles).

each task to link the related tasks together, and propose a bi-
partite graph based MTMVC framework (Figure 1), which
consists of three components: within-view-task clustering,
multi-view relationship learning and multi-task relationship
learning. For within-view-task clustering, we construct a bi-
partite graph for each view of each task, and apply the bi-
partite graph co-clustering (BiCo) algorithm [Dhillon, 2001].
For multi-view relationship learning, we minimize the dis-
agreement between the clustering of samples under each pair
of views in each task. For multi-task relationship learning,
we construct a bipartite graph between the samples and the
shared features in the common view for each task, and per-
form the BiCo method to learn a shared subspace among the
related tasks under each common view.

3.3 Objective Function

Within-view-task Clustering

This component clusters the data in each view of each task.
It accomplishes the essential task of the whole algorithm and
mutually boosts with the other two components. It also en-
sures the preservation of the knowledge available locally at
each view of each task to avoid negative transfer [Pan and
Yang, 2010]. We use BiCo, which clusters the samples
and features through a bipartite graph, and the two phases
boost each other. Given a data set X € R%*™ we have

0 X D 0
W = {XT O]andD { 01 Dz},whereW

is the matrix of bipartite graph, D is the degree matrix,
Di(i,i) = >2; Xij, D2(j, 7) = >2; Xij. The objective func-
tion of BiCo can be expressed as

mZintr(ZTLZ) st UTU=I,MTM =1 (1)
where L = D~Y2(D - W)D~Y/2 | Z = [U; M],U € R*¢
is composed of the first ¢ eigenvectors of features, which in-
dicates a partitioning of features, M € R™*¢ is composed

of the first c eigenvectors of samples, which indicates a parti-
tioning of samples. Eq.(1) can also be expressed as

rg%})@ctr(UTAM) stUTU=I,.M"™ M =1 (2)

where A = DII/QXDQ_I/Q.



Multi-view Relationship Learning

To meet the requirement of consistency among different
views within each task, we need a way to compare the eigen-
vectors of samples under view v and view ¢ in each task ¢,

say M and M(?. Since M" and M ? do not represent
the true clustering result, we cannot compute the disagree-
ment between them directly by squared Euclidean distance.
But we can compute the similarity matrices for the partition-
ing of samples under view v and view g, say Sim, ) and
Sim M then compute the disagreement between them by

squared Euclidean distance as follows.

2

Dis(M{" M) = [Simgo = Sim o

3

st MM = 1, MO M = 1

Considering the feasibility of optimization, we use the
common measure inner product to compute the similarity ma-
T

e = M(v) (v)

in Eq.(3), minimizing Eq.(3) can be simplified as

trix, and get Sim . Under the constraint

max
M M@

st M) =

t,r(Mt(’U)Mt(U)TMt(Q)Mt(Q)T)
)
I, Mt(q)TMt(q) =7

Multi-task Relationship Learning

To establish the relationship among related tasks, we hope to
learn a subspace shared by the related tasks under the com-
mon view, in which the clustering result of each task is con-
sidered as the same as that in the original feature space. The
shared subspace can be seen as a new feature space, in which
the distributions of related tasks are close to each other. More
specifically, if there are some tasks related to each other, there
may exist some common latent features that cause the distri-
butions of the related tasks to be close to each other [Gu and
Zhou, 2009]. Therefore the task information can be trans-
ferred through the shared subspace. Based on the analysis
above, we construct a bipartite graph between the samples
and the shared features in the common view for each task, and
perform the BiCo method to learn a shared subspace from the
shared features in the common view. In BiCo, the eigenvec-

tors of features in the v-th view of the ¢-th task Ut(”) can be
thought of as dimensionality reduction with a linear combi-
nation of associated features, which can also be referred to as
subspace basis [Vidal, 2011]. Considering there is a subspace
U® shared by the related tasks under the common view v,
as the BiCo method contains a component Ut(“) which can be
seen as a subspace, and the eigenvectors of features Ut(”) c
be boosted by the eigenvectors of samples Mt(”), thus we use
the BiCo method to learn the shared subspace U(") which can
be boosted by Mt(v) in all the related tasks.

an

max

ax Y tr(U TA MY stuTy®)
U v

teT,

&)
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where A" = D7 Y2X" D12 X is a data matrix be-
tween the samples in task ¢ and the features shared by the

tasks in the common view v.

The Overall Objective Function

We integrate within-view-task clustering, multi-view rela-
tionship learning and multi-task relationship learning into the
overall objective function as follows.

Vi Vi
mMZ ;"1“;(;‘12 ERIPIE
stUMTUM =1t =1,... . T,u=1,...,V})
U@ TU(” = I(v is the index of common view)
Mt(U)TM(” =It=1,....,T,o=1,..., V)

(6)

where J; = tr(UMTAYMY), Ty = e M
MOMOTY and Jy = tr(UOT ALY M),

Vi
In Eq.(6), > Ji is to co-cluster samples and features of
v=1
Vi Vi
all the views in each task ¢, >, > Jo is to maximize the
v=1 g#v
agreement between the cluster assignments of any two dif-

ferent views in each task ¢, > > J3 is to learn the shared
veS teT,

subspace under each common view. A > 0, u > 0 are param-

eters.

Discussion
Note that the objective of multi-task multi-view clustering is
very complicated since different missions are involved. We
divide the problem into three parts to make it easier to solve.
There are other ways to combine the components. However,
our way of using components in similar forms and linear com-
bination leads to a simple solution of the problem.

We use the BiCo method for the first component, since

it can boost Mt(v) by Ut(v) and vice versa, which can fur-
ther promote multi-view and multi-task relationship learning.

Specifically, during multi-view relationship learning, Mt(v)
can take advantage of Mt(q)(q # v) because the boosted

Mt(q) by BiCo in the first component can indicate the parti-
tion of samples more accurately. During multi-task relation-
ship learning, the shared subspace U(”) can be boosted by

the Mt(“) which has been improved by BiCo in the first com-
ponent. However, despite these advantages, the use of BiCo
limits our framework to work only for non-negative data.

The BiCo methods used in the first component and the third
component play different roles. The BiCo method in the first
component is to establish associations between the samples
and any view within each task, and is essential to the multi-
view relationship learning. The BiCo method in the third
component is to learn the shared subspace among the related
tasks, as BiCo can cluster features besides clustering samples,
and the clusters of features (the eigenvectors of features) can
be seen as subspace basis [Vidal, 2011].



Algorithm 1 MTMVC

Input: T tasks, each with V; views {Xi'”)}thl, v = 1,...,V;. The index
collection of common views S. The index collection of tasks under the common
view v T,. Cluster number c. A > 0, i > 0, the step length ~.

Output: Partitions { P(¥}7_ .
Initialization: Compute A{") in Eq.(2). U{") is formed by the first c left sin-

gular vectors of Aiv), and Mt(v) is formed by the first c right singular vectors of

A(U) Select the shared features under the common view v, then compute X t( *) and

A(”) (t € T,) in Eq.(5). U™ is formed by the first c left singular vectors of A,
where A = D] 1/2XD /2 ‘and X is the combination of X( )(t €Ty,).
repeat

Update UL® by Eq.(9).

Update U by Eq.(12).

Update M{* by Eq.(17).
until Eq.(6) is convergent.

Run the k-means algorithm on Mt( ) (t =1,...,T), where v is the most informa-

tive view a priori. If there is no prior knowledge on the view informativeness, run the
k-means algorithm on the column-wise concatenation of M, é’”) (v=1

.....

A > 0and p > 0 control the relative importance of the
three components. Specifically, Eq.(6) can be seen as the
objective function of a multi-view clustering method with
1 = 0, and a multi-task clustering method with A = 0.

3.4 Optimization

In this subsection, we present an algorithm to optimize
Eq.(6) by gradient ascent method. Optimizing Eq.(6) is with
respect to variables U{"), U®) and M"). Because of the con-
straint in Eq.(6), we map the variables to the Stiefel manifold.

Proposition 1 [Manton, 2002] The complex Stiefel mani-
fold St(n,p) is St(n,p) = {X € C™P . XX = I}.
Let X € C™ P be a rank p matrix. The projection op-

erator m : C"*P — St(n,p) is defined to be 7(X) =
arg gnn |X — Q||%. Moreover, if the SVD of X is
Qest

X = UZVH, then w(X) = UL, ,VH, where I,,, denotes
the n — by — p matrix with ones along the diagonal.

Computation of U"”: Given M ", optimizing Eq.(6)

with respect to U"” turns to be

max O, = tr(U"T AW M) (7
Then we get
00 v) 1 (v
=AM ®)
oU,
According to proposition 1, we can get
U = m(U1 + 729 / 2251 ) ©)

Computation of U (v): For the common view v, we get the
optimal U(") by the following computations. Given Mt(”),

optimizing Eq.(6) with respect to U(*) turns to be

max Oz = 4 Z tr(U(”)Tfliy)Mt(U))
teT,

(10)
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Then we get
60 v
o= H Y AT, (1)
teT,
According to proposition 1, we can get
U =a(U + 78(?]O(§> /|52 U7 HF (12)

Computation of M,":
)Ifv € Sandt € T,, given U, U®, M (q # v).

optimizing Eq.(6) with respect to Mt(”

) turns to be
max O3 = tr(Ut(v)TAgv)Mt(v))

Vi
FAS (MO M M

13)
qF#v
+ ptr(UOT A p)
Then we get
ﬂv) _ AT 4 AZ 2@ AT )
OM; po (14)
+ pATy )
DIfve¢ Sort ¢ T,(v eS), glvenU(” (q;év)
optimizing Eq.(6) with respect to Mt( *) turns to be
max O3 = tr(UMT AY M)
N ) I (@ 0T (15)
H A (M MM M
q#v
Then we get
00 e
5 = APTUP A 2O MO M (16)
oM, gy
According to proposition 1, we can get
v (v 90: d0:
MY = m(M” + VaM,@/ PG F) (17)

We present the process of optimizing Eq.(6) in Algorithm
1. Our proposed algorithm is typically a gradient ascent algo-
rithm, which is proved to be convergent [Griffin, 2012].

3.5 Time Complexity

Denote d as the feature number, n as the sample number,
iter as the iterations of MTMVC and [ as the iterations
of k-means. The time complexity of the initialization pro-
cess is O(d?n + dn?). The time complexity during itera-
tions is O(iter(dnc + d?c + dc? + nc + ¢®n)). The time
complexity of the final clustering part in MTMVC k-means
is O(Icnd). The overall time complexity of MTMVC is
O((d? +iter(cd + c?) + Ied)n + (d + iterc)n? + iterd?c +
iterdc®) = O(d?*n + dn?) .



Table 1: Clustering Results on WebKB

Method Task 1 Task 2 Task 3 Task 4
Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%)
k-means 61.41+ 1.81 16.56£3.29  52.074 8.89 13.75£ 391 5223+ 3.51 10.82+4.31  61.36£ 535  20.434+8.96
NSC 53.23+ 0.06 25.03+ 0.01  46.83+£ 0.00 26.99+ 0.00 60.67+ 0.07 40.27£0.01  64.17+£0.01  35.58+ 0.00
kk-means 48.04+ 2.17 13.62+2.34 4472+ 2.31 19.04+ 0.73 46.47+ 1.20 14.64+ 190 5622+ 0.97  29.424+ 0.65
BiCo 65.39+ 9.36 34.01+4.76 6229+ 5.64 28.524+2.36 65.31+ 5.79 3175+ 430  72778£9.22  51.624+6.33
CoRe 75.66+ 0.00 48.33+0.00  68.65+ 0.03 31.8440.10 67.25+ 0.06 50.6240.04  70.75+ 0.04  41.78%+ 0.05
CoTr 65.35+ 6.32 4526+ 7.46  62.504 8.23 30.074 4.80 80.98+ 8.39 60.05+ 741  76.07£2.04  54.8142.69
LSSMTC 62.18+ 8.22 25.61+4.86  62.03£5.14 29.66+ 2.77 58.62+ 6.31 25.66+2.29 6622+ 9.84  33.57+5.94
LSSMTC(CF) 63.36+ 7.89 26.73+4.65 6420+ 3.86 24.89+ 3.42 63.09+ 8.44 3327+ 421  67.71£ 697  36.79%+ 6.10
LNKMTC 63.02+ 6.09 29.99+ 794 6032+ 7.37 30.40+ 7.19 55524 10.33  29.04+ 636  66.35+5.75  38.16+ 6.27
LNKMTC(CF) 55.084+ 5.99 27.61+9.44  60.99+ 398  31.88+ 10.84 6537+ 1145 35824+9.49  68.63+8.62  40.82+ 8.23
MTMVC-MT 7026+ 11.12 3859+ 4.82  69.80+ 5.65 32.77+3.83 68.03+ 5.49 35324+ 2.62 8039+ 427  57.33+ 347
MTMVC-MT(CF) 74.64+ 3.09 42.14+£ 232 69.20+ 1.72 34.524+4.33 66.43+ 5.31 3259+ 2.84  80.87+£2.76  58.74+ 1.37
MTMVC-MV 82.034+ 491 67.14+ 242 7654+ 4.95 50.88+ 3.17 81.62+ 5.84 59.02+3.80  80.42+£3.79  62.261+2.25
MTMVC-CV 84.46+ 4.41 7021+ 349  80.07+ 0.16 55.60+ 1.54 82.58+ 5.68 61.87+ 694 8332+ 0.13  64.444+0.49
MTMVC 83.31+ 3.58 67.724+3.27  79.12+ 3.45 5321+ 3.47 83.41+ 1.16 64.49+ 041  87.03+ 1.17  65.21+ 0.27
Table 2: Clustering Results on NG
Method Task 1 Task 2 Task 3 Task 4
Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%)

k-means 28.604 2.98 6.78+ 3.30 29.514 3.00 11.2844.23 28.46+ 1.25 5.894 2.69 28.85+ 2.67 497+ 4.87
NSC 26.30+ 0.00 2.95+ 0.00 28.64+ 3.34 3.73+ 1.70 28.32+ 0.81 277+ 0.44 28.50+ 0.00 1.93+0.15
kk-means 32.26+ 0.06 3.41+ 0.03 34.274 0.06 9.61+£ 0.03 29.65+ 0.11 2.07+ 0.05 35.76+ 0.14 3.14+ 0.04
BiCo 61.66+ 4.73 41.53+ 4.36 63.94+ 1.60  42.61+ 3.81 63.03+ 3.60 5443+ 826  70.10+8.66  59.66+ 6.53
CoRe 27.05+ 0.60 2.23+ 0.38 32,514+ 2.64 529+ 1.32 29.16+ 0.45 2.86+ 0.38 28.69+ 0.00 2.16+ 0.00
CoTr 43.72+ 5.96 14.294 4.68 47.424 8.46 18.78+9.11 39.97+ 4.91 10.844 3.71 48.144+ 7.31 18.864+ 6.95
LSSMTC 31.26+ 3.05 5.56+ 2.74 4279+ 3.97 21.37+ 4.84 35.63+4.53 723+ 4.68 4095+ 4.46  11.05+4.05
LSSMTC(CF) 30.47+ 3.80 8.74+ 2.88 45.04+ 4.65 25.27+ 4.37 33.83+ 251 10.12+ 3.08 40.12£9.30  17.46+ 7.84
LNKMTC 69.62+ 9.08 4585+ 13.19 59.01£9.22  48.20+ 8.67 48.44+ 6.42 44.86+ 8.58 59.72+ 8.80  45.55+5.59
LNKMTC(CF) 69.88+ 14.25 51.50+ 7.84 59.69+ 5.91 51.25+ 7.97 5423+ 1242 50.704+ 8.53 70.18+9.14  52.45+ 8.05
MTMVC-MT 74.434+9.51 60.574 7.65 67.324+ 1.51 49.70+ 2.31 71.431+7.26 59.13 £7.54 7411+ 194  61.95+2.39
MTMVC-MT(CF) 75.19+ 7.55 62.04+ 8.51 66.43+ 1.89  48.574+5.09 70.64+ 5.23 61.27 £6.68  79.96+ 737  66.55+ 7.10
MTMVC-MV 75.52+ 9.36 62.31+2.99 71.82+5.69  57.96 + 4.99 70.33+ 7.31 61.42+ 622  79.01+5.30  67.42+3.33
MTMVC-CV 79.08+ 8.94 64.50+ 3.71 7336+ 322  58.864 5.26 72.12 £+ 6.10 62.51+ 4.17 81.09+2.84  69.36+ 3.15
MTMVC 80.95+ 7.29 65.35+ 2.63 7429+ 3.88  62.03+ 4.02 74.61+ 5.74 64.77+ 2.62  82.28+3.13  70.26+ 2.53

4 Experiments

4.1 Data Sets

WebKB': The WebKB data set contains web pages collected
from computer science department websites at 4 universities.
They are divided into 7 categories, we choose 4 most popu-
lous categories such as course, faculty, project and student for
clustering. The data set has 4 tasks, each is to cluster the web
pages of an university. There are three views for each task:
the words in the main texts of all the 4 universities constitute
the common view, since the tasks share lots of words from
the main text view; the words in the hyperlinks pointing to
the web pages of this university and the words in the titles of
the web pages of this university constitute two task specific
views respectively, since the tasks share few words from the
hyperlink view and title view.

20NewsGroups?: The 20NewsGroups data set is composed
of 6 root categories, under which are 20 sub categories. We
generate the NG data set from the samples of 4 root categories
(comp, rec, sci and talk), each with 4 sub categories. NG has
4 tasks, each containing samples from 4 root categories.

Email®: The Email data set contains the emails of 3 inboxes

"http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-
20/www/data/

2http://qwone.com/ jason/20Newsgroups/

*http://www.ecmlpkdd2006.org/challenge.html
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from different users. The data set has 3 tasks, with each task
formed by an inbox from a specific user. We aim to divide
each task into 2 clusters, one is spam, the other is non-spam.

For NG and Email, we adopt the way of constructing multi-
task multi-view data in [He and Lawrence, 2011; Zhang and
Huan, 2012], which has been effectively used to validate the
multi-task multi-view learning methods. Based on the way in
[He and Lawrence, 2011; Zhang and Huan, 2012], for each
task, the common view consists of the words appearing in the
main texts of all the tasks, the task specific view consists of
the words that only appear in this task. We use Rainbow*
for data preprocessing: removing the header lines and stop
words, selecting words by mutual information.

4.2 Baseline Methods

To the best of our knowledge, there is no existing work for
multi-task multi-view clustering. We compare the MTMVC
algorithm with (1) typical single-task single-view clustering
methods: k-means, normalized spectral clustering algorithm
(NSC) [Ng er al., 2001], kernel k-means (kk-means), bipar-
tite graph co-clustering algorithm (BiCo) [Dhillon, 2001];
(2) multi-view clustering methods: co-regularized multi-view
spectral clustering algorithm (CoRe) [Kumar er al., 20111, co-
trained multi-view spectral clustering algorithm (CoTr) [Ku-

*http://www.cs.cmu.edu/~mccallum/bow/



Table 3: Clustering Results on Email

Method Task 1 Task 2 Task 3
Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%)

k-means 55.324+ 1.59 3.304 0.68 50.60%+ 0.61 0.38+ 0.18 54.68+ 1.68 6.08+ 1.99
NSC 50.204 0.00 1.164 0.51 51.674+ 1.97 1.36+ 0.53 50.344 0.00 1.174 0.39
kk-means 55.944 0.00 1.284+ 0.00 54.10+ 0.00 0.574 0.00 60.08+ 0.00 7.75+ 0.00
BiCo 61.30+ 0.08 16.844 0.09 72.164 0.02 32.174 0.04 70.68+ 0.00 31.924+ 0.00
CoRe 55.034+4.19 3714 2.16 54.484+ 3.05 2.044 0.96 50.844+ 1.90 2114+ 1.81
CoTr 54.014+ 0.73 8.354 1.09 58734+ 1.59 3.134+0.93 68.344 0.30 14.884 0.32
LSSMTC 67.244 0.65 22.584 2.15 50.424 0.67 0.18+ 0.41 53.3242.27 091+ 1.19
LSSMTC(CF) 68.26+ 0.92 23.124 3.44 50.50+ 0.89 0.71+ 1.29 52.45+ 1.63 0.75+ 0.52
LNKMTC 62.96+ 6.88 23.874+5.73 64.50+ 6.38 28.464 6.26 71.76+ 4.50 28.5246.17
LNKMTC(CF) 62.044 6.78 18.81+ 11.42  66.39+ 7.44 16.87+ 12.62  65.22+ 9.39 18.11% 11.50
MTMVC-MT 69.384+ 0.18 26.614+ 0.10 7536+ 0.23 36.014 0.34 79.524+0.29 38.2640.43
MTMVC-MT(CF)  64.444 0.35 20.554 0.30 72.98+ 0.02 32.634+ 0.03 73.204 0.04 33.714 0.08
MTMVC-MV 62.824 0.02 18.644 0.03 76.64+ 0.13 36.944 0.29 76.00+ 0.47 35.994 0.62
MTMVC-CV 70.244 0.28 27.674 0.31 76.824 0.08 37.204 0.12 80.32+ 0.16 41.98+ 0.38
MTMVC 70.32+ 0.11 27.81+ 0.14 77.20+ 0.05 37.87+ 0.08 81.16+ 0.35 43.12+ 0.42

mar and Daumé, 2011]; (3) multi-task clustering methods:
the shared subspace learning multi-task clustering algorithm
(LSSMTC) [Gu and Zhou, 2009] and the kernel learning
multi-task clustering algorithm (LNKMTC) [Gu et al., 2011].

In addition, we evaluate MTMVC without the second com-
ponent MTMVC-MT), regressing to a multi-task algorithm,
and without the third component MTMVC-MV), regressing
to a multi-view algorithm. In general, we use the cluster-
ing result of MTMVC from the most informative view (as all
multi-view clustering methods do). But sometimes we may
not know the most informative view, so we also evaluate MT-
MVC by running k-means on column-wise concatenation of

M™ (v = 1,...,V;), we denote this version as MTMVC-
CV.

As existing multi-task clustering methods can only work
in a view which contains the features shared by all the tasks,
we perform LSSMTC, LNKMTC and MTMVC-MT on the
common view. To make the three methods exploit the in-
formation of task specific views, we also perform them on a
concatenation of the features of all the views, and call them
LSSMTC(CF), LNKMTC(CF) and MTMVC-MT(CF).

4.3 Settings

For NSC, kk-means, CoRe and CoTr, the Gaussian ker-
nel width ¢ is set with the median Euclidean distance be-
tween samples of each task, which can self-adapt to the
data and has been commonly used in the literatures [Gret-
ton et al., 2006; Kumar er al., 2011]. For the other pa-
rameters, we apply grid searching [Zhang and Huan, 2012]
to identify the optimal values. For the baseline meth-
ods, we extend the grid searching range largely upon the
original authors’s settings. For CoRe, the parameter A
is set by searching the grid {0.01,0.02,...0.99,1}. For
CoTr, the number of selected eigenvectors is set by search-
ing the grid {1,1.1,...,1.5} x ¢, where c is the clus-
ter number. For LSSMTC and LSSMTC(CF), the pa-
rameter A is set by searching the grid {0.1,0.2,...0.9},
the dimensionality of the shared subspace [ is set by
searching the grid {2,4,6,8,10}. For LNKMTC and
LNKMTC(CF), the neighborhood size is set by searching the
grid {10, 20, ...100}, the regularization parameter C is set
by searching the grid {0.1, 1,10, 100, 500, 1000}, the trace
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parameter b is set by searching the grid {10, 20, 30, 40, 50}.
For MTMVC and MTMVC-CV, we set the parameter of
step length v = 1, and set A, p by searching the grid
{0.1,0.2,...,1}. Specifically, we set A\ = 0 for MTMVC-
MT and MTMVC-MT(CF), p = 0 for MTMVC-MV.

To evaluate the clustering results, we adopt two perfor-
mance measures in [Xu et al., 2003]: clustering accuracy
(Acc) and normalized mutual information (NMI).

4.4 Clustering Results

We repeat each algorithm 10 times under each parameter
setting. For the algorithms LSSMTC(CF), LNKMTC(CF),
MTMVC-MT(CF) and MTMVC-CV, we show the mean re-
sult and the standard deviation corresponding to the best pa-
rameter setting. For the other algorithms, we show those of
the most informative view corresponding to the best param-
eter setting. For multi-view clustering methods, we cluster
each task at a time. From the clustering results in Table 1, 2
and 3, the following observations could be made.

(1) BiCo performs better than the single-task single-view
baseline methods (consistent with experiments in previous
works [Dhillon, 2001]), and even performs better than the
multi-view and multi-task baseline methods (without using
co-clustering as building block) sometimes. This is because
that for non-negative data such as documents, BiCo can boost
the performance of sample clustering by the clustering of fea-
tures and vice versa. Whereas the baseline methods only clus-
ter the samples without the sample-feature mutual boosting.

(2) The methods with simple feature concatenation such as
LSSMTC(CF), LNKMTC(CF) and MTMVC-MT(CF) do not
help much on improving the clustering performance, and they
may perform worse than LSSMTC, LNKMTC and MTMVC-
MT on a single view sometimes. From the comparison be-
tween MTMVC and MTMVC-MT(CF), it can be seen that
applying multi-view relationship learning is more effective
than simply concatenating features. This is consistent with
the conclusions in the multi-view clustering literatures.

(3) MTMVC-MV outperforms the multi-view clustering
algorithms CoRe and CoTr in most cases, because whether
multi-view relationship learning can help improve the clus-
tering performance highly depends on the performance of
the basic clustering. CoRe and CoTr use NSC as the ba-



sic clustering method, while MTMVC-MV uses BiCo. BiCo
is shown to perform much better than NSC for non-negative
data in most cases in the three tables.

(4) MTMVC-MT outperforms the multi-task clustering al-
gorithms LSSMTC and LNKMTC in most cases, because:
1) the basic clustering method BiCo used by MTMVC-MT
performs better than k-means used by LSSMTC and kk-
means used by LNKMTC; 2) during the multi-task relation-
ship learning, MTMVC-MT uses BiCo to explicitly learn
the shared subspace by combining the associated features,
whereas LSSMTC does not; 3) there are also some spe-
cific characteristics within each task, MTMVC-MT uses the
within-view-task clustering part to preserve the knowledge
available locally in each task, while LNKMTC only gets the
clustering result through a common kernel space.

(5) MTMVC and MTMVC-CV further improve upon
BiCo, MTMVC-MV and MTMVC-MT, thus they perform
much better than all the other baseline algorithms. This is be-
cause that MTMVC and MTMVC-CV contain a multi-view
relationship learning component and a multi-task relation-
ship learning component, thus it can take advantages of both
the consistency among different views and the relationship
among related tasks, whereas the baselines take advantage of
only one (or none) of the two functions. In most cases MT-
MVC performs better than MTMVC-CV, since it considers
the most informative view. In some cases when the most in-
formative view is not so dominant, MTMVC-CV, which takes
into account the clustering of all the views and gets a result of
trade off, performs a little better than MTMVC. Overall, MT-
MVC performs better than or comparable to MTMVC-CV.

5 Conclusion

In this paper, we propose a multi-task multi-view cluster-
ing (MTMVC) framework which integrates within-view-task
clustering, multi-view relationship learning and multi-task re-
lationship learning, and solve the optimization problem by
using a gradient ascent method which exploits unitary con-
straints. As far as we know, this is the first work addressing
multi-task multi-view clustering. Experimental results show
the superiority of the proposed algorithm over either multi-
task clustering or multi-view clustering algorithms for multi-
task clustering of multi-view data. Our algorithm uses bipar-
tite graph co-clustering as the basic clustering method, thus it
works for non-negative data. For future work, we will solve
the general multi-task multi-view clustering problem.
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