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Abstract
Multi-view outlier detection is a challenging prob-
lem due to the inconsistent behaviors and com-
plicated distributions of samples across different
views. The existing approaches are designed to
identify the outlier exhibiting inconsistent charac-
teristics across different views. However, due to the
inevitable system errors caused by data-captured
sensors or others, there always exists another type
of outlier, which consistently behaves abnormally
in individual view. Unfortunately, this kind of out-
lier is neglected by all the existing multi-view out-
lier detection methods, consequently their outlier
detection performances are dramatically harmed.
In this paper, we propose a novel Dual-regularized
Multi-view Outlier Detection method (DMOD) to
detect both kinds of anomalies simultaneously. By
representing the multi-view data with latent coef-
ficients and sample-specific errors, we character-
ize each kind of outlier explicitly. Moreover, an
outlier measurement criterion is well-designed to
quantify the inconsistency. To solve the proposed
non-smooth model, a novel optimization algorithm
is proposed in an iterative manner. We evaluate our
method on five datasets with different outlier set-
tings. The consistent superior results to other state-
of-the-art methods demonstrate the effectiveness of
our approach.

1 Introduction
Outlier detection (or anomaly detection) is a fundamental
data analysis problem in machine learning and data min-
ing fields. With its aim to identify the abnormal samples
in the given sample set, it has a wide range of applications,
such as image/video surveillance [Krausz and Herpers, 2010],
network failure [Ding et al., 2012], email and web spam
[Castillo et al., 2007], and many others [Breunig et al., 2000;
Angiulli et al., 2003; Koufakou and Georgiopoulos, 2010;
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Figure 1: Illustration of attribute-/class- outliers. Both views
derive from the same original objects. Here, red circle repre-
sents attribute-outlier, and blue triangle denotes class-outlier,
respectively.

Hido et al., 2008; Liu and Lam, 2012]. For more details, we
highly recommend readers refer to the surveys [Chandola et
al., 2009; Akoglu et al., 2014]. These methods usually ana-
lyze the distribution or density of a data set, and identify out-
liers via some well-defined criteria. However, they only work
for single-view data like many other conventional machine
learning methods. Nowadays, data are usually collected from
diverse domains or obtained from various feature extractors,
and each group of features is regarded as a particular view
[Xu et al., 2013]. Due to the complicated organization and
distribution of data, outlier detection from multi-view data is
very challenging.

To date, there are a few methods designed to detect outliers
for multi-view data. Das et al. [Das et al., 2010] proposed a
heterogeneous outlier detection method using multiple kernel
learning. Janeja et al. developed a multi-domain anomaly
detection method to find outliers from spatial datasets [Janeja
and Palanisamy, 2013]. Muller et al. presented an outlier
ranking algorithm for multi-view data by leveraging subspace
analysis [Müller et al., 2012]. The most related literatures
to our proposed method are cluster-based multi-view outlier
detection approaches [Gao et al., 2011; 2013] and [Alvarez et
al., 2013].

Although a number of methods have been proposed in ei-
ther single-view or multi-view category, they can only deal
with certain patterns of outliers respectively. We claim that
by representing the multi-view data with latent coefficients
and sample-specific errors, our proposed model DMOD can
identify all the outliers simultaneously. Before we make a
further comparison, we first define two kinds of outliers as
follows:
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Definition 1. Class-outlier is an outlier that exhibits incon-
sistent characteristics (e.g., cluster membership) across dif-
ferent views, as the blue triangle shown in Figure 1.

Definition 2. Attribute-outlier is an outlier that exhibits con-
sistent abnormal behaviors in each view, as the red circle
shown in Figure 1.

We argue that, on one hand, the existing multi-view meth-
ods [Gao et al., 2011; 2013; Alvarez et al., 2013] are only
designed for class-outlier outliers. One the other hand, the
existing single-view outlier detection methods can only han-
dle attribute-outliers [Liu et al., 2012; Xiong et al., 2011].
However, by representing both kinds of outliers in two dif-
ferent spaces, i.e. latent space and original feature space, our
approach can detect both class- and attribute- outliers jointly.
In sum, the contributions of our method are summarized as:

• We propose a novel dual-regularized multi-view outlier
detection method. To the best of our knowledge, this is
the pioneer work to achieve identifying both class- and
attribute- outliers simultaneously for multi-view data.

• Outliers are identified from the perspective of data repre-
sentation, i.e. the coefficient in latent space and sample-
specific error in original feature space with a novel
cross-view outlier measurement criterion.

• The consistent superior results on five benchmark
datasets demonstrate the effectiveness of our method.
Specifically, in database letter, we raise the performance
bar by around 26.13%.

2 Related Works
In this section, we only focus on the most relevant works:
multi-view outlier detection methods.

Identifying the abnormal behaviours with multi-view data
is a relatively new topic in the outlier detection field. Only
a few methods are recently proposed to deal with it [Gao
et al., 2011; 2013; Alvarez et al., 2013]. Gao et al. pre-
sented a multi-view anomaly detection algorithm named
horizontal anomaly detection (HOAD) [Gao et al., 2011;
2013]. Several different data sources are exploited to iden-
tify outliers from the dataset. The intuition of HOAD is to
detect sample whose behavior is inconsistent among differ-
ent sources, and treat it as anomaly. An ensemble similarity
matrix is firstly constructed by the similarity matrices from
multiple views, and then spectral embedding is computed for
the samples. The anomalous score is computed based on the
cosine distance between different embeddings. However, it
is worth noticing that HOAD is only designed to deal with
the class-outlier, i.e. identify inconsistent behaviors across
different views.

Most recently, Alvarez et al. proposed a cluster-based
multi-view anomaly detection algorithm [Alvarez et al.,
2013]. By measuring the differences between each sample
and its neighborhoods in different views, the outlier is de-
tected. Four kinds of strategies are provided for anomaly
scores estimation. Specifically, for each view, clustering is
firstly performed. Then cluster-based affinity vectors are
calculated for each sample. Similar to [Gao et al., 2011;
2013], this algorithm only detects the class-outliers, while our

approach is able to detect both class- and attribute- outliers si-
multaneously by virtue of data representation.

3 DMOD: Dual-regularized Multi-view
Outlier Detection Method

In this section, before proposing our method, we introduce
the preliminary knowledge of clustering indicator based for-
mulation first. Based on that, we propose our novel Dual-
regularized Multi-view Outlier Detection (DMOD) method.

3.1 Preliminary Knowledge
The effectiveness of k-means clustering method has been well
demonstrated in data representation with its objective using
the clustering indicators as:

min
H,G
‖X −HG‖2F,

s.t. Gkl ∈ {0, 1},
K∑
k=1

Gkl = 1,∀l = 1, 2, . . . , n
(1)

where X ∈ Rd×n is the input data with n samples and d di-
mensional features. Here, H ∈ Rd×K is known as the cluster
centroid matrix, and G ∈ RK×n is cluster assignment matrix
in latent space. Note that the sum of each column ofG should
equal one, because each data sample xl has to be assigned to
one single cluster. Specifically, if xl is assigned to k-th clus-
ter, then Gkl = 1, otherwise Gkl = 0, which is known as
1-of-K coding scheme. Although traditional k-means has a
wide range of applications, it suffers from the vulnerability
to outliers, especially for multi-view data [Bickel and Schef-
fer, 2004]. This derives one of our motivations to propose a
robust outlier detection method for multi-view data.

3.2 The proposed DMOD
Inspired by the success of `2,1-norm in feature selection [Nie
et al., 2010] and error modeling [Liu et al., 2010], we propose
a new dual-regularized multi-view outlier detection method
for heterogeneous source data. We denote the sample set
X = {X(1), . . . , X(i), . . . , X(V )}, where V is the number
of views and X(i) ∈ Rdi×n. H(i) ∈ Rdi×K is the centroid
matrix for i-th view. G(i) ∈ RK×n is the clustering indicator
matrix for i-th view.

Then our model is formulated as:

min
H(i),G(i),S(i)

V∑
i

‖S(i)‖2,1 + β
V∑
i

V∑
i6=j
‖G(i) −MijG

(j)‖2F,

s.t. X(i) = H(i)G(i) + S(i),

Gkl ∈ {0, 1},
K∑
k=1

Gkl = 1,∀l = 1, 2, . . . , n

(2)
where β is a trade-off parameter, Mij denotes the alignment
matrix between two different views, and S(i) is the construc-
tion error for i-th each view.
Remark 1: Due to the heterogeneous data X(i), different
G(i) should be similar. Accordingly, a dual-regularization
term ‖G(i) −MijG

(j)‖2F, (i 6= j) is employed so as to align
the indicator matrixes G(i) and G(j) in two different views.
Recall that Gi and Gj are orderless clusters, which means
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even though they are exactly the same, ‖G(i) − G(j)‖2F can-
not be zero without the alignment matrix Mij .
Remark 2: The `2,1-norm is defined as ‖S‖2,1 =∑n
q=1

√∑d
p=1 |Spq|2, where |Spq| is the element of S in p-

th row and q-th column. Note that `2,1-norm has the power
to ensure the matrix sparse in row, making it particularly
suitable for sample-specific anomaly detection. This robust
representation solves the outlier sensitivity problem in Eq.
(1). Consequently, the regularization term ‖S(i)‖2,1 is able
to identify the attribute-outliers for i-th view.
Remark 3: In order to detect the class-outlier, i.e. sample
inconsistent behaviour across different views, the inconsis-
tency with respect to each view needs to be measured. We
argue that the following representation

∑n
k=1G

(i)
kl G

(j)
kl in la-

tent space can well quantify the inconsistency of sample l
across different views i and j. The detailed illustration can
be found in the following sub-section.

3.3 Outlier Measurement Criterion
We have discussed the ability of our method in characteriz-
ing two kinds of outliers. In order to make the quantitative
estimation of inconsistency, we propose a novel outlier mea-
surement function ϕ(l) for sample l as

ϕ(l) =
V∑
i

V∑
j 6=i

(
n∑
k=1

G
(i)
kl G

(j)
kl − γ‖S

(i)
l ‖‖S

(j)
l ‖

)
, (3)

where ‖ · ‖ denotes `2-norm and γ is a trade-off parameter.
The criterion Eq. (3) helps us identify attribute-/class- out-

liers jointly. Take two-view as an example, the first term mea-
sures the anomaly of the l-th sample across view 1 and view
2. When the l-th sample behaves normally in both views,
the coefficients in G(1) and G(2) should be consistent. Con-
sequently,

∑n
k=1G

(1)
kl G

(2)
kl should be relatively large. In con-

trast, if the l-th sample behaves inconsistently, the coefficients
G(1) and G(2) would result in a small value of the first term,
which means it is a class-outlier.

The second term γ‖S(i)
l ‖‖S

(j)
l ‖ identifies the attribute-

outliers. If the l-th sample behaves normally in at least one
view, γ‖S(1)

l ‖‖S
(2)
l ‖ is close to zero, which means the over-

all score ϕ(l) will not decrease much by the second term. On
the contrary, if the l-th sample is an attribute-outlier behaves
abnormally in both views, the value of the second term in-
creases, which leads to a decreased outlier score ϕ(l).

4 Optimization
So far we have proposed the dual-regularized outlier detec-
tion model with a quantitative outlier measurement criterion.
In this section, we illustrate the optimization solution to prob-
lem (2). Obviously, it is hard to find the global optimiz-
ers, since it is not jointly convex with respect to all the vari-
ables. Thus, we employ inexact augmented Lagrange method
(ALM) [Lin et al., 2009] to optimize each variable iteratively.

4.1 Algorithm Derivation
There are two difficulties to solve the proposed objective.
First, `2,1-norm is non-smooth. Second, each element of the

indicator matrix G(i) is a binary integer, and each column
vector has to satisfy 1-of-K coding scheme.

By introducing the Lagrange multiplier Y (i) for each view,
the augmented Lagrange function for problem (2) is written
as:

L =
V∑
i

(
‖S(i)‖2,1 + β

V∑
i6=j
‖G(i) −MijG

(j)‖2F

+ 〈Y (i), X(i) −H(i)G(i) − S(i)〉
+
µ

2
‖X(i) −H(i)G(i) − S(i)‖2F

)
,

(4)

where µ > 0 is the penalty parameter, and 〈·〉 denotes the
inner product of two matrices, i.e. 〈A,B〉 = tr(ATB). Then
we optimize the variables independently in an iterative man-
ner. Specifically, the variables S(i), H(i), G(i), and Mij are
updated as follows:

Update S(i): Fix H(i), G(i), Mij , the Lagrange function
with respect to S(i) is written as:

‖S(i)‖2,1 + 〈Y (i), X(i) −H(i)G(i) − S(i)〉
+
µ

2
‖X(i) −H(i)G(i) − S(i)‖2F,

(5)

which equalizes the following equation:

S(i) = argmin
S(i)

1

µ
‖S(i)‖2,1 +

1

2
‖S(i) − Ŝ(i)‖2F. (6)

Here, Ŝ(i) = X(i) −H(i)G(i) + Y (i)

µ . This term S(i) can be
solved by the shrinkage operator [Yang et al., 2009].

Update H(i): Fix S(i), G(i), and Mij , and take the deriva-
tive L with respect to H(i), we get

∂L
∂H(i)

= −Y (i)G(i)T+

µ(−X(i)G(i)TH(i)G(i)G(i)T + S(i)G(i)T).
(7)

Setting Eq. (7) as zero, we can update H(i):

H(i) =
1

µ

{
Y (i) + µ(X(i) − S(i))

}
G(i)†, (8)

where G(i)† denotes the pseudo inverse of G(i).

Update G(i): Fix S(i), H(i), and Mij , update the cluster
indicator matrix G(i), we have

L =
V∑
i

(
β

V∑
i6=j
‖G(i) −MijG

(j)‖2F + 〈Y (i), X(i)

−H(i)G(i) − S(i)〉+ µ

2
‖X(i) −H(i)G(i) − S(i)‖2F

)
.

(9)
As mentioned above, G(i) satisfies 1-of-K coding scheme.
We can solve the above problem by decoupling the data
and determine each column g

(i)
m ∈ RK×1 one by one,

where m is the specified column index and G(i) =

[g
(i)
1 , . . . ,g

(i)
m , . . . ,g

(i)
n ]. Thus for each g

(i)
m , it satisfies the
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following equation:

min
g
(i)
m

V∑
i

(
β

V∑
i6=j
‖g(i)

m −Mijg
(j)
m ‖2F + 〈y(i)

m ,x
(i)
m

−H(i)g
(i)
m − s

(i)
m 〉+

µ

2
‖x(i)

m −H(i)g
(i)
m − s

(i)
m ‖2F

)
,

s.t. g
(i)
m ∈ {0, 1},

K∑
m=1

g
(i)
m = 1,

(10)
where g

(j)
m , y(i)

m , s(i)m and x
(i)
m are the m-th column of matrix

G(j), Y (i), S(i) and X(i), respectively.
To find the solution of Eq. (10), we do an exhaustive

search in the feasible solution set, which is composed of all
the columns of identity matrix IK = [e1, e2, . . . , eK ].

Update Mij: Fix S(i),H(i) andG(i), update the alignment
matrix Mij between G(i) and G(j) as

Mij = G(i)G(j)†. (11)

Finally, the complete optimization algorithm to solve the
problem in Eq. (2) is summarized in Algorithm 1. The ini-
tializations for each variable is also shown in the algorithm.
The entire DMOD algorithm for multi-view outlier detection
is outlined in Algorithm 2.

Algorithm 1. Optimization Solution of Problem (2)
Input: multi-view data X = {X(1), . . . , X(K)},

parameter β, the expected number of classes K.
Initialize: Set iteration time t = 0

µ0 = 10−6, ρ = 1.2, µmax = 106,
ε = 10−6, S

(i)
0 = 0, H(i)

0 = 0,
G

(i)
0 using k-means algorithm.

while not converged do
1. Fix the others and update S(i) via Eq. (6).
2. Fix the others and update H(i) via Eq. (8).
3. Fix the others and update each vector g(i)

m of G(i)
using Eq. (9) and (10).

4. Fix the others and update Mij using Eq. (11).
5. Update the multiplier Y (i) via
Y (i) = Y (i) + µ(X(i) −H(i)G(i) − S(i)).

6. Update the parameter µ by µ = min(ρµ, µmax).
7. Check the convergence condition by
‖X(i) −H(i)G(i) − S(i)‖∞ < ε.

8. t = t+ 1.
end while
Output: S(i), H(i), G(i)

Algorithm 2. DMOD for Multi-view Outlier Detection
Input: Multi-view data X , parameter τ

1. Normalize data x(v)i by x(v)i = x
(v)
i /‖x(v)i ‖.

2. Solve problem (2) by Algorithm 1, and get the
optimal G(v) and S(v).

3. Compute the outlier scores for all samples by Eq. (3).
4. Generate the binary outlier label L,

if ϕ(i) > τ , L(i) = 0; otherwise, L(i) = 1.
Output: Binary outlier label vector L.

4.2 Complexity Analysis
In this section, we make the time complexity analysis of
our model. The most time-consuming parts of Algorithm
1 are the matrix multiplication and pseudo inverse opera-
tions in Step 2, 3 and 4. For each view and each iteration,
the pseudo inverse operations in Eq. (8) and Eq. (11) take
O(K2n + K3) in the worst case. Usually K � n, then
the asymptotic upper-bound for pseudo inverse operation can
be expressed as O(K2n). The multiplication operations take
O(dnK). Suppose L is the iteration time, V is the number
of views. In general, the time complexity of our algorithm
is O(LVK2n + LVKdn). It is worth noticing that L and
V are usually much smaller than n. Thus we claim that our
proposed method is linear time complexity with respect to the
number of samples n.

5 Experiments
In this section, we collect five benchmark datasets to evaluate
the performance. Among them, four are from UCI Machine
Learning Repository1, i.e. iris, breast, ionosphere, and letter.
The fifth one VisNir is from BUAA database [Di Huang and
Wang, 2012]. Important statistics are tabulated in Table 1.
To generate both types of outliers, we do data pre-processing
as follows: for class-outlier, we follow the strategy in [Gao
et al., 2011]: (a) split the object feature representation into
two subsets, where each subset is considered as one view of
the data; (b) take two objects from two different classes and
swap the subsets in one view but not in the other. In order to
generate attribute-outlier, we randomly select a sample, and
replace its features in all views by random values.

Table 1: Databases Statistics
iris breast ionosphere letter VisNir

# class 3 2 2 26 150
# sample 150 569 351 20000 1350
# feature 4 32 34 16 200

We compare the proposed method with both the single-
view and multi-view outlier detection baselines as follows:

• Direct Robust Matrix Factorization (DRMF) [Xiong et
al., 2011] is a single-view outlier detection method
which has demonstrated its superiority to several other
single-view baselines, i.e. robust PCA [Candès et al.,
2011], Stable Principal Component Pursuit [Zhou et al.,
2010], and Outlier Pursuit [Xu et al., 2010].

• Low-Rank Representation (LRR) [Liu et al., 2012] is a
representative outlier detection method for single-view
data. There is a trade-off parameter balancing the low-
rank term and error term, which we fine-tune in the range
of [0.01, 1] and report the best result.

• HOrizontal Anomaly Detection (HOAD) [Gao et al.,
2013] is a cluster-based outlier detection method iden-
tifying the inconsistency among multiple sources. Two
parameters, i.e. edge-weight m and the number of
classes k are fine-tuned to get the best performance.

1http://archive.ics.uci.edu/ml/
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Table 2: AUC values (mean ± standard deviation) on four UCI datasets with different settings. The setting is formatted as
“DatasetName – Class-outlier Ratio (%) – Attribute-outlier Ratio (%)”.

Datasets DRMF LRR HOAD AP DMOD
[Xiong et al., 2011] [Liu et al., 2012] [Gao et al., 2013] [Alvarez et al., 2013] (Ours)

iris-2-8 0.749± 0.044 0.779± 0.062 0.167± 0.057 0.326± 0.027 0.868± 0.036
iris-5-5 0.714± 0.038 0.762± 0.107 0.309± 0.062 0.630± 0.021 0.865± 0.047
iris-8-2 0.651± 0.037 0.740± 0.100 0.430± 0.055 0.840± 0.021 0.882± 0.043

breast-2-8 0.764± 0.013 0.586± 0.037 0.555± 0.072 0.293± 0.012 0.816± 0.038
breast-5-5 0.708± 0.034 0.493± 0.017 0.586± 0.061 0.532± 0.024 0.809± 0.020
breast-8-2 0.648± 0.024 0.508± 0.043 0.634± 0.046 0.693± 0.023 0.778± 0.019

ionosphere-2-8 0.705± 0.029 0.699± 0.025 0.446± 0.074 0.623± 0.033 0.810± 0.044
ionosphere-5-5 0.676± 0.040 0.627± 0.029 0.422± 0.051 0.761± 0.025 0.773± 0.041
ionosphere-8-2 0.634± 0.023 0.511± 0.014 0.448± 0.041 0.822± 0.030 0.824± 0.029

letter-2-8 0.315± 0.030 0.503± 0.011 0.536± 0.046 0.372± 0.057 0.687± 0.041
letter-5-5 0.375± 0.023 0.499± 0.012 0.663± 0.057 0.550± 0.043 0.691± 0.037
letter-8-2 0.490± 0.062 0.499± 0.016 0.569± 0.049 0.621± 0.051 0.852± 0.037

• Anomaly detection using Affinity Propagation (AP) [Al-
varez et al., 2013]. AP is the most recent outlier detec-
tion approach for multi-view data. Two affinity matrices
and four anomaly measurement strategies are presented.
In this paper, `-2 distance and Hilbert-Schmidt Indepen-
dence Criterion (HSIC) are used, since this combination
usually performs better than others.

As suggested in [Alvarez et al., 2013; Liu et al., 2012],
AUC is reported (area under Receiver Operating Character-
istic (ROC) curve) as the evaluation metric. We also adopt
ROC curve, representing the trade-off between hit rate and
false alarm rate. The hit rate (TPR) and false alarm rate
(FPR) are defined as:

TPR =
TP

TP + FN
, FPR =

FP

TP + TN
, (12)

where TP , FN , TN and FP represent true positives, false
negatives, true negatives, and false positives, respectively.

5.1 UCI Databases
For each dataset, we strictly follow [Alvarez et al., 2013;
Gao et al., 2011; 2013]. The outliers are firstly generated ran-
domly for 50 times. Then the performance of each method is
evaluated on those 50 sets. Finally the average results are re-
ported. To simulate the real-world applications happening in
different circumstances, we conduct three settings by mixing
both outliers with different ratios: (1) 2% class-outlier of the
total sample number + 8% attribute-outlier of the total sample
number, represented in format “DatasetName-2-8”; (2) 5%
class-outlier + 5% attribute-outlier in format “DatasetName-
5-5”; (3) 8% class-outlier + 2% attribute-outlier in format
“DatasetName-8-2”.

Table 2 reports the AUC values ( mean ± standard devia-
tions) on four datasets with different outlier settings. Based
on Table 2, we have the following observations and discus-
sions.

• Our proposed method DMOD consistently outperforms
all the other baselines in all settings.
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LRR
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Figure 2: ROC Curves of all the methods on BUAA VisNir
database with both outlier levels of 5%.

• In most cases, single-view based methods have superior
performance to multi-view based methods in outlier set-
ting “DatasetName-2-8”.

• In the experiments with setting “DatasetName-8-2”,
multi-view based methods perform better than single-
view methods in most cases.

Discussion: All the observations are expected, as multi-view
based methods are strong in dealing with the class-outliers,
while single-view based methods are designed to identify the
sample inconsistency in all views. By virtue of the dual-
regularized multi-view data representation, both class- and
attribute- outliers are well characterized within the proposed
DMOD model. Thus a stable and encouraging performance
on UCI datasets has been observed. Specifically, in letter
dataset, we raise the performance by around 26.13%.

5.2 BUAA-VisNir Database
We make another evaluation on the BUAA VisNir database,
which consists of two types of data captured from visual spec-
tral (VIS) and near infrared (NIR) sensors. There are 150
subjects, with the original image size of 287×287 pixels. In
order to fasten the computation and keep the key features, we
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Figure 3: Convergence
(red line) and AUC (blue
line) curves with respect
to iteration time on iris
database with parameters
β and γ setting as 0.5 and
0.1, respectively.

Table 3: AUC values (mean ± standard deviation) on BUAA
VisNir database with both outlier levels of 5%.

Methods AUC (mean ± std)
DRMF [Xiong et al., 2011] 0.7878± 0.0112
LRR [Liu et al., 2012] 0.8702± 0.0484
HOAD [Gao et al., 2013] 0.7821± 0.0182
AP [Alvarez et al., 2013] 0.9041± 0.0220
DMOD (Ours) 0.9296 ± 0.0147

vectorize the images, and project the data matrix into 100-
dimension for each view by PCA. It is worth noticing that
this pre-processing also helps remove the noise.

To generate 5% class-outliers and 5% attribute-outliers, the
same strategies are employed as UCI datasets. Figure 2 and
Table 3 show the ROC curves and the corresponding AUC
values (mean ± standard deviation). It is observed that our
approach also outperforms all other single-view and multi-
view outlier detection algorithms.

5.3 Convergence and Parameter Analysis
To testify the robustness and stability, we conduct four exper-
iments to study the detection performance in terms of conver-
gence and model parameters. Without explicit specification,
all the experiments are conducted on iris dataset with the set-
ting of 5% class-outliers and 5% attribute-outliers. Three pa-
rameters β, γ and K are set to 0.5, 0.1 and 3, respectively.

Convergence analysis. To show the convergence prop-
erty, we compute the relative error of stop criterion ‖X(v) −
H(v)G(v) − S(v)‖∞ in each iteration, the convergence curve
of our model is drawn in red as shown in Figure 3. It is ob-
served that the relative error drops steadily, and then meets
the convergency at around #30 iteration. We also plot the av-
erage AUC during each iteration. From the observation, there
are three stages before converging: the first stage (from #1 to
#15), the AUC goes up steadily; second stage (from #16 to
#30), the AUC bumps in a small range; the final stage (from
#31 to the end), the AUC achieves the best at the convergence
point. Note that our method might converge to the local min-
imum as k-means does, we employ the strategy to run each
set of data 10 times to find the best optimizer.

Parameter analysis. There are three major parameters in
our approach, i.e. β, γ and K. Figure 4(a) shows the experi-
ment of outlier detection accuracy with respect to the param-
eter β under different outlier settings. We set the parameter β
in the range of [0.1, 1.0] with the step of 0.1. It is observed
that our method reaches the best when β equals 0.7 under dif-
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Figure 4: AUC curves with respect to parameters (a) β and
(b) γ. Both experiments are conducted on iris database with
three settings (class-outlier level+attribute-outlier level).
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Figure 5: Analysis on matrix decomposition dimension pa-
rameter K on iris database with both outliers level of 5%.

ferent outlier settings, and generally the performance is quite
stable in the range of [0.4, 0.9]. Thus in our experiments, we
set parameter β = 0.5 as default.

The experiment shown in Figure 4(b) is designed to
testify the robustness of our model in terms of param-
eter γ. Due to possible amplitude variations of two
terms in Eq. 3, we evaluate γ within the following set
{0, 10−3, 10−2, 10−1, 100, 101, 102}. As we observe, the av-
erage AUCs in three different settings are relatively steady
when γ = {10−3, 10−2, 10−1, 100}. In practical, we choose
γ = 0.1 as default for all experiments.

Another important parameter in our proposed model is the
intrinsic dimensionK in matrix factorization step. The intrin-
sic dimension K of iris dataset is 3 since it has three classes.
Therefore we make the evaluation in the range of [1, 8]. The
boxplot of average AUC is shown in Figure 5. It is easily
observed that our proposed method works well when K is
around the true intrinsic dimension, i.e. K is in the range of
[2, 5]. However, when K is too small, the performance drops
dramatically due to the information lost in the matrix decom-
position step. When K is too large, i.e. K > 5, the AUC also
drops because of introducing more noisy redundant informa-
tion. Note that, same with [Gao et al., 2011], K is essential
and varies depending on data. While we argue that instead of
manually searching the best K for each dataset, we can uti-
lize several off-the-shelf methods to predict K [Tibshirani et
al., 2000]. A steady and robust performance has been verified
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as long as the predicted K is not far from the ground-truth.

6 Conclusion
In this paper, we proposed a novel dual-regularized multi-
view outlier detection method from the perspective of data
representation, named DMOD. An outlier estimation crite-
rion was also presented to measure the inconsistency of each
data sample. We introduced an optimization algorithm to ef-
fectively solve the proposed objective based on 1-of-K cod-
ing scheme. Extensive experiments on four UCI datasets and
one BUAA VisNir database with various outlier settings were
conducted. The consistently superior results to four state-of-
the-arts demonstrated the effectiveness of our method.
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