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Abstract

Before deploying a software system we need to
assure ourselves (and stakeholders) that the sys-
tem will behave correctly. This assurance is usu-
ally done by testing the system. However, it is
intuitively obvious that adaptive systems, includ-
ing agent-based systems, can exhibit complex be-
haviour, and are thus harder to test. In this pa-
per we examine this “obvious intuition” in the
case of Belief-Desire-Intention (BDI) agents, by
analysing the number of paths through BDI goal-
plan trees. Our analysis confirms quantitatively that
BDI agents are hard to test, sheds light on the role
of different parameters, and highlights the enor-
mous difference made by failure handling.

1

As agent-based systems [Wooldridge, 2002] are increasingly
deployed (e.g. [Munroe et al., 2006; Benfield er al., 2006;
Miiller and Fischer, 2014]), the issue of assurance rears its
head. Before deploying a system, we need to convince those
who will rely on the system (or those who will be responsible
if it fails) that the system will, in fact, work. Traditionally,
this assurance is done through testing. However, there is a
generally held intuition that agent systems exhibit complex
behaviour, which makes them hard to test. This paper tests
this “obvious intuition”, focussing on Belief-Desire-Intention
(BDI) agents [Rao and Georgeff, 1991; Bratman, 1987;
Bratman et al., 1988].

The difficulty of testing a BDI agent program can be re-
duced to test set adequacy: an agent program P is easy to
test if and only if there exists a test set 7' which is adequate
for testing P with respect to the selected test adequacy crite-
rion, where 7' is not infeasibly large. There are many criteria
that can be used to assess whether a given set of tests is ade-
quate (for a recent overview, see Mathur [2008]). Given that
we are interested in assessing the difficulty of testing a given
program, we are clearly looking at “white box” testing. Fur-
thermore, we will be working with abstract “goal-plan trees”
rather than detailed programs (see Section 2). This means that
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*This paper is an extended abstract of an article in the Journal of
Artificial Intelligence Research [Winikoff and Cranefield, 2014].
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we need to consider control-flow based metrics, rather than
data-flow, since an abstract goal-plan tree does not contain
data-flow information. Specifically, we choose the ““all paths”
criterion', using the standard approach for dealing with loops
by bounding them [Zhu et al., 1997, p. 375].

We therefore explore the intuition that “agent systems are
hard to test because they exhibit complex behaviour”, by
deriving the number of paths through a BDI program as a
function of various parameters (e.g. the number of applicable
plans per goal). This naturally leads us also to consider how
the number of paths is affected by these various parameters.
As might be expected, we show that the intuition that “agent
systems are hard to test” is correct, i.e. that agent systems
have a very large number of paths. We also show that BDI
agents are harder to test than procedural programs, by show-
ing that the number of paths through a BDI program is much
larger than the number of paths through a similarly-sized pro-
cedural program.

Although there has recently been increasing interest in test-
ing agent systems [Zhang et al., 2009; Ekinci et al., 2009;
Gomez-Sanz et al., 2009; Nguyen et al., 2009; Padgham et
al., 2013], there has been surprisingly little work on determin-
ing the feasibility of testing agent systems in the first place.
Padgham and Winikoff [2004] analyse the number of success-
ful executions of a BDI agent’s goal-plan tree (defined in Sec-
tion 2), but they do not consider failure or failure handling in
their analysis, nor do they consider testability implications.

There are similarities between Hierarchical Task Network
(HTN) planning [Erol et al., 1994; 1996] and BDI execution
[de Silva and Padgham, 2004]. However, the problem of HTN
planning is about finding a plan, whereas BDI planning in-
volves interleaving plan search and plan execution [Sardina
and Padgham, 2011, p. 451, so the complexity results for HTN
planning do not apply: it is a different problem.

The contribution of this work is threefold. Firstly, it con-
firms the intuition that BDI programs are hard to test. Sec-
ondly, it does so by quantifying the number of paths, as a
function of parameters of the BDI program. Thirdly, we find
some surprising results about how the parameters influence
the number of paths.

"Note that the “all paths™ criterion considers the parts of the pro-
gram that were traversed, not the values of variables. So for instance
the (trivial) program x := x X « has a single path, but many traces
(x=1,2,3,...).



2 Number of Paths Analysis for BDI Agents

BDI plan execution is a dynamic process that progressively
executes actions as goals are posted. However, in order to
more easily analyse this process, we instead view BDI exe-
cution as a nondeterministic data transformation from a goal-
plan tree in to a sequence of action executions. The goals
and plans can be visualised as a tree where each goal has as
children the plan instances that are applicable to it, and each
plan instance? has as children the sub-goals that it posts. This
goal-plan tree is an “and-or” tree: each goal is realised by
one of its plan instances (“or”’) and each plan instance needs
all of its sub-goals to be achieved (“and”).

We now consider how many paths there are through a goal-
plan tree that is being used by a BDI agent to realise a goal®
using that tree. Since we view BDI execution as transforming
a goal-plan tree into action traces, we proceed by deriving
formulae that compute the number of paths, both successful
and unsuccessful, for a given goal-plan tree.

We make the following uniformity assumptions regarding
the form of the goal-plan tree that allow us to perform the
analysis: (i) all subtrees of a goal or plan node have the same
structure; (ii) we assume that all plan instances at depth d > 0
(see below) have k sub-goals; and (iii) we assume that all
goals have j applicable plan instances®.

We define the depth g2
of a goal-plan tree as
the number of layers
of goal nodes it con-
tains. A goal-plan tree
of depth 0 is a plan with
no sub-goals, while a
goal-plan tree of depth
d > 0 is either a plan node with children that are goal nodes
at depth d or a goal node with children that are plan nodes at
depth d—1 (see example tree).

Terminology: Our uniformity assumptions mean that the
structure of the subtree rooted at a goal or plan node is deter-
mined solely by its depth, and we can therefore denote a goal
or plan node at depth d as g4 or pg (respectively). We use
n*(z4) to denote the number of successful execution paths
of a goal-plan tree of depth d rooted at = (where z is either
a goal g or a plan p). Where specifying d is not important
we will sometimes elide it, writing n*(x). Similarly, we use
n*(x4) to denote the number of unsuccessful execution paths
of a goal-plan tree of depth d with root z (either g or p).

plo -+ pjo - d=0

2.1 Base Case: Successful Executions

We begin by calculating the number of successful paths
through a goal-plan tree in the absence of failure (and of
failure handling). This analysis follows that of Padgham &
Winikoff [2004, pp. 17-19].

>We assume that a plan body is a sequence of steps, where each
step is either an action (which can succeed or fail) or a sub-goal.

3We focus on a single goal in our analysis.

“In our analysis we make a simplifying assumption. Instead of
modelling the instantiation of plans to plan instances, we assume
that the goal-plan tree contains applicable plan instances.

Roughly speaking, the number of ways a goal can be
achieved is the sum of the number of ways in which its chil-
dren can be achieved (since the children represent alterna-
tives, i.e. the goal is represented by an “or” node). On the
other hand, the number of ways a plan can be achieved is the
product of the number of ways in which its children can be
achieved, since the children must all be achieved.

Given a tree with root g (a goal), assume that each of its j
children can be achieved in n different Ways5; then, because
we select one of the children, the number of ways in which
g can be achieved is jn (i.e. n(gq) = jn"(pg—1)). Simi-
larly, for a tree with root p (a plan), assume that each of its
k children can be achieved in n different ways, then, because
we execute all of its children, the number of ways in which p
can be executed is n - - - n, or n*, i.e. n(pg) = n*(ga)*. A
plan with no children (i.e. at depth 0) can be executed (suc-
cessfully) in exactly one way (n*(pg) = 1). This can be
simplified (for £ > 1) to the following (and if £ = 1 then

n(gq) = n*(pa) = j4):
j(kd—w(k—l)

jk(kd—l)/(k—l)

2.2 Adding Failure

We now extend the analysis to include failure, and determine
the number of unsuccessful executions, i.e. executions that
result in failure of the attempt to achieve the top-level goal.
For the moment we assume that there is no failure handing
(we add failure handling in Section 2.3).

In order to determine the number of failed executions we
have to know where failure can occur. In BDI systems there
are two places where failure occurs: when a goal has no appli-
cable plan instances, and when an action (within an applica-
ble plan instance) fails. However, our uniformity assumption
means that we do not address the former case—it is assumed
that a goal will always have j instances of applicable plans.

In order to model the latter case we need to extend our
model of plans to encompass actions. We assume there are
¢ actions before, after, and between the sub-goals in a plan,
and that a plan with no sub-goals is considered to consist of
¢ actions. For example, for £ = 1 a plan at depth d > 0
might have a body of the form al; ga; a2; gb; a3 where at are
actions, ga and gb are sub-goals, and *“;” denotes sequential
execution.

A plan at depth O can fail at each of the ¢ actions, so there
are ¢ distinct failing paths (n(pg) = ¢). A plan at depth d > 0
can fail in the initial ¢ actions, or (“+”) the first subgoal can
fail (n*(ga)), or it can succeed and then one of the following ¢
actions fails (n*(gq) ¢), etc. This yields the following defini-
tions for the number of unsuccessful executions of a goal-plan
tree, without failure handling®.

SBecause the tree is assumed to be uniform, all of the children
can be achieved in the same number of ways, and are thus in-
terchangeable in the analysis, allowing us to write j n rather than
ni +...+n;.

®The equation for n(gq) is derived using the same reasoning as
in the previous section: a single plan is selected and executed, and
there are j plans.
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n*(ga) Jn(pa—1)
nfpo) = ¢
n(pa) = €+ (n%(ga) +1M(g9a) ) (1 + -+ +n"(ga)"™"))
=0 () + ) T L
n(ga) — 1

(for d > 0 and n(gq) > 1)

2.3 Adding Failure Handling

We now consider how the introduction of a failure-handling
mechanism affects the analysis. A common means of dealing
with failure in BDI systems is to respond to the failure of a
plan by trying an alternative applicable plan for the (sub-)goal
that triggered that plan. For example, suppose that a goal g
has three applicable plans pl, p2 and p3, that pl is selected,
and that it fails. Then the failure-handling mechanism will
respond by selecting p2 or p3 and executing it. Assume that
p3 is selected. Then if p3 fails, the last remaining plan (p2) is
used, and if it too fails, then the goal is deemed to have failed.

The result of this is that, as we might hope, it is harder
to fail: the only way a goal execution can fail is if all of the
applicable plans are tried and each of them fails.

The number of executions can then be computed as fol-
lows: if a goal g4 has j applicable plan instances, each having
n*(pa—1) unsuccessful executions, then we have n*(py_1)’
unsuccessful executions of all of these plans in sequence.
Since the plans can be selected in any order we multiply this
by j! yielding nX(gq) = j!n*(p4—1)?. The number of ways in
which a plan can fail is still defined by the same equation—
because failure handling happens at the level of goals—but
where n*(g) refers to the new definition:

nga) = Jj!n(pa-1)’
n(po) = ¢

nY k _
W) = )+ Orlan)

(for d > 0 and n(gq) > 1)

Turning now to the number of successful executions
(i.e. n*(x)) we observe that the effect of adding failure han-
dling is to convert failures to successes, i.e. an execution that
would otherwise be unsuccessful is extended into a longer
execution that may succeed.

Consider a simple case: a depth 1 tree consisting of a goal g
with three children: p1, p2, and p3. Previously the successful
executions corresponded to each of the pi (i.e. select a pi and
execute it). However, with failure handling, we now have the
following additional successful executions: pl1 fails, then p2
is executed successfully; or pl fails, p2 is then executed and
fails, and then p3 is executed and succeeds. This leads to a
definition of the form

n(g) = n"(p1) + n’(p1) n"(p2) + n(p1) n(p2) n*(p3)
However, we need to account for different orderings of the
plans. For instance, the case where the first selected plan
succeeds (corresponding to the first term, n*(p1)) in fact ap-
plies for each of the j plans, so the first term, including
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different orderings, is jn*(p). Similarly, the second term
(n¥(pl) n*(p2)), corresponding to the case where the initially
selected plan fails but the next plan selected succeeds, in fact
applies for j initial plans, and then for j7 — 1 next plans, yield-
ing j (j — 1) n(p) n(p).

Continuing this process and then generalising yields the
following equations (again, since failure handling is done at
the goal level, the equation for plans is the same as in Section
2.1):

J .

v X i—1 J!
n(ga) = ;n(pdq) "n(pa_1) =)
n(po) = 1
n(pa) = n"(gd)’C (ford > 0)

Table 1 makes the various equations developed so far concrete
by showing illustrative values for n* and n* for a range of
reasonable (and fairly low) values for j, k and d and using
¢ =1 (ignore for now the bottom part and the column labelled

n(m)).

2.4 Further Analyses

The full journal paper [Winikoff and Cranefield, 2014] also
(a) develops a recurrence relation formulation that allows us
to understand how the number of paths is affected by the
number of available plans (j); (b) considers the probability
of failing, and shows, unsurprisingly, that failure handling re-
duces the probability of a failure at some point in the goal-
plan tree resulting in the whole execution failing; (c) exam-
ines how bounding the rate of failure (the number of action
failures divided by the length of the path) affects the number
of paths; the results show that, due to failure handling, most
paths have a failure rate greater than 0.4, but the number of
paths with lower failure rates is still extremely large; and (d)
extends the analysis to deal with recursive trees of arbitrary
(non-uniform) shape, given a specified bound on the length
of traces, finding that there is a similar number of paths in
a simple recursive tree as there is in uniform trees with the
same path length.

2.5 Comparison with Procedural Programs

In order to argue that BDI programs are harder to test than
non-agent programs we need to analyze the number of paths
in non-agent programs, and compare with those in agent pro-
grams. We define a simple (abstract) procedural program as
consisting of primitive statements, sequences of programs, or
selection between programs, and then define the number of
paths in a program P as n(P). The key question then is:
does a procedural program with m nodes have significantly
fewer paths than a BDI program of the same size’?

We therefore define n(m) as being the largest number of
paths possible for a program of size m (formally: n(m)
max{n(P) : |P| = m}). The full paper derives a defini-
tion for n(m). Table 1 (right-most column) shows values for
n(m) where m is the number of actions in the goal-plan tree.

"We define the size of a procedural program, denoted |P|, as
being the number of primitive statements, and, comparably, the size
of a BDI program as the number of actions.



Parameters Number of No Failure Handling With Failure Handling

j k d | goals plans  actions n(g) n*(g) n*(g) n*(g) n(m)
2 2 3 21 42 62(13) 128 614 | 633x 1072  1.82 x 107 | 6,973,568,802
3 3 3 91 273 363 (25) 1,594,323 6,337,425 | 1.02 x 10107 2,56 x 10197 5.39 x 10°7
2 3 4 259 518 776(79) | 1099511627776  6,523,509.472,174 | 1.82 x 107°7  7.23 x 1077 2.5 x 10123
3 4 3 157 471 627 (41 10,460,353,203 41,754963,603 | 3.13 x 10181 7.82 x 10™¥2 5.23 x 1097

Workflow with 57 goals(*) 294,912 3,250,604 | 2.98 x 102  9.69 x 10%° (0=4)

(*) The paper says 60 goals, but their 294,912 1,625,302 | 6.28 x 10>  8.96 x 10%° (£ =2)

figure 6 actually has 57 goals. 294,912 812,651 | 9.66 x 101 6.27 x 10! (£=1)

Table 1: Illustrative values for n*(g) and n*(g) both without and with failure handling, and for n(m). The first number under
“actions” (e.g. 62) is the number of actions in the tree, the second (e.g. 13) is the number of actions in a single execution where
no failures occur. The bottom section shows numbers for the goal-plan tree in Figure 6 of Burmeister et al. [2008].

It is worth emphasising that n(m) is defined as the maximum
over all possible programs of size m. However, the max-
imal program is highly atypical. For example, considering
all programs with seven statements, there are a total of 8,448
possible programs, but only 32 of these have 12 paths (the
maximum). Indeed, the mean number of paths for a seven
statement program is 4.379, and the median is 4. Overall,
looking at Table 1, we conclude that the number of paths for
BDI programs is much larger than even the (atypical) maxi-
mal number of paths for a procedural program of the same
size. This supports the conclusion that BDI programs are
harder to test than procedural programs.

3 A Reality Check

In the previous section we analysed an abstract model of BDI
execution. But in relating this analysis to real systems there
are two questions to be considered. Firstly, is the analysis
faithful to the semantics of real BDI platforms (i.e. it does
not omit significant features, or contain errors)? We checked
faithfulness by comparing our abstract BDI execution model
with results from a real BDI platform, namely JACK [Busetta
et al., 1999]. This comparison was done by encoding two ex-
ample goal-plan trees in JACK, using a harness to generate all
possible executions. The JACK code and our model produced
exactly the same traces.

The second question is to what extent the large numbers
in Table 1 apply to real applications? We investigated this
by considering a goal-plan tree from a real industrial applica-
tion, specifically the goal-plan tree (Figure 6) of Burmeister
et al. [2008], which has “60 achieve goals in up to 7 lev-
els. 10 maintain goals, 85 plans and about 100 context vari-
ables” (page 41). The bottom part of Table 1 gives the var-
ious n values for this goal-plan tree, for £ = 4 (top row),
¢ = 2 (middle row) and ¢ = 1 (bottom row). With 57 goals,
the tree has size in between the first two rows of Table 1.
Comparing the number of possible paths in the uniform goal-
plan trees against the real (and non-uniform) goal-plan tree,
we see that the number is somewhat smaller in the real tree,
but that it is still quite large, especially in the case with fail-
ure handling. However, we do note that their goal-plan tree
only has plans at the leaves, which reduces its complexity: a
goal-plan tree that was more typical in having plans alternat-
ing with goals would have a larger number of possible paths.
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Furthermore, the numbers for their goal-plan tree are a con-
servative estimate, since we assume that leaf plans have only
simple behaviour, whereas it is clear that their plans are in
fact more complicated, and can contain nested decision mak-
ing (e.g., see their Figure 4). In other words, the number of
paths calculated is an under-estimate of the actual number of
paths in the real application.

4 Conclusion

Our analysis found that the number of possible paths for BDI
agents is, indeed, large, both in an absolute sense, and in a rel-
ative sense (compared with procedural programs of the same
size). As expected, the number of possible paths grows as
the tree’s depth (d) and breadth (5 and k) grow. However,
somewhat surprisingly, the introduction of failure handling
makes a very significant difference to the number of paths.
Before we consider the negative consequences of our anal-
ysis, it is worth highlighting one positive consequence: our
analysis provides quantitative support for the long-held belief
that BDI agents allow for the definition of highly flexible and
robust agents.

So what does the analysis in this paper tell us about the
testability of BDI agent systems? Consider testing of a whole
system. The numbers depicted in Table 1 suggest quite
strongly that attempting to obtain assurance of a system’s
correctness by testing the system as a whole is not feasible.
Furthermore, the space of unsuccessful executions is partic-
ularly hard to test, since there are many unsuccessful exe-
cutions (more than successful ones), and the probability of
an unsuccessful execution is low, making this part of the be-
haviour space hard to “reach”. What about unit testing and
integration testing? Unfortunately, it is not always clear how
to apply them usefully to agent systems where the interesting
behaviour is complex and possibly emergent. A key conse-
quence of emergence is that “more is different” which can
make unit testing less useful.

Overall, we are in the position where there is further work
to be done (e.g. making testing more sophisticated, and im-
proving formal methods [Dastani ef al., 2010]), but currently
we have no choice but to proceed with caution. That is, to
accept that BDI agent systems are in general robust, but that
there is, at present, no practical way of assuring that they will
behave appropriately in all possible situations.
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