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Abstract
Social media platforms, such as Twitter, offer a rich
source of real-time information about real-world
events, particularly during mass emergencies. Sift-
ing valuable information from social media pro-
vides useful insight into time-critical situations for
emergency officers to understand the impact of haz-
ards and act on emergency responses in a timely
manner. This work focuses on analyzing Twitter
messages generated during natural disasters, and
shows how natural language processing and data
mining techniques can be utilized to extract sit-
uation awareness information from Twitter. We
present key relevant approaches that we have inves-
tigated including burst detection, tweet filtering and
classification, online clustering, and geotagging.

1 Introduction
Social media has emerged as a popular channel for providing
new sources of information and rapid communications, par-
ticularly during mass emergencies. First-hand information
from people on the scene often conveys timely and action-
able information, which is greatly valuable for official au-
thorities to better respond to the emergencies. Augmenting
the traditional communication means such as phones with so-
cial media significantly increases the amount of information
exchanged between affected people and emergency respon-
ders. This leads to higher situational awareness which in re-
turn translates to faster and more informed decisions and ac-
tions. Disaster management using Twitter has recently been
studied for humanitarian crises and natural disasters such as
earthquakes, bushfires, and cyclones [Sakaki et al., 2010;
Vieweg et al., 2010; Li et al., 2012; McMinn et al., 2014].

Harnessing credible information on emergency events
from social media is however very challenging. Twitter for
example only allows short textual messages called tweets of
up to 140 characters. It thus encourages its users to use ab-
breviations to shorten their tweets. Language of Twitter users

∗This paper is an extended abstract of the IEEE IS journal publi-
cation [Yin et al., 2012].

can be largely different to formal text, with users often com-
municating in colloquial language which is not handled effec-
tively by well-established natural language processing tech-
niques. The sheer volume of information that is spread by
millions of users is also overwhelming. It requires text min-
ing algorithms that can handle massive amounts of data in real
time and filter through this data to find the right information.
Twitter users also often avoid using automatic geotagging of
their tweets. While that is often to protect their privacy, it
poses challenges to the applications that require location in-
formation to make sense of the tweet content.

To overcome these challenges, we investigate several key
text and data mining techniques for extracting situation
awareness information from Twitter. These techniques cover
a series of sub-problems ranging from detecting events from
streaming data, classifying and filtering large datasets for rel-
evant information, to discovering geolocations in user posts.
Due to unexpected nature of natural disasters, statistical
methods that detect a sudden increase in the frequency of
counts are often candidate approaches. We adapt burst detec-
tion techniques for identifying early indicators of unexpected
events. To avoid information overload, we develop classifi-
cation and online clustering methods for filtering and sum-
marizing disaster-related information from Twitter messages.
Geolocating the tweets based on their content helps identify
where help is needed or what areas are affected during emer-
gencies. We present our new algorithm that aggregates loca-
tion clues from tweet and infers a coherent locational focus.

2 Burst Detection

Burst detection focuses on monitoring a feed of Twitter mes-
sages, and raising an alert for immediate attention when an
unexpected event is detected. In the data mining area, burst
detection techniques have been studied to identify emergent
patterns from data streams [Fung et al., 2005; Kleinberg,
2003]. To achieve real-time efficiency, we adopt a parameter-
free algorithm [Fung et al., 2005] to identify bursty words
from Twitter text streams. The basic idea is to determine
whether a word is bursty based on its probability distribution
in a time window. Specifically, we compute the probability of
the number of tweets that contain a word vj in a time window
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Wi, denoted as P (ni,j), using a binomial distribution:

P (ni,j) =

(
N

ni,j

)
p
ni,j

j (1− pj)N−ni,j , (1)

whereN is the number of tweets in a time window. It is worth
noting that, although the number of tweets, Ni, in each time
window may be different, we can re-scale it in all time win-
dows by adjusting the frequencies of words, such that all Ni
become the same andN is thus not considered as a parameter.

In the above distribution, pj is the expected probability of
the tweets that contain a word vj in a random time window,
and is therefore the average of the observed probability of vj
in all time windows containing vj , which is defined as pj =
1
L

∑L
i=0 Po(ni,j), wherePo(ni,j) =

ni,j

N andL is the number
of time windows containing vj .

We determine whether a word vj is bursty or not by com-
paring the actual probability Po(ni,j) that the word vj occurs
in the time window Wi against the expected probability pj
of the word vj occurring in a random window. If Po(ni,j) is
noticeably higher than the expected probability of the word
vj(pj), it indicates that vj exhibits an abnormal behavior in
Wi, and we thus consider vj as a bursty word in Wi.

In our implementation, a training set of around 30 mil-
lion tweets captured between June and September 2010 was
used. We preprocessed the tweets by removing stopwords
and stemming which resulted in a set of about 2.6 million
distinct word features, based on which our background alert
model was built. In the online phase, we devised an alert-
ing scheme which evaluates a sliding five-minute window of
features against the alert model every minute.

For evaluation, we annotated about 8,400 features in a six-
month Twitter dataset collected in 2010. A burst is defined as
one word that suddenly occurs frequently in a time window
and its occurrence lasts more than one minute. The perfor-
mance of burst detection was evaluated using two metrics:
detection rate and false alarm rate. Our experiments show
that, our burst detection mechanism achieves an overall de-
tection rate of 72.1% and a false alarm rate of 1.4%.

3 Tweet Filtering
When monitoring Twitter for a specific event, a large volume
of tweets published every second are considered irrelevant.
Even when the tweets are discussing an event of interest, de-
pending on the application one may be interested in prioritiz-
ing different classes of messages.

To address this need in the context of disaster management,
we study three different tweet classification settings: disas-
ter or not [Karimi et al., 2013], disaster type [Karimi et al.,
2013], and impact assessment [Yin et al., 2012]. Disaster
or not is a binary classifier that classifies whether or not a
tweet is talking about a disastrous event. Disaster type classi-
fier classifies tweets into a representative disaster type: earth-
quake, flooding, fire, storm, other disasters (e.g., traffic acci-
dent and civil disorders), and non-disaster.

Another level of filtering is to identify tweets reporting
a damage to infrastructure during a disaster. Infrastructure
is defined as roads, bridges, railways, airports, commercial
and residential buildings, water, electricity, gas, and sewerage

supplies. Identifying tweets that contain such information as-
sists authorities to better plan their response to disasters.

A cross-disaster classification setting is also stud-
ied [Karimi et al., 2013] as an extension to disaster type clas-
sification. The goal is to investigate if a classifier is trained on
specific disasters, such as earthquake, fire, and flooding, how
would that perform in identifying other disaster types such as
storm. This is important because we may not always have
enough training data for all the possible disaster types.

3.1 Methodology

Support Vector Machines (SVM) and Naı̈ve Bayes classi-
fiers are shown the most effective for text classification. We
therefore used the two classification algorithms in our experi-
ments. To extract features we examined a number of different
feature combinations. For infrastructure classification these
features were used: word unigrams, word bigrams, word
length, the number of hashtags, the number of user mentions,
whether a tweet is retweeted, and whether a tweet is replied
to by other users. Disaster or not and disaster type clas-
sifiers utilized word unigram, word bigram, hashtag, hash-
tag count (number of hashtags in a tweet), mention, mention
count (number of user mentions in a tweet), link (a binary fea-
ture whether or not a link exists in a tweet), and tweet length.

3.2 Evaluation

We evaluated the classifiers using accuracy metric, which in-
dicates the percentage of correctly classified tweets.

For impact assessment classification, 10-fold cross-
validation of a manually annotated dataset of 450 tweets was
used. Using all the features, Naı̈ve Bayes and SVM achieve
classification accuracy of 86.2% and 87.5%, respectively.

For disaster or not and disaster type classifiers, we used a
time-split evaluation scheme [Karimi et al., 2015] that pre-
vents any biases in evaluations that may occur due to the de-
pendencies among Twitter data. In our time-split evaluation,
a dataset of 5,747 tweets was sorted in chronological order
and divided into two sets of training and testing. Therefore,
the training data represents older tweets based on their tweet
time. For both of the classifiers, using a combination of hash-
tags and word unigrams performed better than other feature
combinations once at least 50% of the data was used for train-
ing. Once trained on 90% of the data, both of the classifiers
were accurate over 90% of the time. SVM classifier consis-
tently outperformed Naı̈ve Bayes in all the feature settings
and therefore Naı̈ve Bayes was left unreported.

A cross-disaster setting was also evaluated [Karimi et al.,
2013]. We evaluated all the possible settings between four
types of disasters (earthquake, flooding, fire, and storm) in
which three disasters were kept for the training and one for
the testing. The results showed that more generic features,
such as hashtag count or mention count, were more effective
than incident-specific features, such as actual hashtag or men-
tion values, for identifying previously unseen types of disas-
ters. Accuracies for the best setting (unigram plus hashtag
count) varied between 60% to 73%.
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4 Online Clustering
Online clustering aims to automatically group similar tweets
into a set of clusters, such that each cluster corresponds to
an event-specific topic. For this task, desirable clustering al-
gorithms should be scalable to handle the massive volume of
tweets under the one-pass constraint of streaming scenarios.

4.1 Algorithm Description
To meet this need, we propose a new clustering algorithm
[Yin, 2013], which intelligently divides the computational
process into two phases, i.e., an online discovery phase and
an offline cluster merging phase.

Online Discovery Phase The online phase provides a one
scan algorithm over the incoming Twitter stream to identify
base clusters, with each cluster consisting of a set of similar
tweets. To represent textual content of tweets, we employ a
traditional vector-space model, in which a tweet mi is repre-
sented as a vector of words (v1, v2, . . . , vd), where d is the
size of word vocabulary and vj is the TF-IDF weight of jth
term in tweet mi. In streaming scenarios, because word vo-
cabulary dynamically changes over time, it is very compu-
tationally expensive to recalibrate the inverse document fre-
quency of TF-IDF. We thus use term frequency as the term
weight and adopt a sparse matrix representation to deal with
dynamically changing vocabulary in our clustering algorithm.

In order to cluster tweets into temporally-related groups,
we incorporate temporal information for measuring the simi-
larity between two tweets. The similarity measure used in our
clustering algorithm is defined as

sim(mi,mj) = cos(mi,mj) · exp(−
|mt

i −mt
j |

λ
). (2)

We use cosine similarity to measure textual similarity be-
tween tweets mi and mj and penalize the similarity if their
publication times are far away. |mt

i −mt
j | indicates the dif-

ference between tweets’ publication times, represented as the
number of days, and λ is the number of days of one month,
whose value is application dependent.

To maintain sufficient statistics about clusters, for each
cluster Ci, we store the textual centroid Cvi , which is a fea-
ture vector where each element indicates the average weight
of the corresponding words for all tweets in cluster Ci, time
centroid Cti , which is the mean publication time of all tweets
forming cluster Ci, and cluster size |Ci|, which is the number
of tweets included in cluster Ci.

Given a Twitter stream in which the tweets are sorted ac-
cording to their published time, our algorithms works as fol-
lows. First, it takes the first tweet from the stream and uses
it to form a cluster. Next, for each incoming tweet, say m,
it computes its similarity with any existing clusters Ci, that
is, sim(m, Ci) = cos(m, Cvi ) · exp(− |m

t
i−C

t
i |

λ ). Let C∗
be the cluster having the maximum similarity with m. If
sim(m, C∗) is greater than a threshold δ, which is to be de-
termined empirically, the tweet m is added to the cluster C∗;
otherwise, a new cluster is created. To further improve effi-
ciency, we maintain a list of active clusters. If no more tweets

are added to a cluster for a period of time, the cluster is con-
sidered inactive and it is removed from the active list. The
algorithm only considers those clusters that are in the active
list as candidates to which a new tweet can be added.

Offline Cluster Merging Phase The base clusters gener-
ated during the online phase serve as an intermediate statis-
tical representation of the Twitter stream. The offline phase
is utilized to merge a list of relevant clusters into event-based
clusters. There is no need to process the voluminous tweets,
but the compactly stored summary statistics of clusters.

For a particular event, since users tend to convey the same
or a similar meaning using different words, the online phase
would organize the tweets reporting the same event, but ex-
pressed using different words, into different clusters. Thus,
our algorithm merges together the base clusters that are re-
lated with respect to the same event. The principle is to merge
a pair of clusters that have a larger inter-cluster similarity, cal-

culated as link(Ci, Cj) = cos(Cvi , C
v
j ) · exp(− |C

t
i−C

t
j |

λ ).
The offline phase provides the flexibility for an analyst

to perform queries about clusters and retrieve event-based
clusters upon demand at any time horizon. Given a list
of clusters generated during the online phase, our algo-
rithm iteratively merges two clusters Ci∗ and Cj∗ such that
link(Ci∗ , Cj∗) is maximized. We use the notion of sepa-
ration to measure the clustering quality, which is defined as
S(k) = 1

N(N−1)
∑
i

∑
j link(Ci, Cj), where N is the num-

ber of clusters obtained at step k. The smaller value this
metric has, the better clusters are separated from each other.
Based on this metric, we design a criterion to decide whether
or not to stop the merging process. At each step k, given
two candidate clusters to be merged, we compute a validation
index as ∆k = S(k+1)−S(k)

S(k) , which represents the relative
change in inter-cluster similarity after a merge is made. If
∆k < 0, that means a cluster merge can improve the sep-
aration of clusters. We then proceed with merging the two
clusters. Otherwise, if ∆k ≥ 0, we stop the cluster merging
process. In this way, the optimal number of clusters can be
automatically determined.

4.2 Evaluation
The dataset we used for evaluation is an annotated corpus of
tweets collected from July 2011 to September 2011 [Petrović
et al., 2012]. The corpus was distributed as a set of tweet
IDs and their annotations. We re-retrieved the tweets using
Twitter search API and obtained a set of 2,633 tweets. Each
tweet was annotated as one out of 27 real-world events, such
as London riots or Earthquake in Virginia.

We compared our algorithm with two baselines: (1) A
standard incremental clustering (IC) algorithm [Becker et al.,
2011]. It determines the assignment of a tweet solely based
on its similarity to the textual centroids of clusters; (2) IC-
Time, which is a variant of our proposed algorithm that only
uses the online phase to discover clusters. F-measure [Larsen
and Aone, 1999] was used as the evaluation metric.

Using bag-of-words and hashtags as features, our proposed
algorithm achieved an F-measure of 0.958, in comparison to
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0.892 achieved by IC, and 0.905 by IC-Time. By remov-
ing the # symbol and treating hashtags as normal words, the
clustering accuracies for three algorithms were observed to
increase; our proposed algorithm achieved an F-measure of
0.966, while IC and IC-Time achieved an F-measure of 0.899,
and 0.910, respectively. We believe this improvement is be-
cause removing the # symbol contributes to increasing the
term frequency of the same topic word in the tweets, which
leads to better clustering performance.

5 Geotagging Locational Focus
Geotagging is the process of finding all mentions of textual
references to geographic locations in a text (toponym recog-
nition), and determining where on the map these toponyms
collectively refer to (toponym recognition). Because a tweet
can contain textual references to more than one locations,
we aim to find the locational focus of the tweet that may
be geographically identifiable on a map. In our work, we
define a location as a combination of both geographic lo-
cation, such as country, state, city, or suburb, and Point of
Interest (POI), such as hotel, shopping center, or restaurant.
While the majority of the existing studies focus on estimat-
ing the users’ locations [Cheng et al., 2010; Li et al., 2011;
Mahmud et al., 2012], we are interested in deriving a coher-
ent locational focus that is referred to in a tweet if it exists.

5.1 Algorithm Description
To this aim, we propose a novel algorithm [Yin et al., 2014],
which identifies all location mentions from tweets and then
uses a gazetteer to infer the most probable locational focus.

Finding Location Mentions Identifying location mentions
is the first crucial step in inferring the locational focus of a
tweet. Because tweets are often very short, tweet text alone
cannot provide sufficient evidence for disambiguating loca-
tion mentions and finding a coherent locational focus. There-
fore, we take three sources of information into account: tweet
text, hashtags, and user profiles.

We retrained Stanford Named Entity Recognizer on Twit-
ter data to tag location mentions in tweet text, following our
prior work [Lingad et al., 2013]. Because hashtags may con-
tain locational clues (e.g., #sydneyfire, #ukfloods), we adopt
a hashtag segmentation algorithm which uses a greedy maxi-
mal matching method that refers to a word list to break hash-
tags. The word list is composed of an English dictionary
augmented with major states and cities in Australia and New
Zealand, as well as their short abbreviations. We also use lo-
cation information that the users register in their user profiles,
especially when specific location information is missing in
the tweet content. However, we weight user profile locations
less than location mentions found in tweet text and hashtags.

Inferring Locational Focus After location mentions are
identified, the next step is to infer a locational focus being
referred to by a tweet. Because not all the location mentions
equally contribute to the focus, we use a gazetteer database
as an external knowledge source to help disambiguate the lo-
cation mentions and infer the locational focus.

Our gazetteer is built based on two freely available data
sources, including gazetteer of Australia 2010 and GeoN-
ames New Zealand gazetteer, augmented with the informa-
tion from OpenStreetMap on roads, streets, highways, and
POIs. We organize our gazetteer as a hierarchy of different
geographic substructures: (1) Level 1: Country; (2) Level 2:
State/Territory/Region; (3) Level 3: City/Suburb/Town/Non-
specific POIs (e.g., mountains or national parks); and (4)
Level 4: Specific POIs (e.g., school or airport).

Our algorithm first queries the gazetteer for each location
mention identified in a tweet, and builds an inference tree to
summarize all the matches against the gazetteer. Each match
is a full path from the matched leaf node via its ancestors to
the root. For each matched leaf node, we calculate an im-
portance score that balances the granularities of places in
the gazetteer and how well their names match the terms of
a given query (measured using Jaccard similarity). To cap-
ture both explicit and implicit matches, we also calculate an
importance score for each intermediate node in the inference
tree, by recursively aggregating the scores of its child nodes
in a bottom-up manner. Finally, our algorithm performs a top-
down traversal over the inference tree to find an optimal path
having the maximum score, which is the locational focus of
the tweet. It uses an entropy threshold δ to decide at which
granularity level the traversal should stop.

5.2 Evaluation
We evaluated the effectiveness of our proposed algorithm us-
ing a dataset of 1,441 tweets annotated with their location
mentions and locational focus. We used a random validation
set of 80 tweets to tune the entropy threshold (δ = 3.4) and
the rest of 1,318 tweets for testing. When calculating the base
scores, we set the weights as 0.6, 0.3, and 0.1, for tweet text,
hashtags, and user profile, respectively.

We tested the accuracy of our algorithm when different
information sources are used. Among others, a combina-
tion of all the three sources (tweet text, hashtags, and user
profiles) significantly outperformed each of the individual
sources; 89.9% accuracy was achieved for identifying coun-
tries (Level 1), 73.5% for states/regions (Level 2), 51.0% for
cities/suburbs (Level 3), and 29.7% for specific POIs (Level
4). Hashtags were found useful in finding countries, states,
or cities, as people often use hashtags to indicate the type
of an event together with its associated city or country (e.g.,
#sydneyfire). User profile locations were helpful for identify-
ing country, but had almost no contribution to detecting POIs.
Expectedly, finding POIs was most difficult with only about
30% correctly identified when all the three sources were used.

We also compared our proposed algorithm with a service
provided by Yahoo! BOSS Geo services1, called PlaceFinder.
While there was no significant difference at the country level
(around 90%), our algorithm remarkably outperformed this
service at finer levels of granularities; for example, our algo-
rithm achieved an accuracy of 73.5% and 51.0% for identi-
fying states/regions, and cities/suburbs, respectively, in com-
parison to 59.1% and 23.5% by PlaceFinder.

1http://developer.yahoo.com/boss/geo/
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6 Conclusion
The growing use of social media during natural disasters and
crises provides on-the-ground information reported from the
general public. This work focused on analyzing Twitter mes-
sages generated during humanitarian crises, and presented
key relevant methods for burst detection, tweet filtering and
classification, online clustering, and geotagging. Develop-
ment and evaluation of these methods showed that if the right
information is sifted through social media, it can facilitate the
right authorities to enhance their awareness of time-critical
situations and make better decisions for emergency response.
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