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Abstract
Decentralized partially observable Markov deci-
sion processes (Dec-POMDPs) provide a general
model for decision-making under uncertainty in co-
operative decentralized settings, but are difficult
to solve optimally (NEXP-Complete). As a new
way of solving these problems, we recently intro-
duced a method for transforming a Dec-POMDP
into a continuous-state deterministic MDP with a
piecewise-linear and convex value function. This
new Dec-POMDP formulation, which we call an
occupancy MDP, allows powerful POMDP and
continuous-state MDP methods to be used for the
first time. However, scalability remains limited
when the number of agents or problem variables
becomes large. In this paper, we show that, un-
der certain separability conditions of the optimal
value function, the scalability of this approach
can increase considerably. This separability is
present when there is locality of interaction be-
tween agents, which can be exploited to improve
performance. Unlike most previous methods, the
novel continuous-state MDP algorithm retains op-
timality and convergence guarantees. Results show
that the extension using separability can scale to a
large number of agents and domain variables while
maintaining optimality.

1 Introduction
There is a growing interest in research for solving multia-
gent problems represented as decentralized partially observ-
able Markov decision processes (Dec-POMDPs) [Bernstein
et al., 2002; Amato et al., 2013]. Dec-POMDPs can repre-
sent multiple agents, each of which acting based only upon
its noisy information about the world state. This model en-
compasses a large range of practical problems, in which a
group of decision-makers collaborates to optimize a common
objective. Notable examples include: controlling a team of

0This paper was invited for submission to the Best Papers From
Sister Conferences Track, based on a paper that appeared in the
International Conference on Autonomous Agents and Multi-Agent
Systems in 2014 (AAMAS-14).

autonomous robots [Amato et al., 2015], network congestion
control, optimizing the production and distribution of energy
resources [Jain et al., 2009], or performing monitoring and
assisting tasks by a set of sensors [Kumar and Zilberstein,
2009]. All these applications involve a group of decision-
makers that operate under uncertainty and rely on noisy sen-
sors.

The difficulty in solving these problems arises because
decision-makers can neither see the global state of the pro-
cess nor (explicitly) communicate their partial views with
one another. Exact and approximate algorithms that can
solve Dec-POMDPs exist [Bernstein et al., 2009; Dibangoye
et al., 2009; Amato et al., 2009; Aras and Dutech, 2010;
Boularias and Chaib-draa, 2008; Oliehoek et al., 2013], un-
fortunately the NEXP-hardness of the Dec-POMDP formal-
ism has restricted their scalability [Bernstein et al., 2002].

Recent advances in optimally solving Dec-POMDPs have
recast them as continuous-state (deterministic) MDPs with a
piecewise linear and convex optimal value function [Diban-
goye et al., 2013b], making it possible to apply MDP and
POMDP methods. This reformulation is possible using the
common assumption in Dec-POMDP methods that planning
can be centralized while preserving decentralized execution.
In this new formulation, called the Occupancy-State MDP
(OMDP), states (called occupancy states) are represented by
distributions over the underlying states and agent histories,
and actions (called decentralized decision rules) are map-
pings from agent histories to agent actions. Because histo-
ries are used in the states (and actions), this transformation
is lossless, but results in an exponentially larger problem. In
this form, it is possible to apply a large variety of efficient
continuous-state MDP and POMDP methods.

Unfortunately, in OMDPs, because histories are incorpo-
rated, the dimensionality of value functions and occupancy
states grows exponentially with time. In fact, it is usually not
possible to even maintain a complete and accurate represen-
tation of value functions or occupancy states. This is partic-
ularly true when the number of agents or other problem vari-
ables becomes very large. Moreover, methods that attempt to
represent OMDPs more compactly using features rather than
states and histories can only scale to medium-sized problems
[Dibangoye et al., 2013b; 2014b].

Yet, many practical applications have a structure that
should allow greater scalability while preserving optimality.
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In particular, the idea of exploiting the separability condi-
tions, which occur when optimal value functions are the sum
of linear functions over factors associated with a small sub-
set of problem variables, may scale well for domains with
large numbers of agents. These value functions are known
as Additively Weakly-Separable and Linear (AWSL) func-
tions, a property that is present in the optimal value functions
of many practical applications [Kumar and Zilberstein, 2009;
Nair et al., 2005; Varakantham et al., 2007]. In fact, the idea
of exploiting separability conditions can be traced back to
[Koller and Parr, 1999], who explored the use of this property
as an approximation for accelerating dynamic programming
in MDPs. Since then, several authors have used the approach
to exploit locality of interaction between agents [Nair et al.,
2005; Kumar et al., 2011].

This paper combines the benefits of transforming Dec-
POMDPs into continuous-state MDPs and the separability
conditions that are present due to locality of interaction in
multiagent systems. Specifically, we target domains repre-
sented as ND-POMDPs [Nair et al., 2005], which are a sub-
class of Dec-POMDPs that exhibit locality of interaction. The
primary contribution is a demonstration that, with the locality
of interaction, optimal value functions are AWSL functions
of occupancy states. Even more importantly, we prove that
AWSL functions depend on occupancy states only through
marginal probability distributions over factors. The AWSL
property permits us to introduce new value function repre-
sentations that can accelerate both action selection and infor-
mation tracking steps, thus enhancing performance by several
orders of magnitude while still retaining accuracy and conver-
gence guarantees. We demonstrate the scalability of the pro-
posed approach on many ND-POMDP benchmark domains,
showing the ability to optimally solve problems that include
up to fifteen agents.

2 Background
In this section, we briefly discuss Dec-POMDPs, ND-
POMDPs and the conversion of Dec-POMDPs into
continuous-state MDPs.

2.1 Dec-POMDPs
A Dec-POMDP M ≡ (S,A,Z, p, r, η0, T ) with N agents is:
• A finite set of states S
• A finite set of joint actions A = A1 × A2 × . . . × AN

with Ai representing an action set for agent i
• A finite setZ = Z1×Z2×. . .×ZN of joint observations

with Zi representing an observation set for agent i
• A system dynamics model p = {pa,z : a ∈ A, z ∈ Z},

where pa,z is a state transition matrix, and pa,z(s, s′) is
the probability of transitioning to state s′ and receiving
joint observation z after taking joint action a in state s
• A reward model r = {ra : a ∈ A}, where ra is a reward

vector and ra(s) is the immediate reward given after ex-
ecuting joint action a in state s
• An initial probability distribution over states, η0

• A planning horizon T

Dec-POMDPs execute over a number of time steps. At
each step, each agent chooses an action and receives an ob-
servation while a joint reward is generated for the team. Each
agent receives its own observations, but it does not typically
receive the observations or actions of the other agents. As a
result, each agent has to reason about what the other agents
observed and plan to do in order to optimize a joint stream of
rewards. This property is at the core of the high complexity
of Dec-POMDPs. Therefore, choices for each agent — local
policies — depend only upon local information of that agent.
Hence, solving Dec-POMDPs requires determining N local
policies, which jointly maximize the total expected stream of
rewards starting in η0.

2.2 ND-POMDPs
We now discuss a subclass of Dec-POMDPs, called a net-
worked distributed POMDP (ND-POMDP), that displays
locality of interaction (and thus separability) between the
agents. That is, unlike general Dec-POMDPs, agents in ND-
POMDPs interact only with a small subset of their neigh-
bors. In the following, we write [1 : N ] = {1, . . . , N}, and
for a given subset u ⊆ [1 : N ] referred to as a factor (or
neighborhood), we denote ū the complement of u. That is
ū = [1: N ]\u. We also define |u|, the cardinality of u.
Definition 1. An ND-POMDP is a Dec-POMDP M with the
following properties:

1. A factored state space S = S0 × S1 × . . .× SN , where
S0 denotes local states that agents cannot affect, and Si
represents a local-state set of agent i; We denote su =
(s0, si)i∈u, au = (ai)i∈u, and zu = (zi)i∈u, the state,
action and observation relative to factor u ⊆ [1 : N ].

2. A multiplicative weakly-separable dynamics model p,
where there exist dynamics models p0, p1, . . . , pN with:

pau,zuu (su, s
′
u) = p0(s0, s

′
0)
∏
i∈u p

ai,zi
i (si, s0, s

′
i)

for any factor u ⊆ [1 : N ] and su = (s0, si)i∈u.
3. An additive weakly-separable reward model r, where

there exists reward models ru1 , ru2 , . . . , ruM such that:

r(s, a) =
∑M
k=1 ruk(suk , auk),

where uk ⊆ [1 : N ], suk = (s0, si)i∈uk .
4. A multiplicative fully-separable distribution η0, where

there exists independent distributions η0
0 , η

0
1 , · · · , η0

N
such that:

η0(s) = η0
0(s0)

∏N
i=1 η

0
i (si).

Example Problem
To make the representation more concrete, we discuss a sim-
ple multi-sensor target tracking problem [Nair et al., 2005]
which was motivated by a real-world challenge [Lesser et al.,
2003].

In this problem (see Figure 1), five sensors collaborate to
track a moving target on a network. We assume the target
motion is stochastic and unaffected by the actions that the
sensors can perform. Each sensor’s possible actions include
scanning in one of the four directions — i.e., north, south, east
and west, or turning off. Each time a sensor scans an area, it
receives a noisy observation (i.e., the observations can have
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Problem description:
• five collaborative sensors
• sensor actions (TurnOff,E,W,S,N)
• sensor observations (O,¬O)
• states (s and s′)

Figure 1: An ND-POMDP target tracking problem.

false positives and false negatives). The action of a given sen-
sor does not affect the transitions or observations of the other
sensors. In fact, sensors with no overlapping scanning areas
have no direct influence with one another, while the reward
function only depends on the actions of neighboring sensors.
For example, scanning areas of the red and black sensors do
not overlap, hence they cannot influence each other except in-
directly through the yellow sensor. However, to track the tar-
get and receive a reward, two sensors with overlapping scan-
ning areas (e.g., the red and yellow sensors) must coordinate
by scanning the same area simultaneously. Each sensor incurs
a cost for scanning whether the target is present or not, but no
cost for turning off. In the scenario depicted in Figure 1, there
are six factors, factor u0 captures the location of the mov-
ing target, which is not affected by the sensor decisions; and
each of the remaining factors u1, . . . , u5 involves two sen-
sors connected by an arc, (e.g., u1 involves red and yellow
sensors). In this problem, since only neighboring sensors in-
fluence one another directly, each sensor’s decisions depend
solely on its neighbors. These characteristics are often re-
ferred to as locality of interaction [Nair et al., 2005], and
appear in many real-world applications [Lesser et al., 2003;
Kumar and Zilberstein, 2009].

2.3 Policies and Value Functions
In ND-POMDPs and Dec-POMDPs, agents choose actions
based on the past observations that have been seen. We for-
mally define this concept (in the form of a policy) below.

A local decision rule at step t, denoted dti, is a mapping
from t-step action and observation histories of agent i, de-
noted θti = (a0

i , z
1
i , . . . , a

t−1
i , zti), to local actions of agent i.

A T -step local policy of agent i, denoted πi, is a length-T
sequence of local decision rules πi = (d0

i , . . . , d
T−1
i ).

A T -step joint policy, denoted π, is an N -tuple of T -step
local policies (π1, . . . , πN ), one for each agent. It is also a
length-T sequence of joint decision rules (d0, . . . , dT−1). A
joint decision rule at step t, denoted dt, is an N -tuple of local
decision rules (dt1, . . . , d

t
N ), one for each agent. A t-step joint

action and observation history, denoted θt, is an N -tuple of
local action and observation histories (θt1, . . . , θ

t
N ), one for

each agent.
We consider finite-horizon Dec-POMDPs, where the opti-

mality criterion is to maximize the expected sum of rewards
over finite steps T . The value function at step t, for a joint
policy π, denoted υtπ , maps state and joint history pairs to

reals for any step t state st and joint history θt:

υtπ(st, θt) = E[
T−1∑
τ=t

ra
τ

(sτ ) | aτ = dτ (θτ ), π],

An optimal joint policy π∗, starting at η0, satisfies equation:
π∗ ∈ arg maxπ υ

0
π(η0). Value functions υ0

π∗ , . . . , υ
T−1
π∗ are

optimal value functions with respect to η0. At first glance,
these value functions exhibit no structural restrictions, but a
recent analysis reveals that they are linear over some high-
dimensional space.

2.4 Dec-POMDPs as Continuous-State MDPs
A common assumption in many Dec-POMDPs is that plan-
ning takes place in a centralized (offline) manner even though
agents execute actions in a decentralized fashion (online).
In such a planning paradigm, a centralized algorithm main-
tains, at each time step t ∈ [1 : T ], the total available in-
formation — initial distribution η0 and partial joint policy
(d0, . . . , dt−1) — it has about the process to be controlled. To
summarize this information, Dibangoye et al. [2012; 2013a;
2013b] and Oliehoek [2013] introduced sufficient statistics1

of the total available information for optimal decentralized
decision-making.

Such a statistic can retain problem features that are impor-
tant for calculating rewards. Informally, a sufficient statistic
with respect to information state ι and M̌ is a statistic that
summarizes ι and preserves the ability to find an optimal so-
lution of M̌ . Given a sufficient statistic with respect to the
current information state and the problem at hand, no addi-
tional data about the current information state would provide
any further information about the problem.
Theorem 1 ([Dibangoye et al., 2013b]). A t-step sufficient
statistic with respect to information state ιt, which we call an
occupancy state and denote ηt, is a probability distribution
over all states and joint histories, ηt(s, θ) = P (s, θ|ιt), for
any state s and joint history θ.

The next-step occupancy state F (ηt, dt) = ηt+1 depends
on the current occupancy state ηt and joint decision rule dt:

ηt+1(s′, (θ, a, z)) = 1{a}(d
t(θ))

∑
s∈S

ηt(s, θ) · pa,z(s, s′),

where 1F is the indicator function, and for all states s′ ∈
S, joint actions a ∈ A, joint observations z ∈ Z, and joint
histories θ.
Definition 2. Let M̌ ≡ (4, D, F,R, η0) be the MDP with
respect to M , which we call the occupancy Markov decision
process: where 4 = {4t : t ∈ [0 : T − 1]} is the set of
occupancy states, 4t is the step t occupancy state set; and
D,F,R, η0 are identical to M̌ or eventually M .

Relative to M , the occupancy-state MDP M̌ is a deter-
ministic and continuous-state MDP. Note that the occupancy-
state MDP is deterministic even though the original Dec-
POMDP is stochastic because the occupancy-state is a dis-
tribution over states and (action-observation) histories. In the

1A statistic T (X) is sufficient for the parameter Y precisely if
the conditional probability of Y , given the statistic T (X), does not
depend on data X — i.e., P (Y |T (X), X) = P (Y |T (X)).
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occupancy-state MDP, the actions cannot be conditioned on
specific observations that are seen because agents do not have
access to other agents’ observations during execution. Indi-
vidual agents can still condition their actions on their own
observations (but not those of the other agents) because de-
cision rules are used which map these individual histories to
actions. An optimal joint policy for M̌ , together with the
correct estimation of the occupancy states, will give rise to
an optimal behavior for M and [Dibangoye et al., 2013b].
One can solve M̌ and nevertheless provide an optimal so-
lution for the original problem M [Oliehoek et al., 2013;
Dibangoye et al., 2013b].

2.5 Solving Occupancy MDPs
POMDPs can be cast into continuous-state MDPs with
piecewise-linear and convex optimal value functions [Small-
wood and Sondik, 1973]. As we discuss next, because the oc-
cupancy MDP represents a deterministic and continuous-state
MDP with a piecewise-linear convex value function, POMDP
theory and algorithms can be used.
Lemma 1. The optimality equation for any occupancy state
ηt is written as follows: for all t ∈ [0 : T − 1],

υt∗(η
t) = max

dt

(
R(ηt, dt) + υt+1

∗ (F (ηt, dt))
)
.

For t = T , we add a boundary condition υT∗ (·) = 0.
Dibangoye et al. [2013b] proved that value functions

υ0
∗, . . . , υ

T−1
∗ , which are solutions of the optimality equations

(Lemma 1), are piecewise-linear and convex functions of the
occupancy states. That is, there exist finite sets of linear func-
tions Λ0, . . . ,ΛT−1 such that: υt∗(η

t) = maxαt∈Λt〈αt, ηt〉
(where notation 〈·, ·〉 is the inner-product), for any arbitrary
t-step occupancy state ηt.

The FB-HSVI Algorithm
Heuristic search value iteration (HSVI) is a leading POMDP
algorithm which can converge to an optimal solution [Smith
and Simmons, 2004]. By recasting Dec-POMDPs as occu-
pancy MDPs, HSVI (as well as other POMDP algorithms)
can be extended to solve Dec-POMDPs.

Dibangoye et al. [2013b] introduced feature-based HSVI
(FB-HSVI), which is shown in Algorithm 1, to improve the
efficiency of HSVI in occupancy MDPs. It uses a trial-based
best-first search and finds an optimal path from a given initial
occupancy state to one T -step occupancy state. It traverses
the search space by creating trajectories of occupancy states,
each of which starts with the initial occupancy state. For each
visited occupancy state, such trajectories always follow the
best joint decision rule (ties are broken arbitrarily) specified
by the upper bounds (ῡt)t∈{0,...,T}. As the algorithm tra-
verses the search space, it updates the upper bounds of the
occupancy states along the way. Once the trajectories are
finished, it maintains lower bounds (υt)t∈{0,...,T} of visited
occupancy states in reverse order.

FB-HSVI provably converges to optimal value functions
for the initial occupancy state. As it seeks the occupancy
states where the upper bound is the largest, and maintains
both upper and lower bounds, it reduces the gap between
bounds over the initial occupancy state at each iteration. Once

Algorithm 1: The FB-HSVI Algorithm.
function FB-HSVI()

initialize υt and ῡt for all t ∈ {0, · · · , T − 1}.
while ¬Stop(η0, 0) do Explore(η0, 0) ;
return υt and ῡt

function Explore(ηt, gt)
η̃t ← Compact(ηt).
if ¬Stop(η̃t, gt) then

dt∗ ∈ arg maxdt R(η̃t, dt) + ῡt+1(F (η̃t, dt)).
Update ῡt.
Explore(F (η̃t, dt∗), R(η̃t, dt∗) + gt).
Update υt.

return gt

function Stop(ηt, gt)
return (ῡt(ηt) > υt(ηt)) ∨ (gt + ῡt(ηt) > υt(η0))

the gap is zero, the algorithm has converged. Moreover, FB-
HSVI guarantees termination after a finite number of itera-
tions, although this number is (in the worst case) doubly ex-
ponential in the maximal length of a trajectory.

Key Limitations of FB-HSVI
While FB-HSVI performs well in many domains and has the-
oretical guarantees, its scalability is limited when the number
of agents or problem variables is large. To better understand
this, notice that the complexity of FB-HSVI depends essen-
tially on two operations: the decision rule selection; and the
information tracking. In either case, FB-HSVI is not geared
to exploit the locality of interaction, and thus, it will typically
have to consider decision rules and occupancy states over ex-
ponentially many variables, though multiple variables have
little influence on one another.

3 Leveraging Separability
In this section, we discuss how locality of interaction through
separability assumptions (Definitions 1) influences the struc-
ture of value functions and occupancy states.

3.1 Separable Value Functions
The primary contribution is a proof that the optimal value
function is the sum of linear functions over factors, a property
referred to as the additive weak separability and linearity. A
formal definition of this property follows.
Definition 3. Value function g is additively weakly separable
and linear, if there exist linear functions gu1 , gu2 , . . . , guM
such that: g(s, θ) =

∑M
k=1 guk(suk , θuk), u1, . . . , uM ⊆

[1 : N ]. Value function g is said to be additively fully separa-
ble and linear, if uk ∩ uk′ = ∅ for all k, k′ ∈ [1 : M ].

An optimization problem with an additively fully separa-
ble and linear objective function g can be reduced to M in-
dependent optimization problems with lower dimensionali-
ties. If g is not fully separable, we often search the whole
N -dimensional space all at once. However, algorithms that
exploit the weak separability when it is present have been
particularly successful, notable examples include weighted

4257



constraint satisfaction algorithms [de Givry et al., 2005;
Dechter, 1997; 1999]. In the following, we present the proof
that optimal value functions are AWSL functions of the oc-
cupancy states. Before proceeding any further, we introduce
short-hand notation guk|θuk to represent a function over states
suk s.t.: guk|θuk (suk) = guk(suk , θuk).

Theorem 2. Value functions (υtπ)t∈[1 : T−1], for any joint
policy π, are additively weakly separable and linear func-
tions of occupancy states. That is, there exist vectors
(αtuk|θuk

)θ,k∈[1 : M ] s.t.

υtπ(ηt) =
∑
u

∑
su

∑
θu

ηtu|θu(su) · αtuk|θuk (su),

where ηtu|θu(su) =
∑
sū,θū

ηt(s, θ) for any ηt and u ⊆
[1 : N ].

The proof of this theorem can be seen in full version of the
paper [Dibangoye et al., 2014a].

This theorem demonstrates that value functions can be rep-
resented using a finite set of low-dimensional vectors, one
|Su|-length vector αu|θu for each joint history θu. This result
extends a previous separability property of the value func-
tion for ND-POMDPs [Nair et al., 2005], which stated that
value functions of a specified joint policy can be decomposed
into the sum of value functions over factors. Relative to the
PWLC property of value function solutions of the optimality
equations, the AWSL property provides a significant restric-
tive structure in the shape of value functions. It is nevertheless
unclear how this property can improve efficiency of the FB-
HSVI algorithm. In addition, this theorem yields interesting
insights. It is worth noticing that this result holds even when
there exists a unique factor u = [1: N ], that is, in general
DecPOMDPs.

Corollary 1. Value functions (υtπ)t∈[1 : T−1], for any joint
policy π, are additively weakly separable and linear func-
tions of occupancy states. That is, there exist vectors
(αt|θ)θ,t∈[0 : T−1] such that υtπ(ηt) =

∑
s

∑
θ η

t
|θ(s) · α

t
|θ(s),

where ηt|θ(s) = ηt(s, θ) for any arbitrary occupancy state ηt.

Proof. The proof holds directly from Theorem 2 with a single
factor u = [1: N ].

While under the AWSL property, the value function repre-
sentation is factored, updating bounds on the optimal value
function requires reasoning about all factors at once. More
precisely, no algorithm can update lower or upper bounds
separately for each factor and still preserves optimality. How-
ever, evaluating bounds at a given separable occupancy state
can be done separately for each factor while still preserving
optimality — which saves significant time. This insight al-
lowed us to extend standard representation of lower and up-
per bounds so we can evaluate separately for each factor —
which enhances the generalization [Dibangoye et al., 2014a].

3.2 Separable Sufficient Statistics
Another important result from Theorem 2 is a proof that value
functions depend on occupancy states only through marginal

probability distributions over factors. This is a significant re-
sult as it allows us to maintain marginal probability distri-
butions independently from one another, which saves non-
negligible time and memory, while preserving optimality.

Theorem 3. For any ND-POMDP with factors u1, . . . , uM ,
marginal occupancy states (ηuk|θuk )uk,θuk collectively con-
stitute a sufficient statistic of occupancy state η. Marginal
occupancy state ηu|θu can be updated at each step to incor-
porate the latest action au and observation zu, where:

ηu|θu,au,zu(s′u) =
∑
su

ηu|θu(su) · pau,zuu (su, s
′
u).

The proof of this theorem can be seen in full version of the
paper [Dibangoye et al., 2014a].

This theorem permits us to circumvent unnecessary or re-
dundant operations when maintaining the occupancy states.
In particular, we can maintain marginal occupancy states in-
dependently from one another, and reuse pre-computed ones
when it is possible. In the full version, we described a novel
representation of bounds in the FB-HSVI algorithm based on
the AWSL property. To this end, the marginal occupancy
states (ηuk|θuk )uk,θuk are collectively referred to as a sepa-
rable occupancy state.

Similarly to the evaluation of bounds, one can indepen-
dently maintain separable occupancy states, one factor at a
time — which saves significant time and memory. Since the
update of bounds depend on both bound evaluation and sep-
arable occupancy state update, we introduce a weighted con-
strained optimization program, that allows us to fully exploit
the additive weak separability for the joint decision rule se-
lection — which speed up this selection step. Finally, we ex-
tended the state-of-the-art FB-HSVI algorithm to incorporate
these insights all together into a new algorithm called separa-
ble feature-based heuristic search value iteration (SFB-HSVI)
[Dibangoye et al., 2014a].

4 Experiments
We compare our extension of FB-HSVI for ND-POMDPs
with the standard FB-HSVI algorithm [Dibangoye et al.,
2013b], a state-of-the-art exact algorithm for solving gen-
eral Dec-POMDPs. We call our extension, the separable
feature-based heuristic search value iteration (SFB-HSVI) al-
gorithm. We could not compare to the global optimal algo-
rithm (GOA), as it quickly runs out of memory even for the
smallest benchmarks. We nonetheless compare with the state-
of-the-art approximate algorithms for solving ND-POMDPs,
including constraint based dynamic programming (CBDP)
[Kumar and Zilberstein, 2009], and FANS [Marecki et al.,
2008]. CBDP constructs joint policies based on a small se-
lection of distributions over states. We set the number of dis-
tributions to 5 as advised in Kumar and Zilberstein [2009].
FANS relies on various heuristics to build approximate joint
policies. For each benchmark, we consider only the heuristic
with the best performance.

The experiments using FB-HSVI and SFB-HSVI were run
on a Mac with a 2.2GHz Intel Core i7 CPU, 1GB of RAM
available, and a time limit of one thousand seconds. The other
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T Algorithms
CBDP FANS FB-HSVI

EV CPU EV CPU EV CPU (ext.) CPU (std.)
5-P domain — |S| = 12;N = 5, |Zi| = 2, and 2 ≤ |Ai| ≤ 3

3 198.1 2 198.1 20 332.0 2.03 3.77
4 253.7 3 253.9 70 471.2 3.65 10.4
5 302.0 4 355.1 80 605.0 9.36 32.3
6 339.5 5 376.3 90 735.8 35.4 125
7 410.5 6 410.5 100 869.2 231.4
10 558.6 9 569.4 400

7-H domain — |S| = 12;N = 7, |Zi| = 2, and 2 ≤ |Ai| ≤ 3
3 255.5 2 175.8 0.5 418.0 1.5 1.7
4 331.0 4 184.8 1.0 581.8 2.3 5.7
5 404.6 6 274.7 700 765.8 4.7 18.3
6 462.7 7 327.8 800 940.4 12.0 50.4
7 507.5 8 376.8 900 1082.8 40.4 162.6
8 561.4 9 1206.6 261
10 658.1 10

11-helix domain — |S| = 49;N = 11, |Zi| = 2, and 2 ≤ |Ai| ≤ 4
3 328.8 20 255.0 135 554.4 3.1
4 - - 777.2 6.4
5 - - 1057.6 21.7
6 - - 1347.7 140.7
7 - -
10 - -

15-3D domain — |S| = 60;N = 15, |Zi| = 2, and 2 ≤ |Ai| ≤ 4
3 529.0 50 514.2 3000 814.0 4.6
4 616.9 60 1167.0 7.9
5 831.5 70 1587.1 22.4
6 996.2 80 2008.0 78.3
7 1124.7 90 2353.9 272.7
10 1493.6 110

15-Mod domain — |S| = 16;N = 15, |Zi| = 2, and 2 ≤ |Ai| ≤ 4
3 515.9 60 367.6 200 814.0 2.0
4 - - 1142.5 3.5
5 - - 1553.2 8.6
6 - - 1971.2 26.6
7 - - 2336.5 103.8

Table 1: Performance of FB-HSVI (extended and standard
versions), CBDP, and FANS. Notations: EV = υ0

π(η0), CPU
(sec.), ‘ ’ = time (1000s) expired and ‘-’ = no results available

experiments were conducted on a machine with a 2.4GHz In-
tel dual core CPU and 1GB of RAM available. To show scal-
ability of SFB-HSVI with respect to the number of agents, we
conducted the experiments on the largest ND-POMDP bench-
marks based on the sensor network domain [Nair et al., 2005;
Marecki et al., 2008; Kumar and Zilberstein, 2009], which
range from five to fifteen agents. To highlight the necessity of
exact solvers in contrast to approximate methods, we report
value υ0

π(η0) relative to the best joint policy π each algorithm
found. We also report running time in seconds for different
planning horizons.

Results can be seen in Table 1. In all tested benchmarks, as
depicted in column CPU (ext.), the SFB-HSVI algorithm can
find an optimal joint policy for short planning horizons. In
particular, it can optimally solve the largest benchmark (15-
Mod) at planning horizon T = 7 in about one hundred sec-
onds. The results show that the standard FB-HSVI algorithm
can also find an optimal joint policy but only for medium-
sized benchmarks. For instance, in 5-P and 7-H, both stan-
dard and extended FB-HSVI algorithms can find an optimal
joint policy for T ≤ 6. But SFB-HSVI is about three times
faster than the standard FB-HSVI algorithm. Since the time
required to compute an optimal joint policy increases with in-
creasing planning horizons, the standard FB-HSVI algorithm
always runs out of time before our extension, as illustrated in

benchmark 5-P at T = 6, and benchmark 7-H at T = 7. In
larger benchmarks 11-helix, 15-3D, and 15-Mod, which in-
volve a dozen of agents, FB-HSVI quickly runs out of mem-
ory, as it cannot exploit the locality of interaction.

We further compare SFB-HSVI with approximate ND-
POMDP solvers CBDP and FANS. Experiments demonstrate
that, although approximate methods can scale up with respect
to planning horizon, they often produce poor quality solu-
tions. To illustrate this, consider benchmark 7-H at T = 7:
CBDP takes 8 seconds and returns a joint policy with a value
of 507.5; and FANS takes about 900 seconds and returns a
joint policy with a value of 376.8; but, SFB-HSVI takes about
40 seconds to find an optimal joint policy with value 1082.6.
Our extension provides solution quality three times higher
than that of FANS, and two times higher than that of CBDP.
It is worth noting that CBDP can improve solution quality by
increasing the number of state distributions considered, but
it cannot provide any guarantees since these distributions are
not sufficient for optimal planning in ND-POMDPs.

To summarize, our experiments illustrate the scalability of
SFB-HSVI with respect to the number of agents. Our algo-
rithm optimally solves all ND-POMDP benchmarks with up
to fifteen agents. These results also highlight the necessity
of the exact algorithms, especially in critical domains where
theoretical guarantees are required.

5 Conclusion

This paper has demonstrated that under a locality of interac-
tion assumption, a property that is exploited in models such
as ND-POMDPs, the optimal value functions are additively
weakly separable and linear functions. This special structure
can be utilized in the context of a recent method for trans-
forming Dec-POMDPs into continuous-state MDPs, which
has shown significant scalability gains over previous Dec-
POMDP methods. This problem structure allows us to intro-
duce a novel representation of lower and upper bounds of the
optimal value functions. This representation has two proper-
ties: first, it preserves convergence to an optimal solution; but
even more importantly, it significantly reduces the memory
requirement of standard representations, thereby increasing
scalability. Using this representation, we extended the state-
of-the-art algorithm for solving Dec-POMDPs as continuous-
state MDPs to optimally solve ND-POMDPs. The resulting
algorithm is the first exact algorithm for ND-POMDPs that
can solve problems with up to fifteen agents. In the future, we
plan to explore applying the additive weak separability and
linearity property to general factored Dec-POMDPs. Further-
more, the scalability with respect to the number of agents of
our algorithm is encouraging, and we will pursue additional
improvements to also scale up with respect to the planning
horizon.
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