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Abstract

Most work in heuristic search considers problems
where a low cost solution is preferred (MIN prob-
lems). In this paper, we investigate the comple-
mentary setting where a solution of high reward is
preferred (MAX problems). Example MAX prob-
lems include finding a longest simple path in a
graph, maximal coverage, and various constraint
optimization problems. We examine several pop-
ular search algorithms for MIN problems and dis-
cover the curious ways in which they misbehave
on MAX problems. We propose modifications that
preserve the original intentions behind the algo-
rithms but allow them to solve MAX problems, and
compare them theoretically and empirically. In-
teresting results include the failure of bidirectional
search and close relationships between Dijkstra’s
algorithm, weighted A*, and depth-first search.

1 Introduction
One of the main attractions of the study of combinatorial
search algorithms is their generality. But while heuristic
search has long been used to solve shortest path problems,
in which one wishes to find a path of minimum cost, little at-
tention has been paid to its application in the converse setting,
where one wishes to find a path of maximum reward. This pa-
per explores the differences between minimization and max-
imization search problems, denoted as MIN and MAX prob-
lems, respectively.

To facilitate the discussion of MAX problems, consider
the longest simple path problem (LPP). Given a graph G =
(V,E) and vertices s, t ∈ V , the task is to find a simple path
from s to t having maximal length. A path is called simple if
it does not include any vertex more than once. For weighted
graphs, the task in LPP is to find a simple path with the high-
est “cost”. LPP has applications in peer-to-peer information
retrieval [Wong et al., 2005], multi-robot patrolling [Portu-
gal and Rocha, 2010], VLSI design [Tseng et al., 2010], and
coding theory [Kautz, 1958; Östergård and Pettersson, 2014;
Singleton, 1966]. Also, some special cases of LPP such as
the Snake-in-the-Box problem have important application in
error correction codes [Singleton, 1966].

LPP is known to be NP-Hard [Garey and Johnson, 1979]
and even hard to approximate [Karger et al., 1997]. By con-
trast, its MIN variant – finding a shortest path – is a well-
known problem that can be solved optimally in time that is
polynomial the size of the graph, e.g., using Dijkstra’s Algo-
rithm [Dijkstra, 1959].

In this paper, we explore the fundamental differences be-
tween MIN and MAX problems and study how existing algo-
rithms, originally designed for MIN problems, can be adapted
to solve MAX problems. Surprisingly, this topic has received
little attention in the academic literature.

Specific types of MAX problems, such as various con-
straint optimization problems [Dechter and Mateescu, 2007],
oversubscription planning [Domshlak and Mirkis, 2015], and
partial satisfaction planning [Benton et al., 2009] have been
addressed in previous work. In some cases, problem specific
solutions were given and, in other cases, MIN problem algo-
rithms were adapted to the specific MAX problem addressed.
Nevertheless, to the best of our knowledge, our work is the
first to provide a comprehensive study of uninformed and in-
formed search algorithms for the MAX problem setting.

In this paper, we propose a set of general-purpose search
algorithms for MAX problems. Optimal, bounded subopti-
mal, and unbounded MIN search algorithms are adapted to
the MAX problem settings, and their theoretical attributes
are discussed. We show that uninformed search algorithms
must exhaustively search the entire search space before halt-
ing with an optimal solution. With an admissible heuristic,
which overestimates future rewards, classical heuristic search
algorithms can substantially speed up the search for MAX
problems, but unlike MIN problems the search often cannot
be stopped when a goal is expanded. We report experimental
results for LPP over three types of graphs, demonstrating the
importance of using intelligent heuristics in MAX problems.

2 MAX and MIN Search Problems
MIN problems are defined over a search space, which is a
directed graph whose vertices are states and weighted edges
correspond to operators. The weight of an edge is the cost
of the corresponding operator. The task in a MIN problem
is to find a path from an initial state s to a goal state whose
sum of edge weights is minimal. MAX problems are defined
similarly, except that operators have rewards instead of costs
and the task is to find a path from s to a goal state whose sum
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of edge weights is maximal. Non-additive costs/rewards are
not addressed in this paper.

For graph problems like LPP, the input graph (through
which we would like to find a longest path) is different from
the graph representing the search space. In LPP, the search
state must consider not only a single vertex in the input graph,
but all vertices that have been included in or excluded from
the path so far, in order to enforce simplicity of the path. For
example, the search space in an empty N ×N grid from the
lower left corner to the upper right one is exponential in N
(O((2N)!)), while the number of vertices in such a grid is
N2.

Some MAX problems assign rewards to states rather than
operations and the objective is to find a state with maximal re-
ward. Consider for example, the maximal coverage problem,
where we are given a collection of sets S = {S1, ..., Sn} and
an integer k. The task is to find a subset S ′ ⊆ S such that
|S ′| ≤ k and |

⋃
Si∈S′ Si| is maximized. This problem can be

reduced to LPP as follows. A state is a subset of S, where the
start state is the empty set. Applying an operator corresponds
to adding a member of S, and the reward of this operator is
equal to the difference between rewards of respective states.
A similar reduction to LPP is possible from any MAX prob-
lem with rewards to states.

3 Uninformed Search for MAX Problems
First, we discuss several “uninformed search” algorithms
that do not require a heuristic function: Dijkstra’s algorithm
(DA), depth-first branch and bound (DFBnB), and bidirec-
tional search (BDS).

3.1 Dijksra’s Algorithm
DA can be viewed as an instance of best-first search
(BFS) [Felner, 2011]. BFS is an iterative algorithm in which
one state is expanded in every iteration. Expanding a state v
consists of generating all states reachable from v by apply-
ing a single operator. Generated states are stored in a list of
states called OPEN. OPEN initially contains only s. As the
search progresses, generated states enter OPEN and expanded
states are removed from it. BFS algorithms differ in how they
choose which state to expand. In DA, the state expanded is
the one with the lowest g value. The g value of the start state
is zero and the g value of all other states is initially∞ (states
can be initialized in a lazy manner, when they are generated).
When a state u is expanded and a state v is generated, g(v)
is updated to be min{g(v), g(u) + c(u, v)}, where c(u, v) is
the cost of the edge from u to v. In DA, the g-value of an ex-
panded state u is guaranteed to be the lowest cost path found
so far from the initial state s to u. When a goal node is chosen
for expansion, the search halts and the path to it is guaranteed
to be optimal, i.e., having the lowest cost.

How do we apply DA to MAX problems? For MAX prob-
lems, the g value as computed above corresponds to the re-
ward collected so far. Expanding the state with the lowest g-
value would return the path with the lowest reward. We could
define DA for MAX problems to be a BFS that expands the
state with the highest g-value. This way DA expands the next
best state — with the lowest g-value (cost) in MIN problems

(a) DA fails (b) BDS fails (c) hCC example

Figure 1: Example of different LPP instances

and with the highest g-value (reward) in MAX problems. Un-
like its counterpart in MIN problems, however, this variant of
DA does not necessarily find an optimal path. For example,
in the graph depicted in Figure 1a, expanding the state with
highest g would result in expanding b and then t. The returned
path would be 〈s, b, t〉 while the optimal path is 〈s, a, t〉.

In order to find an optimal solution, DA for MAX problems
must continue expanding states even after the goal is chosen
for expansion, as better (higher reward) paths to a goal may
still exist. One way to ensure that an optimal solution has
been found is to expand states until OPEN is empty. When
OPEN is empty, all paths from s to a goal had been considered
and an optimal solution is guaranteed. We thus define DA
for MAX problems to be a BFS on larger g-values with this
simple stopping condition. Other sophisticated reachability
mechanisms may exist that avoid this exhaustive exploration.

3.2 Search Space Monotonicity
To gain a deeper understanding of why DA is not particularly
effective in MAX problems, we analyze the relation between
the objective function (MAX/MIN) and the search space of
a given search problem. Let GS and s be the search space
graph and the initial state, respectively.

Definition 1 (Search Space Monotonicity1). A search space
is said to be monotone w.r.t a state s if for any path P in GS
starting from s it holds that P is not better than any of its
prefixes, where better is defined w.r.t the objective function.

In MIN problems, a better path is a path with a lower cost,
while in MAX problems, a better path is a path with a higher
reward. It is easy to see that MIN problems have search
spaces that are monotone. MAX problems, as we show be-
low, have search spaces that are not monotone.

Next, we establish the relation between search space mono-
tonicity and the performance of BFS in general and DA in
particular. Each state v in OPEN represents a prefix of a pos-
sible path from s to a goal. When DA expands the best node
on OPEN and it is a goal, search space monotonicity implies
that its cost is not worse than the optimal solution cost. Thus,
when DA expands a goal, it must be optimal and the search
can halt. By contrast, in a search space that is not monotone,
a prefix P ′ of a path P may be worse than P itself. Thus, the
best g-value in OPEN is not necessarily better than the best
solution. In such a case, DA may need to expand all the states
in the search space that are on a path to a goal before halt-
ing. Moreover, some states may be expanded several times,

1This differs from monotonicity as proposed by Dechter and
Pearl [1985] that describes the relation between a BFS evaluation
function and solution costs.
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as better paths to them are found. Thus, DA will not expand
fewer states than a depth-first search (DFS) that exhaustively
expands all states on all paths to a goal. Since DFS has a
lower overhead per node than DA, it should perform better.

Search space monotonicity is related to the “principle of
optimality”, also known as the “optimal substructure” prop-
erty. The “optimal substructure” property holds in problems
where an optimal solution is composed of optimal solutions
to its subproblems [Cormen et al., 2001]. This property is
needed for dynamic programming algorithms. The shortest
path problem has the optimal substructure property as pre-
fixes of a shortest path are also shortest paths. LPP, on the
other hand, does not have the optimal substructure property
as prefixes of a longest path are not necessarily longest paths.
For example, consider LPP for the graph depicted in Fig-
ure 1a. The longest path from s to t passes through a and
its cost is 4. The longest path from s to a, however, passes
through b and t, and its cost is 6. Not having the “optimal sub-
structure” property in general MAX problems prevents for-
mulating MAX problems as a cost algebra [Edelkamp et al.,
2005]. Cost algebra is a formalism for representing a wide
range of cost optimality notions, and Edelkamp et al. showed
how to apply DA on any optimization problems formulated
using a cost algebra.

3.3 Depth First Branch and Bound (DFBnB)
Search space monotonicity is also needed for DFBnB to be
effective. DFBnB is an enhancement of DFS that prunes
paths with cost worse than the incumbent solution (best so-
lution found so far). It is an “anytime” algorithm, i.e., it pro-
duces a sequence of solutions of improving quality. When
the state space has been completely searched (or pruned), the
search halts and an optimal solution is returned.

Applying DFBnB on MAX problems is problematic, since
a path can only be pruned if one knows that it is not a prefix of
a better path to a goal. Thus, in uninformed search, pruning
with DFBnB only applies to monotone search spaces. With-
out pruning any paths, DFBnB is plain DFS, enumerating all
paths in the search space.

3.4 Bidirectional Search (BDS)
BFS is another type of uninformed search, in which two
searches are performed simultaneously: a forward search,
from the start state towards a goal, and a backward search,
from goal states backwards towards the start.

For domains with uniform edge-costs and a single goal
state, BDS runs a breadth-first search from both start and goal
states. When the search frontiers meet and one of the searches
has completed expanding all nodes in the current depth, then
the search can halt and the min-cost path from start to goal
is found. For MIN problems with uniform edge-costs, the
potential saving of using BDS is large, expanding the square
root of the number of states expanded by regular breadth-first
search (or DA). With some modification, BDS can also be
applied to problems with non-uniform edge-costs [Goldberg
and Werneck, 2005].

Applying BDS to MAX problems poses several challenges.
Consider running BDS on the graph in Figure 1b, searching
for the LPP from s to t. For this example assume that the

forward and backward searches alternate after every state ex-
pansion and both sides use DA for MAX (i.e., expand the
state with the highest g). Vertex a is the first vertex expanded
by both searches, finding a solution with a reward of 6, while
the optimal reward is 9 (following 〈s, b, c, t〉).

Thus, unlike MIN problems, an optimal solution is not nec-
essarily found when a state is expanded by both sides. Even
if both sides used DA for MIN (expanding states with low g)
an optimal solution would still not be returned.

The optimality of BDS for MIN problems depends on two
related properties that do not hold in MAX problems. First,
when a state is expanded, the best path to it has been found.
As discussed above, this does not hold for MAX problems,
and in general for non-monotone search spaces. Second, the
lowest cost path from s to t is composed of an optimal path
from s to some state x, concatenated with an optimal path
from x to t. This is exactly the optimal substructure property,
which as mentioned earlier does not hold for MAX problems.

In summary, in contrast to the MIN setting, DA for MAX
problems cannot stop at the first goal, DFBnB offers no ad-
vantage over plain DFS, and BDS appears problematic. We
are not familiar with an uninformed search algorithm that is
able to find optimal solutions to MAX problems without enu-
merating all the paths in the search space.

4 Heuristic Search for MAX
In many domains, information about the search space can
help guide the search. We assume such information is given
in the form of a heuristic function h(·), where h(v) estimates
the remaining cost/reward of the optimal path from v to a
goal. For MIN problems, many search algorithms that use
such a heuristic function run orders of magnitude faster than
uninformed search algorithms. Next, we discuss heuristic
search algorithms for MAX problems.

4.1 DFBnB
In MIN problems, h(v) is called admissible if for every v,
h(v) is a lower bound on the true remaining cost of an opti-
mal path from the start to a goal via v. Given an admissible
heuristic, DFBnB can prune a state v if g(v)+h(v) is greater
than or equal to the cost of the incumbent solution. This re-
sults in more pruning than DFBnB without h.

Similar pruning can be achieved for MAX problems, by
adjusting the definition of admissibility.
Definition 2 (Admissibility in MAX problems). A function
h is said to be admissible for MAX problems if for every state
v in the search space it holds that h(v) is an upper bound on
the remaining reward of an optimal (i.e., the highest reward)
solution from the start to a goal via v.
Given an admissible h for a MAX problem, DFBnB can
safely prune a state v if g(v) + h(v) ≤ C where C is the
reward of the incumbent solution. DFBnB with this pruning
is very effective for some MAX problems [Kask and Dechter,
2001; Marinescu and Dechter, 2009].

4.2 A∗

A∗ is probably the most well-known heuristic search algo-
rithm [Hart et al., 1968]. It is a BFS that uses an evaluation
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function f(·) = g(·) + h(·). Let minf and maxf denote
minn∈OPEN f(n) and maxn∈OPEN f(n), respectively. In
every iteration, A∗ for MIN problems expands a state with
f -value equal to minf . Similiarly, we define A∗ for MAX
problems to expand a state with f -value equal to maxf .
Lemma 1. If h is admissible then for any BFS that stores all
generated states in OPEN, minf lower bounds and maxf
upper bounds the cost/reward of an optimal solution.

For MIN problems, A∗ is guaranteed to find an optimal
solution when the first goal is chosen for expansion. This
is because in MIN problems, an admissible h function must
return zero for any goal state t and thus if t is expanded
f(t) = g(t) = minf and thus g(t) is optimal. This is
not the case for MAX problems, where h(t) may be larger
than 0, e.g., when t is on a higher reward path to another
goal. Therefore, while the f(t) upper bounds the optimal so-
lution (Lemma 1), g(t) may not. To preserve optimality, A∗
for MAX problems should be modified to halt either when
OPEN is empty, or when maxf ≤ C. A similar variant
of A∗ was proposed under the names Anytime A* or Best-
First Branch and Bound (BFBB) in the context of partial sat-
isfaction planning [Benton et al., 2009] and over subscription
planning [Domshlak and Mirkis, 2015].

The consistency property of a heuristic can also be adapted
for MAX problems in a way that preserves its positive prop-
erties on search algorithms. See Stern et al. [2014] for a more
detailed discussion.

5 Suboptimal Search for MAX
Solving problems optimally is often infeasible and subopti-
mal algorithms are often used in practice. Next, we inves-
tigate how to adapt classic suboptimal search algorithms to
MAX problems.

5.1 Greedy Best First Search and Speedy Search
Greedy BFS (GBFS), also known as pure heuristic search, is
a BFS that expands the state with the lowest h value. In some
MIN problem domains, GBFS quickly returns a solution of
reasonable quality. Can GBFS be adapted to MAX problems?

First, we analyze why GBFS is often effective for MIN
problems. In MIN problems, h is expected to decrease as we
advance towards the goal. Thus, expanding first states with
low h value is expected to lead the search quickly towards
a goal. In addition, states with low h value are estimated to
have less remaining cost to reach the goal. Thus, choosing to
expand states with low h values is somewhat related to finding
a better, i.e., lower cost, solution. Therefore, in MIN prob-
lems, by expanding the state with the lowest h value, GBFS
attempts to both reach a high quality goal, and also to reach
it quickly, as desired for a suboptimal search algorithm. But
what would be a proper equivalent in MAX problems?

In MAX problems, GBFS does not have this dual positive
effect. Expanding the state with the lowest h value is expected
to lead to a goal supposedly quickly, but for MAX problems
a short path to the goal is expected to have low solution qual-
ity (if length is correlative to the amount of collected reward).
The alternative of expanding the state with the highest h value
would result in a breadth-first search behavior. Even if goal

states had h = 0 (not necessarily true in MAX problems),
then they would be chosen for expansion last, after all other
states. That would make GBFS extremely slow, and much
slower than A∗! This was also supported in a set of prelimi-
nary experiments we performed, where a GBFS that expands
the highest h was extremely inefficient. We thus use the term
GBFS for both MAX and MIN problems to denote a BFS that
always expands the state with lowest h in OPEN.

If edges in the state space have different costs, the length
of a path to a goal may be different from the cost of that path.
In such state spaces, Speedy search was proposed as an al-
ternative to GBFS when the task is to find a goal as fast as
possible [Ruml and Do, 2007]. It is a BFS on d, which is an
estimate of the shortest path to a goal. Speedy search is well
suited to MAX problems: d is defined in MAX problems ex-
actly like in MIN problems, and Speedy for both MIN and
MAX problems always expands the state with the lowest d.
In the experimental section later, we show that Speedy search
in MAX problems is substantially faster than GBFS.

6 Bounded Suboptimal Search for MAX
Bounded suboptimal search algorithms are suboptimal algo-
rithms that accept a parameter w and guarantee to return a
solution whose cost is bounded by w times the cost of an op-
timal solution. Formally, let C denote the cost of the solution
returned by a suboptimal search algorithm and let C∗ denote
the cost of an optimal solution. A bounded suboptimal search
algorithm for MIN problems guarantees that C ≤ w · C∗.
Since C∗ is the lowest-cost solution, bounded suboptimal al-
gorithms can only find a solution for w ≥ 1. We define
a bounded suboptimal search algorithm for MAX problems
similarly, as an algorithm that is guaranteed to return a so-
lution whose reward is at least w times the highest-reward
solution, i.e., that C ≥ w · C∗, where 0 ≤ w ≤ 1.

Weighted A∗ [Pohl, 1970] is perhaps the first and most
well-known bounded suboptimal search algorithm. It is a
BFS, expanding in every iteration the state in OPEN with the
lowest fw(·) = g(·)+w ·h(·). When a goal is chosen for ex-
pansion, the search halts and the cost of the found solution is
guaranteed to be at most w ·C∗. To achieve a similar guaran-
tee for MAX problems, we modify WA* in two ways. First,
WA* for MAX problems expands the state with the highest
fw in OPEN. Second, instead of halting when a goal is chosen
for expansion, WA* for MAX problems halts only when the
maximal fw in OPEN (denoted maxfw ) is not greater than
the reward of the incumbent solution.
Theorem 1 (w-Admissibility of WA* in MAX problems).
For any 0 ≤ w ≤ 1, when maxfw ≤ C then C ≥ w · C∗.

Proof is omitted due to lack of space, and is basically sim-
ilar to the equivalent proof in MIN problems.

Consider the behavior of WA* as w changes. When w = 1,
WA* is equivalent to A∗ İn MIN problems, increasing w
means that the evaluation function fw depends more on h
than on g. In general [Wilt and Ruml, 2012], this results
in finding solutions faster but with lower quality (i.e., higher
cost). In the limit, w =∞ and WA* becomes GBFS.

To analyze the behavior of WA* in MAX problems, con-
sider first the special case where w = 0. This is the equivalent
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Problem MIN MAX
w=0 DA DA that halts early

= DFS
0<w<1 N/A Worse quality,

faster search
w=1 A∗ A∗

1<w<∞ Worse quality, N/A
faster search

w=∞ GBFS N/A

Table 1: Weighted A∗ in MAX and MIN problems

of w =∞ in MIN problems, having unbounded suboptimal-
ity. When w = 0 WA* becomes a BFS expanding the node
with highest g. Thus WA* with w = 0 expands states in
the same order as DA (as opposed to GBFS in WA* for MIN
problem). There is, however a key difference between DA
and WA* with w = 0. DA is intended to find optimal solu-
tions and thus it halts only when OPEN is empty (as discussed
earlier). By contrast, WA* for MAX problems halts when the
incumbent is larger than or equal to the highest fw value in
OPEN. As a result, WA* for MAX problems with w = 0, as-
suming a reasonable tie-breaking policy, is exactly DFS that
halts when the first solution is found! We explain this next.

Since w = 0, then for every state v, we have fw(v) = g(v).
Let v be the most recent state expanded. By definition, v
had the highest g value in OPEN. Its children have g val-
ues that are the same or higher and, therefore, one of these
children will be expanded next. This continues until either a
goal is chosen for expansion, having the highest g value in
OPEN, and thus the search halts, or alternatively, a dead-end
is reached, and then the best state in OPEN would be one of
its immediate predecessors. An earlier predecessor cannot be
better than one further along the path as long as edge weights
are non-negative. Note that this is exactly the backtracking
done by DFS. DFS is known to find solutions quickly in MAX
problems. Thus, WA* is fast for MAX problems, as it is for
MIN problems, but for a very different reason.

More generally, decreasing w from one to zero has two ef-
fects. First, WA* behaves more similarly to DFS (converging
to it when w = 0). This in general results in finding a solution
faster. Second, lowering w allows lower quality solutions to
be returned. The behavior of WA* for MIN and MAX prob-
lems is summarized in Table 1.

The A∗ε algorithm represents a different class of bounded
suboptimal search algorithms [Pearl and Kim, 1982]. In ad-
dition to OPEN, A∗ε maintains another list, called FOCAL.
FOCAL contains a subset of states from OPEN, specifically,
those states with g + h ≤ w ·minf . While states in OPEN
are ordered according to their f -value as in A∗, the states in
FOCAL are ordered according to d. This FOCAL-based ap-
proach was taken further by Thayer et al. [2011] in their EES
algorithm, which uses an additional third ordering accord-
ing to an inadmissible heuristic. We denote by focal search
the general search algorithm framework where one ordering
function is used to select FOCAL, and another ordering func-
tion is used to select which node to expand from FOCAL. A∗ε
and EES are thus instances of focal search.

Adapting focal search to MAX problems is easy. First, the

states in FOCAL are now those states with f values greater
than or equal to w ·maxf , where maxf is the largest f value
in OPEN. Second, as in WA* for MAX problems, finding a
goal is not sufficient to guarantee that the incumbent solution
is w-admissible, and a different stopping condition is needed.
Such a condition that guarantees w-admissibility can be de-
rived from Lemma 1: halt if w·maxf≤C.

An alternative to the previously discussed BFS-based
frameworks is to apply DFBnB and prune states that cannot
lead to a solution that would improve on the incumbent solu-
tion by more than a factor of 1

w . The corresopnding pruning
rule is that a state v can be pruned if fw(v) ≤ C.

7 Empirical Evaluation
As a preliminary study of how the algorithms discussed in this
paper behave, we performed a set of experiments on the LPP
domain. We do not presume to claim that any of the evaluated
LPP solvers is a state-of-the-art LPP solver. Different classes
of LPP have different solvers, where some subclasses of LPP
can be even be solved in polynomial time [Ioannidou and
Nikolopoulos, 2013]. The theoretical computer science liter-
ature also studied different approaches to solve LPP, such as
using randomized algorithms [Williams, 2009] to find paths
of length k with high probability. We use LPP as an example
MAX problem on which we investigate the general purpose
MAX search algorithms described in this paper. Thus, we did
not compare with

Three types of LPP domains were used: (1) uniform grids
are 4-connected N × N grids with 25% random obstacles,
where traversing each edge costs one, (2) life grids are the
same grids but traversing an edge into a grid cell (x, y) costs
y + 1 [Thayer and Ruml, 2008], and (3) roads are subgraphs
of the US road network graph. From this relatively large
graph (approx. 20 million vertices), we chose a random ver-
tex and performed a breadth-first search around it up to a pre-
defined number of vertices.

Heuristics
For uniform grids, we used the following admissible heuris-
tic, denoted by hCC . Let v = 〈v1, v2, .., vk〉 be a state, where
v1, .., vk are the vertices on the path in G it represents. Let
Gv be the subgraph containing exactly those nodes on any
path from vk to the target that do not pass through any other
vertex in v. Gv can be easily discovered with a DFS from vk.
hCC returns |Gv| − 1. It is easy to see that hCC is admissi-
ble. As an example, consider the Figure 1c. hCC(〈s〉) = 4
while hCC(〈s, a, c〉) = 1. A similar heuristic was used for
life grids. The heuristic computes Gv and count every vertex
(x, y) as y+1. For roads, we used the maximal weight span-
ning tree for Gv . This is the spanning tree that has the highest
weight and covers all the states in Gv . This heuristic is ad-
missible as every path can be covered by a spanning tree. The
distance heuristic d (used by Speedy and focal searches) used
was the shortest path to a goal, which was computed once for
all states at the beginning of the search.

Optimal Algorithms
We compared A∗, DFBnB with pruning using an admissible
heuristic, and a DFS enumeration of all paths in the search
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Network size
Algorithm 100 300 500 700 1000
Speedy 100 100 100 100 100
DFS 100 83 78 73 64
GBFS 100 81 65 52 52

Table 2: Solved LPP instances on roads

space. DFS was chosen to represent uninformed search al-
gorithms, as its computational overhead is very small and
all uninformed search algorithms we discussed had to search
through all paths in the search space to guarantee optimality.

Figure 2a show the average runtime as a function of the
domain size in roads. As expected, exhaustive DFS performs
poorly compared to A∗ and DFBnB. The differences between
A∗ and DFBnB is very small. DFBnB is faster, while they ex-
pand almost exactly the same number of nodes (not shown).
Thus, the slight advantage of DFBnB in runtime is due to the
overhead of A∗ such as the need to maintain OPEN. Very
similar trends were observed for uniform and life grids.

Suboptimal Algorithms
Next, we compared three unbounded suboptimal search al-
gorithms: GBFS (denoted as “Greedy”), Speedy search, and
plain DFS. All algorithms halt when the first goal was found.

Table 2 shows the number of instances, out of a hundred,
solved by each algorithm under 5 minutes for different sizes
of road networks. As the network grows larger, Speedy is able
to solve many more instances than both DFS and Greedy, as
d perfectly estimates the shortest distance to a goal. The poor
performance of GBFS emphasizes that its heuristic (hCC) is
ill-suited to guide a search quickly to the goal. Furthermore,
the computation of hCC is more costly than the one-time
computation of the shortest path required for computing d.

Complementing the view above, Figure 2b shows the re-
ward achieved by each algorithm (averaged over the instances
solved by all). Interestingly, DFS finds better solutions. This
is because DFS does not aim to find a solution of low or high
reward. By contrast, both Speedy and Greedy aim to find
a solution quickly, which in LPP results in a short solution
with small reward. Speedy finds worse solutions compared
to Greedy, because it uses a perfect d, leading it to the short-
est path to a goal. By contrast, Greedy uses hCC , which is
not focused on short paths, and thus the solutions it finds are
better than those found by Speedy. The trends reported above
for both success rate and achieved reward were also observed
in uniform and life grids.

Bounded Suboptimal Algorithms
Next, we compared the bounded suboptimal variant of DF-
BnB presented earlier, WA*, A*ε, and EES. Following re-
cent work, we implemented simplified versions of A*ε and
EES which perform iterative deepening instead of maintain-
ing OPEN and FOCAL [Hatem and Ruml, 2014]. These sim-
plified version were shown to be more efficient in most cases
than the original versions of the algorithms.

Figure 2c presents performance on 13x13 life grids. The
x-axis represents the desired suboptimality bound and the y-
axis depicts runtime in seconds (in log scale, to better dif-
ferentiate the algorithms). DFBnB and WA* performs best
with some small advantage to DFBnB. The focal searches

perform worse. Similar trends were shown in roads and uni-
form grids, where the advantage of DFBnB and WA* over the
focal searches was slightly larger. The relatively poor perfor-
mance of the focal search algorithms is caused by the over-
head of maintaining FOCAL (even with the iterative deep-
ening scheme mentioned earlier), and the poor accuracy of
the additional d heuristic. Devising better focal searches for
MAX is left for future work.

Concluding, we observed from the results the expected
benefit of heuristic search algorithms for MAX problems. If
the task is to find a solution as fast as possible, Speedy search
is the algorithm of choice. For finding optimal solutions DF-
BnB with a heuristic performs best, with A* close behind.
For bounded suboptimal the best performing algorithms were
DFBnB with a suitable heuristic (w ·h) and WA*, while focal
searches performed worse. DFBnB performed well in our do-
main (LPP) because the search space has no duplicates (since
a state is a path), finding an initial solution is easy, and the
proposed heuristics were relatively accurate. All of these are
known weak points of DFBnB: it does not detect duplicates,
it performs no pruning until the first solution is found, and a
bad heuristic may cause it to commit early to an unpromising
branch. Evaluating the performance of DFBnB against the
other heuristic algorithms on MAX problem domains with-
out these properties is left for future work.

8 Conclusion and Future Work
We explored a range of search algorithms for solving MAX
problems. Using the notion of search space monotonicity,
we showed how classical uninformed search algorithm for
MIN problems cannot be applied efficiently to MAX prob-
lems, often requiring exhaustive search of the entire search
space. Heuristic search algorithms, however, can be effec-
tive in MAX problems. We reestablished several key proper-
ties of searching in MAX problems, and showed how these
algorithms can speed up the search, thus demonstrating the
potential of heuristic search for MAX problems. Applying
advanced search techniques and heuristics are exciting direc-
tions for future work.
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