
Speedy versus Greedy Search

Christopher Wilt and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA
{wilt, ruml} at cs.unh.edu

Abstract

When an optimal solution is not required, satisfic-
ing search methods such as greedy best-first search
are often used to find solutions quickly. In work on
satisficing search, there has been substantial atten-
tion devoted to how to solve problems associated
with local minima or plateaus in the heuristic func-
tion. One technique that has been shown to be quite
promising is using an alternative heuristic function
that does not estimate cost-to-go, but rather esti-
mates distance-to-go. There is currently little be-
yond intuition to explain its superiority. We be-
gin by empirically showing that the success of the
distance-to-go heuristic appears related to its hav-
ing smaller local minima. We then discuss a rea-
sonable theoretical model of heuristics and show
that, under this model, the expected size of local
minima is higher for a cost-to-go heuristic than a
distance-to-go heuristic, offering a possible expla-
nation as to why distance-to-go heuristics tend to
outperform cost-to-go heuristics.

1 Introduction
Optimal algorithms such as A* [Hart et al., 1968] require im-
practical amounts of time and/or memory on many problems.
For example, memory constraints make it impossible to solve
the more difficult instances of the 15-puzzle using the Man-
hattan distance heuristic and A* without a finely tuned imple-
mentation and state-of-the-art hardware. This creates a strong
need for non-optimal (satisficing) algorithms that are able to
overcome these difficulties. One of the most popular tech-
niques for this is greedy best-first search. Greedy best-first
search expands nodes in h(n) order in an attempt to sacrifice
solution quality to achieve faster runtime [Doran and Michie,
1966].

Unfortunately, it is rarely the case that it is possible to fol-
low the heuristic directly to a goal, due to local minima and
heuristic plateaus. We will say that a node n is in a local min-
imum if all paths from n to a goal node include at least one
node n′ such that h(n′) > h(n). Informally, this means that
in order to get from n to a goal, the h value of the nodes in the
path must increase. A local minimum is a maximal connected

region of nodes that are all in a local minimum1. A heuristic
plateau is a maximal connected region of nodes such that all
nodes in the region have the same heuristic value.

Because greedy best-first search expands nodes with low h
values, both of these phenomena cause problems. In a heuris-
tic plateau, if all nodes have the same h value, greedy search
is unable to intelligently differentiate between nodes because
the nodes have the same h value. In a local minimum, by hy-
pothesis the nodes with a low h value do not lead to a goal
(because they are in the local minimum) and are therefore not
desirable nodes to expand if the objective is to solve the prob-
lem quickly. In this paper we focus on local minima, because
these regions are particularly problematic for greedy best-first
search. A heuristic plateau can sometimes be mitigated by tie
breaking, but local minima cannot be avoided by greedy best-
first search.

Recent work in suboptimal heuristic search and planning
has used two kinds of best-first search heuristics: cost-to-
go (h(n), “greedy search”) [Doran and Michie, 1966], and
distance-to-go (d(n), “speedy search”) [Ruml and Do, 2007].
h(n) is an approximation of h∗(n), which is the sum of the
costs of the edges along a cheapest path starting at n and end-
ing at a goal node. The function d(n) is an approximation
of d∗(n), which is the count of edges along a shortest path
(measured in count of edges) between n and a goal node.2

For minimizing solving time, empirical results strongly fa-
vor using a best-first search on d(n) over h(n) [Thayer et
al., 2009; Cushing et al., 2010; Richter and Westphal, 2010;
Richter et al., 2011]. However, there is currently a lack of
understanding of the reasons behind this phenomenon. In
this paper, we first show that d is generally more effective
for guiding a heuristic search because d tends to have smaller
local minima. We also show examples of domains where h
has smaller local minima, and how in these domains, greedy
best-first search on h is more effective.

Second, we show that, using a random supergraph model
of heuristic functions, the expected number of nodes that will
be in a local minimum is higher the more the operator costs in
the domain vary. This neatly explains the superiority of d, as
distance heuristics treat all operators as having the same cost.

1In a directed space, these definitions become more complicated.
2Some authors define a variant of d that estimates the number of

nodes in the cheapest path [Ruml and Do, 2007].

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

4331

Dom Cost Max Local Expected Exp
Min Size Min Size

Tiles
Unit 392 2.01 801
Inverse 51,532 87.23 93,010
Rev Inv 2091 1.94 855

Hanoi
Unit 7,587 1,892.41 36,023
Rev Sq 35,874 4,415.71 559,250
Square 2,034 200.82 4,663

TopSpin
Unit 296 250.00 933
Sum 922 2.65 749
Stripe 240 2.64 441

Table 1: Sizes of local minima and average expansions re-
quired of a greedy best-first search to find a solution.

This work furthers our understanding of suboptimal heuris-
tic search, one of the most scalable planning and problem-
solving techniques available.

2 The d Heuristic (Usually) Finds Solutions
Faster

We begin with a brief overview of the phenomenon we are
attempting to explain: the d heuristic employed by speedy
search is generally able to outperform the h heuristic em-
ployed by greedy best-first search.

We begin our analysis by performing experiments on three
benchmark domains, using both unit and non-unit cost func-
tions. For each domain, the problems all have the same un-
derlying graph with the only difference being the edge costs,
so a solution to the unit-cost problem is a valid solution to the
non-unit problem, and vice-versa. Furthermore, in this anal-
ysis, we are only concerned with how long it takes to find a
solution, not how much the solution costs, so the edge costs
from the underlying problem are only relevant insofar as they
are relevant to creating the heuristic.

The first domain we consider is the 3x4 sliding tile puzzle.
We used the 3x4 sliding tile puzzle to make it easier to accu-
rately measure the sizes of local minima. The first variant is
the standard unit cost function, where h and d are the same, so
speedy search and greedy best-first search are the same. We
also consider inverse costs, where the price of moving tile n
is 1

n , and reverse inverse, where the price of moving tile n is
1

12−n . As we can see in Table 1, the unit-cost problems are
substantially easier to solve using greedy best-first search as
compared to the inverse cost problems, and marginally eas-
ier to solve than the reverse inverse problems. This confirms
previous results indicating that unit-cost heuristics (d) enable
faster search than non-unit (h) ones.

The second domain we consider is the Towers of Hanoi
problem with unit costs, but also with square costs (where the
cost of moving disk n is n2) and reverse square costs (where
the cost of moving disk n is n2, but the disks are in reverse or-
der, i.e., the cost of moving disk n out ofN is (N−(n−1))2).
We considered a set of 51 problems with 12 disks and 4 pegs,
and for a heuristic we used a disjoint pattern database, with
the first pattern database using the top 4 disks, and the second
pattern database using the bottom 8 disks. In this domain,
we can see two trends. When we compare greedy best-first

search solving the unit-cost problems and the reverse square
cost problems, we once again see that the unit-cost problem
is easier to solve, as evidenced by it requiring an order of
magnitude fewer expansions. If we compare greedy best-first
search solving the unit-cost problem and the square cost prob-
lem, however, we can see the opposite trend, providing us
with our first concrete example of a unit-cost problem that is
more difficult to solve than a nonunit-cost problem.

We also consider variants of the popular TopSpin puzzle.
We considered 100 problems with 12 disks, and a turnstile
that swaps the order of 4 disks. In the unit cost problem, the
cost of using the turnstile is 1. With the sum cost function,
each disk has an id, and the cost of using the turnstile is the
sum of the ids of the disks that are in the turnstile. With the
stripe cost function, each disk costs either 1 or 10, depending
on whether its id is even or odd, and the cost of using the
turnstile is the sum of the costs of the disks that are in the
turnstile. We can see in Table 1 that the unit cost problem is
once again not the fastest, and in this case, greedy best-first
search on the unit-cost problem is slower than greedy best-
first search on either kind of non-unit problem.

3 d Has Smaller Local Minima
We propose that the expected size of a local minimum using
the d heuristic is lower, and that this allows best-first search
on d to outperform best-first search on h. There is a clear ben-
efit to greedy best-first search of having small local minima.
Unless the initial state is located in a global minimum (a local
minimum that contains a goal node), greedy best-first search
will begin by expanding all of the nodes in the current local
minimum, and will then proceed to look for the goal outside
the local minimum.

It is possible to calculate the size of every local minimum
in an entire search space by searching backwards from the
goal states, expanding nodes in increasing h order. Any node
whose h value is less than the highest h value seen thus far is
inside a local minimum, since nodes were reverse expanded
preferring nodes with low h. The results of this analysis are
shown in Table 1. Recall that if the initial state is inside a
local minimum, greedy best-first search will expand every
single node in the local minimum prior to exiting the local
minimum and attempting to find a path to the goal. As we
can see in Table 1, as both the expected size of a local mini-
mum and the maximum size of a local minimum increase, the
average number of expansions required by a best-first search
increases. If we assume the number of local minima encoun-
tered by a search is constant, clearly the domain which has
larger local minima will be more difficult.

We have just seen that while it is often the case that the
unit-cost problems are easier to solve for greedy best-first
search, it can also be the case that the unit-cost problems
are more difficult to solve, but in either case, greedy best-
first search is more effective when the heuristic, whether it is
measuring cost or distance, has smaller local minima.

4 Heuristic Gradients
In this section, we describe the general requirements that
greedy search places on the gradient induced by the heuris-

4332

tic function, and why that requirement is often better met by
heuristics that assume all edges have the same cost.

4.1 High Water Mark Pruning
For every node n, there is a minimum h value, which we
denote as hhw, such that at least one path from n to a goal
includes no nodes whose h value is greater than hhw. Note
that if there are no paths to a goal from n, this value should
be infinity. Formally, this quantity is defined as

hhw(n) = min
paths to a goal

(max
p∈path

h(p))

In order to find a path to a goal from node n, it is necessary
to expand at least one node with an h value of hhw(n) and
sufficient to expand all nodes x with h(x) ≤ hhw(n).

On problems where there is a solution, greedy search takes
advantage of this by never expanding any nodes whose h
value is greater than hhw(root). Greedy best-first search ter-
minates when it discovers a path from the start to the goal, and
when it terminates, it prunes all nodes on the open list. Be-
cause of this, nodes on the open list whose h value is higher
than the hhw(root) will never be expanded. As greedy search
expands nodes, the minimum hhw of all nodes on the open
list either stays the same or decreases, thereby decreasing the
maximum h of nodes that will be expanded from that point
onwards.

Theorem 1. On problems for which greedy best-first search
terminates, greedy best-first search will expand at least one
node with h(n) = hhw(root). Greedy best-first search will
not expand any nodes with h > hhw(root).

Proof. See Wilt and Ruml [2014].

The effectiveness of high water mark pruning is driven
largely by the relationship between hhw(n) and h(n). For
example, suppose ∀n : h(n) = hhw(n). If this is the case,
greedy search will be able to expand nodes along a single path
leading directly to a goal, assuming optimal tie breaking.

The high water mark is analogous to a dam that the search
must flow over. As the difference between h(root) and
hhw(root) increases we expect the number of nodes that
greedy best-first search will have to expand to simply get over
the first heuristic dam (the number of nodes in the local min-
imum) increases. Thus, it would be beneficial to assess this
error in heuristics.

4.2 Heuristic Error
Figure 1 shows the h value of the head of the open list of
a greedy best-first search as the search progresses solving a
Towers of Hanoi problem with 12 disks, 4 pegs, and a disjoint
pattern database, with one part of the disjoint PDB containing
8 disks, and the other containing 4 disks. From this figure,
we can see that the h value of the head of the open list of
greedy search can fluctuate significantly. These fluctuations
can be used to assess inaccuracies in the heuristic function.
For example, at about 1,000 expansions the search encounters
a node nbad with a heuristic value that is 14, but we can show
that the true h value of nbad is at least 20.

Figure 1: The minimum h value on open as the search pro-
gresses, using a disjoint PDB.

After expanding nbad, greedy search then expands a node
with an h value of 20 at roughly 7,500 expansions. This al-
lows us to establish that it costs at least 20 to get from nbad to
a goal because h is admissible. The general case is expressed
as:

Theorem 2. Consider a node nbad that was expanded by
greedy search, and nhigh, the node with the highest h value
that was expanded after nbad, then h∗(nbad) ≥ h(nhigh) if h
is admissible.

Proof. See Wilt and Ruml [2014].

The genesis of this problem is the fact that nbad is in a
local minimum. As discussed earlier, greedy best-first search
will expand all nodes in a local minimum in which it expands
one node, so clearly larger local minima pose a problem for
greedy best-first search.

Heuristic error, defined as deviation from the perfect h∗,
is not the root cause of the phenomenon visible in Figure 1.
For example, h(n) = h∗(n)× 1000 and h(n) = h∗(n)/1000
both have massive heuristic error, but either of these heuristics
would be very effective for guiding a best-first search. The
problem is the fact that to actually find a goal after expanding
nbad, all nodes with h < h(nhigh), and all descendants of
those nodes who also have h < h(nhigh), must be cleared
from the open list. It is the unproductive expansion of these
nodes that causes greedy search to perform poorly.

From the perspective of greedy search, the core of the prob-
lem is the difference between h(nhigh) and h(nbad), indepen-
dent of h∗(n). Bringing h(nbad) closer to its true value could
make it so that nbad is not expanded, but there is another pos-
sibility: lowering h(nhigh). This illustrates the importance of
the gradient formed by the heuristic when doing greedy best-
first search. If the gradient is amenable to following to a goal,
greedy best-first search will perform well, but if the gradi-
ent is not amenable to following, greedy best-first search will
perform poorly.

5 Why d is Better than h
We now turn to the crucial question raised by these results:
why d tends to produce smaller local minima as compared to
h, leading it to be a more effective satisficing heuristic.

4333

Figure 2: An example of a shortcut tree.

Local Minima are More Likely Using h
We begin this analysis by introducing a model of how
heuristics are constructed which can be applied to any ad-
missible heuristic. The model was originally created by
Gaschnig [1979]. We call this model the shortcut model of
heuristic construction.

In any graph g, a node’s h∗ value is defined as the cost of
a cheapest path through the graph from the node to a goal
node. In calculating the h value of the node, the shortcut
model stipulates that the heuristic constructs a shortest path
on a supergraph g′ which is the same as the original graph,
with the exception that additional edges have been added to
the graph. The heuristic sometimes includes these edges from
the supergraph in its path, which is why it is not always pos-
sible to follow the heuristic directly to a goal in the original
graph. Any admissible heuristic can be modeled using a su-
pergraph using the degenerate mapping of connecting every
node n directly to the goal via an edge with cost h(n). In the
context of a pattern database, all nodes that map to the same
abstract state are connected to one another by zero cost edges
in the supergraph.

Now, we will introduce a special kind of tree which we will
use to model heuristic search trees, called a shortcut tree, an
example of which is shown in Figure 2. A shortcut tree has
edge costs assigned uniformly at random from a categorical
distribution opset such that the lowest cost edge costs ε and
the highest cost edge costs 1. Each edge in the shortcut tree
is assigned a weight independently from opset.

We require that the count of edges in all paths from a leaf
to the goal be at least 1

ε . This means that all paths from a leaf
to the root have a cost of at least 1. We model the heuristic
of a shortcut tree as a supergraph heuristic that adds edges
uniformly at random to the shortcut tree. With some fixed
probability 0 ≤ p ≤ 1 the supergraph edges have zero cost,
but if edges do not have zero cost, they are assigned a cost
which is the sum of n ∈ [1, N] costs drawn from opset. A
simple example can be seen in Figure 2, where opset only
has two possible edge costs, ε, and 1. The star represents the
goal, which is also the root of the tree.

In Figure 2, all paths from the node b to a goal in the origi-
nal tree go through node d, but node d has a heuristic value of
1, while node b has a heuristic value of 2ε, so node b is inside
a local minimum, because going from b to a goal requires at
least one node n with h(n) > h(b). The local minimum was
caused because node b is connected to node c via a zero cost
edge. If node c had a heuristic value greater than 1, the zero
cost edge between b and c would not cause a local minimum.

Thus, the question of whether or not node b will be in a local
minimum is equivalent to asking what the likelihood is that
node b is connected to a node whose heuristic value is less
than 1.

Shortcut trees have their edge weights and supergraph
edges assigned randomly based upon opset and the proba-
bility that a supergraph edge is assigned zero cost. As a re-
sult, it is impossible to predict exactly what will happen with
a particular shortcut tree. It is meaningful, however, to dis-
cuss the expected value over all possible assignments of edge
weights and supergraph edges. Theorem 3 discusses how the
expected probability of a local minimum forming changes as
opset changes.

Theorem 3. Let T be a shortcut tree of fixed height H with
edge weight distribution opset. As the average value of the
items in opset approaches 1

H , the expected value of the prob-
ability that a node whose parent’s h value (parent is the
neighbor closer to the goal) is at least 1 is inside a local min-
imum increases. As we increase the prevalence of operators
whose cost is not 1, we also increase the expected value of the
probability that a node whose parent’s h value is at least 1 is
inside a local minimum.

Proof. See Wilt and Ruml [2014].

Every node in the tree needs to have an h value that is
higher than its parent, otherwise the node will be inside of
a local minimum. In particular, nodes whose parents have
h values that are higher than 1 that receive h values that are
smaller than 1 will be in a local minimum. Theorem 3 shows
that two factors contribute to creating local minima in this
way: a wide range of operator costs, and an overabundance of
low cost operators. Both of these factors make sense. When
the cheap edges are relatively less expensive, there are go-
ing to be more nodes in the tree whose cost is smaller than
1. This increases the likelihood that a node that needs a high
heuristic value is connected in the supergraph to a node with
a low heuristic value because there are more nodes with low
heuristic values. Likewise, when the prevalence of low cost
edges increases, there are more parts of the tree with decep-
tively low heuristic values that look promising for a best-first
search to explore.

To the extent that shortcut trees model a given heuristic,
Theorem 3 offers an explanation of why guiding a best-first
search with d is likely to be faster than guiding a best-first
search with h. With d, the heuristic pretends that opset only
contains the value 1. Thus, as we morph d into h by lowering
the average value in opset, and increasing the prevalence of
operators whose cost is not 1 we increase the probability that
low h nodes are inside a local minimum.

Theorem 3 also tells us that when doing best-first search,
one possible source of inefficiency is the presence of many
low cost edges either in the original graph or the supergraph,
because these edges cause local minima. Low cost edges in-
crease the probability that the h is computed from a super-
graph path that bypasses a high h region, causing a local min-
imum, which best-first search on h will have to fill in.

One limitation of the analysis of Theorem 3 is that it con-
siders only trees, while most problems are better represented

4334

by graphs. Fortunately, the analysis done in Theorem 3 is also
relevant to graphs. The difference between search in a graph
and a tree is the fact that there are no duplicate nodes in a
tree. These duplicate nodes can be modeled using zero cost
edges between the nodes in the tree that represent the same
node in the graph. This makes it so that there are two kinds
of zero cost edges: ones that were added because the problem
is a graph, and zero cost edges from the supergraph. If we as-
sume that the zero cost edges that convert the tree to a graph
are also uniformly and randomly distributed throughout the
space just like the zero cost edges from the supergraph, we
arrive at precisely the same conclusion from Theorem 3.

If we consider a supergraph heuristic for an arbitrary graph,
the edges involved in h∗ form a tree, as long as we break ties.
The complication with this approach is the fact that if a node
has a high h value (say greater than 1), it may be possible to
construct a path that bypasses the node in the graph, some-
thing that is not possible in a tree. This can cause problems
with Theorem 3 because a single high h node is not enough
to cause a local minimum – one needs a surrounding “dam”
on all sides of the minimum. In this case, we can generalize
Theorem 3 by specifying that the high h node is not simply a
single node, but rather a collection of nodes that all have high
h with the additional restriction that one of the nodes must be
included in any path to the goal.

Theorem 3 assumes the edge costs and shortcut edges are
uniformly distributed throughout the space, but the edge costs
and shortcut edges may not be uniformly distributed through-
out the space. If we do not know anything about a particular
heuristic, applying Theorem 3, which discusses the expected
properties of a random distribution of edge costs and super-
graph edges, may be the best we can do. To the extent that the
shortcut model is relevant, it suggests that h has more local
minima.

5.1 Local Minima Can be Costly for Greedy
Best-First Search

In the previous section, we saw that local minima were more
likely to form when the difference in size between the large
and small operators increased dramatically. We also saw that,
as the low cost operators increased in prevalence, local min-
ima also became more likely to form. In this section we ad-
dress the consequences of the local minima, and how those
consequences are exacerbated by increasing the size differ-
ence between the large and small operators and the increased
prevalence of low cost operators.

We begin by assuming that the change in h between two
adjacent nodes n1 and n2 is often bounded by the cost of the
edge between n1 and n2.3

Consider the tree in Figure 3. In this tree, we have to ex-
pand all of the nodes whose heuristic value is less than 1,
because the only goal in the space is a descendant of a node
whose h value is 1. The core of the problem is the fact that
node N was assigned a heuristic value that is way too low.
If we restrict the change in h to be smaller than the opera-
tor cost, in order to go from 1 to ε the operator must have a

3Wilt and Ruml [2011] showed that this is a reasonable restric-
tion, and that many heuristics obey this property.

Figure 3: A search tree with a local minimum

cost of at least 1− ε. If the operator’s cost is less than 1− ε,
the heuristic on N would have to be higher than ε. The tree
rooted at N continues infinitely, but if h increases by ε at
each transition, it will take 1/ε transitions before h is at least
1. This means the subtree contains 21/ε nodes, all of which
would be expanded by a greedy best-first search. The tree in
Figure 3 represents the best possible outcome for greedy best-
first search, where the heuristic climbs back up from an error
as fast as it can. In a more antagonistic case, h could either
fall or stay the same, which would exacerbate the problem,
adding even more nodes to the local minimum.

If we substitute d for h, the ε edges change to cost 1, which
makes it so the subtree expanded by greedy best-first search
only contains 1 node. The number of nodes that can fit in
a local minimum caused by a single error is much larger if
the low cost edges in the graph have very low cost. The idea
here is very similar to Corollary 1 of Wilt and Ruml [2011]’s
analysis of A* except in this case, g is not contributing to
escaping the local minimum, because greedy best-first search
does not consider g when evaluating nodes. In this way, we
see how local minima can be much more severe for h than for
d, further explaining the superiority of d.

5.2 Summary
Theorem 3 discusses how likely a local minimum is to form,
and shows that as we increase the prevalence of low cost
edges or decrease the cost of the low cost edges, the likeli-
hood of creating a local minimum increases. The local min-
ima created have high water marks that are determined by the
high cost edges in the graph. We then showed that if we have
a local minimum whose height (the difference in h between
the node in the local minimum with the lowest h of all nodes
in the local minimum, and the lowest h value of all nodes
that lead out of the local minimum) is the same as the high
cost edge, the number of nodes that can fit inside of the lo-
cal minimum can be exponential in the ratio of the high cost
edge to the low cost edge, demonstrating that the performance
penalty associated with even a single error in the heuristic is
very severe, and grows exponentially as the low cost edges
decrease in cost. Using the d heuristic instead of h mitigates
these problems, because there are no high cost edges or low
cost edges.

While it is generally true that the d heuristic is more use-
ful than h, note that some heuristics do not follow this gen-
eral trend. For example, best-first search using the h heuris-
tic on the Towers of Hanoi using the square cost function is

4335

faster than the d heuristic. The reason behind this trend is
the fact that Theorem 3 only discusses the expected value
across all possible heuristics that add the same number of
zero cost edges to the graph. Which zero cost edges get added
clearly has a major effect on how well a particular heuristic
will work.

6 Related Work

A number of algorithms make use of a distance-based heuris-
tic. For example, Explicit Estimation Search [Thayer and
Ruml, 2011] uses a distance-based heuristic to try and find
a goal quickly. Deadline Aware Search [Dionne et al., 2011]
is an algorithm that uses distance estimates to help find a so-
lution within a specified deadline. The LAMA 2011 planner
[Richter et al., 2011; Richter and Westphal, 2010], winner of
the 2011 International Planning Competition, uses a distance-
based heuristic to form its first plan.

Chenoweth and Davis [1991] discuss a way to bring A*
within polynomial runtime by multiplying the heuristic by a
constant. With a greedy best-first search, the constant is ef-
fectively infinite, because we completely ignore g. One lim-
itation of this analysis is that it leaves open the question of
what h should measure. Moreover, it is unclear from their
analysis if it is possible to put too much weight on h, which
is what a best-first search on either d or h does.

Cushing, Benton, and Kambhampati [2010; 2011] argue
that cost-based search (using h) is harmful because search
that is based on cost is not interruptible. They argue that
the superiority of distance-based search stems from the fact
that the distance-based searches can provide solutions sooner,
which is critical if cost-based search cannot solve the prob-
lem, or requires too much time or memory to do so. This
work, however, does not directly address the more fundamen-
tal question of when cost-based search is harmful, and more
importantly, when cost-based search is helpful.

Wilt and Ruml [2011] demonstrated that when doing best-
first search with a wide variety of operator costs, the penalty
for a heuristic error can introduce an exponential number of
nodes into the search. They then proceed to show that this ex-
ponential blowup can cause problems for algorithms that use
h exclusively, rendering the algorithms unable to find a solu-
tion. Last, they show that algorithms that use d are still able
to find solutions. This work shows the general utility of d, but
leaves open the question of precisely why the algorithms that
use d are able to perform so well.

Another approach to enhancing greedy best-first search is
to ignore the heuristic under certain circumstances. On cer-
tain domains, this technique can improves performance and
coverage, increasing the total number of problems that can be
solved.

Hoffmann discusses how the topology induced on the
search space by the heuristic affects the enforced hill climb-
ing algorithm, proving that for many STRIPS planning
benchmarks, the algorithm will exhibit polynomial runtime
[Hoffmann, 2011; 2005].

7 Conclusion
It is well known that searching on distance can be faster than
searching on cost. We provide evidence that suggests that
the root cause of this is the fact that the d heuristic tends to
produce smaller local minima compared to the h heuristic.
We also saw that greedy best-first search on h can outperform
greedy best-first search on d if h has smaller local minima
than d.

This naturally leads to the question as to why the d heuris-
tic tends to have smaller local minima as compared to the h
heuristic. We showed that if we model the search space us-
ing a tree and use a random supergraph heuristic, we expect
that the d heuristic will have smaller local minima compared
to the h heuristic, which explains why researchers have ob-
served that searching on d tends to be faster than searching
on h. Given the ubiquity of large state spaces and tight dead-
lines, we hope that this work spurs further investigation into
the behavior of suboptimal search algorithms.

8 Acknowledgements
We gratefully acknowledge support from the NSF (grant
1150068). This paper is a shorter presentation of a SoCS
2014 paper [Wilt and Ruml, 2014].

References
[Chenoweth and Davis, 1991] Stephen V. Chenoweth and

Henry W. Davis. High-performance A* search using
rapidly growing heuristics. In Proceedings of the Twelfth
International Joint Conference on Articial Intelligence,
pages 198–203, 1991.

[Cushing et al., 2010] William Cushing, J. Benton, and Sub-
barao Kambhampati. Cost based search considered harm-
ful. In Proceedings of the Third Symposium on Combina-
torial Search, 2010.

[Cushing et al., 2011] William Cushing, J. Benton, and Sub-
barao Kambhampati. Cost based search considered harm-
ful. http://arxiv.org/abs/1103.3687, June 2011.

[Dionne et al., 2011] Austin Dionne, Jordan T. Thayer, and
Wheeler Ruml. Deadline-aware search using on-line mea-
sures of behavior. In Proceedings of the Fourth Annual
Symposium on Combinatorial Search, 2011.

[Doran and Michie, 1966] J. E. Doran and D. Michie. Exper-
iments with the graph traverser program. In Proceedings
of the Royal Society of London. Series A, Mathematical
and Physical Sciences, pages 235–259, 1966.

[Gaschnig, 1979] John Gaschnig. A problem similarity ap-
proach to devising heuristics: First results. In Proceedings
of the Sixth International Joint Conference on Articial In-
telligence (IJCAI-79), 1979.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, SSC-4(2):100–107, July 1968.

4336

[Hoffmann, 2005] Jörg Hoffmann. Where ’ignoring delete
lists’ works: Local search topology in planning bench-
marks. Journal of Artifial Intelligence Research, 24:685–
758, 2005.

[Hoffmann, 2011] Jörg Hoffmann. Analyzing search topol-
ogy without running any search: on the connection be-
tween causal graphs and h+. J. Artif. Int. Res., 41(2):155–
229, May 2011.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. Journal of Artifial Intelli-
gence Research, 39:127–177, 2010.

[Richter et al., 2011] Silvia Richter, Matthias Westphal, and
Malte Helmert. LAMA 2008 and 2011. In International
Planning Competition 2011 Deterministic Track, pages
117–124, 2011.

[Ruml and Do, 2007] Wheeler Ruml and Minh B. Do. Best-
first utility-guided search. In Proceedings of the Twenty
Second h International Joint Conference on Articial Intel-
ligence (IJCAI-07), pages 2378–2384, 2007.

[Thayer and Ruml, 2011] Jordan Tyler Thayer and Wheeler
Ruml. Bounded suboptimal search: A direct approach us-
ing inadmissible estimates. In Proceedings of the Twenty
Sixth International Joint Conference on Articial Intelli-
gence (IJCAI-11), pages 674–679, 2011.

[Thayer et al., 2009] Jordan T. Thayer, Wheeler Ruml, and
Jeff Kreis. Using distance estimates in heuristic search: A
re-evaluation. In Proceedings of the Second Symposium on
Combinatorial Search, 2009.

[Wilt and Ruml, 2011] Christopher Wilt and Wheeler Ruml.
Cost-based heuristic search is sensitive to the ratio of op-
erator costs. In Proceedings of the Fourth Symposium on
Combinatorial Search, July 2011.

[Wilt and Ruml, 2014] Christopher Wilt and Wheeler Ruml.
Speedy versus greedy search. In Proceedings of the Sev-
enth Symposium on Combinatorial Search, July 2014.

4337

