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Abstract
In this paper, we adopt the representation learn-
ing approach to align users across multiple so-
cial networks where the social structures of the
users are exploited. In particular, we propose
to learn a network embedding with the follower-
ship/followee-ship of each user explicitly modeled
as input/output context vector representations so as
to preserve the proximity of users with “similar”
followers/followees in the embedded space. For the
alignment, we add both known and potential anchor
users across the networks to facilitate the transfer
of context information across networks. We solve
both the network embedding problem and the user
alignment problem simultaneously under a unified
optimization framework. The stochastic gradient
descent and negative sampling algorithms are used
to address scalability issues. Extensive experiments
on real social network datasets demonstrate the ef-
fectiveness and efficiency of the proposed approach
compared with several state-of-the-art methods.

1 Introduction
Mapping users across online social networks has recently
been attracting attention in both academia and industry. The
established user correspondence can benefit applications like
social link prediction [Dong et al., 2012; Zhang et al., 2014]
and cross-domain recommendation [Hu et al., 2013]. In gen-
eral, carefully aligning heterogeneous social networks can al-
leviate the sparsity issue and transfer useful information for
social network analysis.

One intuitive way to establish the user correspondence is
to make use of user demographic attributes like username,
gender, and etc. Among them, username is most commonly
used with the argument that users tend to use their favorite
usernames or related variants for multiple networks. The ef-
fectiveness of this simple approach has been demonstrated
under some given experiment settings [Liu et al., 2013;
Zhang et al., 2015]. Yet, there exist users who deliberately
use different usernames. In addition, demographic informa-
tion in different networks is highly likely to be unbalanced,
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and the presence of rich and correct profiles sometimes can-
not be always assumed. Other than user attributes, some also
proposed to map users using their long-term topical interest,
language style of personalized wordings and emoticon adop-
tion [Liu et al., 2014; Zafarani and Liu, 2013].

Alternatively, the structural information of the social net-
works can be used directly for user alignment. Intra-links,
inter-links and common users across the networks (also called
anchor users) can be exploited to derive a probabilistic graph
classifier [Zhang and Yu, 2015a; Wu et al., 2014] or to ren-
der a common subspace of multiple networks for relevance
computation [Tan et al., 2014]. Most of these related work
considers the links to be undirected. However, follower-
followee relations are often maintained in a number of social
media like Twitter. The conformation of the follower-ship of
a user somehow reflects the objective recognition from the
community, whereas the conformation of the followee-ship
reflects one’s personal social interest. It is intuitive that the
follower-ship and followee-ship collaboratively define one’s
unique social figure in virtual networks. Also, most of the
existing work computes the structural alignment of networks
using matrix factorization where matrix inverse is typically
involved, making them hard to scale up for large-scale prob-
lems.

In this paper, we propose to align social networks using the
network representation learning (NRL) approach [Perozzi et
al., 2014; Tang et al., 2015b; 2015a]. We extend it to so-
cial network alignment using a unified optimization frame-
work where the embeddings of multiple networks are learned
simultaneously subject to hard and soft constraints on com-
mon users of the networks. To contrast with the existing NRL
methods, the proposed network embedding model explicitly
represents the follower-ship and followee-ship of each user as
the input and output context vectors. We name it as the Input-
Output Network Embedding (IONE). The IONE can preserve
the proximity of users with “similar” sets of followers and
followees in the embedded space. Also, both known and po-
tential anchor users across the networks can be introduced in
a unified manner to play the roles as hard and soft constraints
for facilitate the transfer of the contextual information. All
the considering factors are formulated into a single objective
function so that minimizing it can allow network embedding
learning and user alignment to be achieved at the same time.
Also, we adopt the negative sampling which can substantially
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reduce the computation cost and make the IONE scale well to
networks of large size. We conduct detailed empirical evalu-
ation using real datasets and show that the IONE outperforms
other competitive approaches.

2 Related Work
Structural alignment methods proposed for social network
alignment can roughly be categorized into supervised and
unsupervised. The unsupervised methods assume absence
of anchor links, making the problem essentially a generic
graph alignment problem [Koutra et al., 2013; Zhang and Yu,
2015b; 2016]. The supervised methods predict anchor links
using the classification approach based on features like user-
name, profile information, and social connectivity measures
[Malhotra et al., 2012; Kong et al., 2013]. Recently, fus-
ing anchor link prediction and social link prediction was also
found effective [Zhang and Yu, 2015a].

Learning to align the network manifolds is another promis-
ing direction. In [Tan et al., 2014], hyper-edges among the
users are defined and the manifolds of two social networks
are projected onto a common embedded space so that the
nodes in each hyper-edge will be close in the projected space.
Eigenvalue decomposition on a matrix defined based on the
hyperedges is required, which however is inevitably time-
consuming. Our work is along the direction of projecting
multiple social networks onto a common embedded space.
To contrast, the proposed IONE allows more social struc-
tural properties to be exploited for the network representation
learning, with the ultimate goal to result in a more accurate
social network alignment. The IONE does not require explicit
definition of relations as hyperedges but can achieve a simi-
lar goal implicitly via the interactions of the input and output
context representations of the nodes in the network.

3 Model Framework
Let G = (V,E,w) be a social network where V := {v

i

}
is the set of user nodes rand E := {(v

i

, v
j

)} is the set of
directed edges representing the user relations. Each edge is
associated with a weight w

ij

> 0 indicating the tie strength.

3.1 Input-Output Network Embedding
We propose a novel network embedding for representing so-
cial networks. Similar to most of the existing representation
learning methods, we represent each node v

i

2 V as a d-
dimensional vector in an embedded space via a projection
function f : V ! <d. By leveraging the follower-followee
relations of the users, we allow the context of each user in a
social network to be characterized by its own set of followers
and followees. To phrase that in a general network setting, we
consider i) the parents of a node as its input context, and at the
same time ii) its children as its output context. Accordingly,
we represent each node v

i

with three vector representations:
a node vector �!u

i

2 <d, an input context vector �!u
i

02 <d, and
an output context vector �!u

i

002 <d. As illustrated in Fig.1, v
i

is the parent node of v
j

and thus �!u
i

contributes to �!u
j

0
which

represents the input context of v
j

. Meanwhile, as v
j

is at the
same time the child of v

i

, �!u
j

contributes to �!u
i

00
which rep-

resents the output context of v
i

. As both input and output

iu  contributes 

the “input 
context” of '

ju
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Figure 1: An Example of User Vector Representations

contexts are explicitly modelled for each node, we call the
proposed model Input-Output Network Embedding (IONE).

In order to learn the network embedding from a social net-
work G, for each edge (v

i

, v
j

) 2 E, we define the probability
that v

i

contributes specifically to (or “generates” as termed in
[Tang et al., 2015b]) v

j

as its input context when compared
with how v

i

contributes to other nodes, given as

p1(vj |vi) =
exp (

�!u
j

0T
·�!u

i

)

⌃

|V |
k=1 exp (

�!u
k

0T·�!u
i

)

(1)

where |V | is the number of users in one network. Simi-
larly, we can define the probability that v

j

contributes spe-
cially to v

i

as its output context when compared with how v
j

contributes to other nodes, given as

p2(vi|vj) =
exp (

�!u
i

00T
·�!u

j

)

⌃

|V |
k=1 exp (

�!u
k

00T·�!u
j

)

(2)

We further define the empirical counterparts of p1(vj |vi)
and p2(vi|vj) as bp1(i, j) = w

ij

/dout
i

and bp2(i, j) = w
ij

/din
j

respectively, where dout
i

=

P
k2N

out

(v
i

) wik

and din
j

=P
k2N

in

(v
j

) wkj

. By minimizing the KL divergence of p1
and p2 and their empirical counterparts bp1 and bp2, the corre-
sponding IONE model can be inferred (See Sec.3.2).

3.2 Aligning Network Embeddings of Multiple
Networks

Given two social networks X and Y , we propose to compute
their IONE models and at the same time align them. To do
that, we first define an anchor node in one network (say X)
as a node which has a unique correspondence to another node
in the other network (say Y). The correspondence indicates
that the two nodes are referring to the same person. We call
the correspondence as an anchor link in the sequel. Assum-
ing that a set of anchor links bridging the two networks are
available, we learn an aligned network embedding so that
Objective 1: The structural proximity of the nodes within

the two individual networks are preserved in their cor-
responding embeddings as far as possible, and

Objective 2: The representations of the anchor nodes coin-
cide in the embedded space and those who are close in
the embedded space can be considered as good candi-
dates for user alignment.
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To formulate the first objective, we minimize the KL-
divergence of p1 and p2 and their empirical counterparts bp1
and bp2 over all the nodes in the two networks. By further
defining the importance weighting of v

i

contributing to its
child as input context in network X as �out

i

and that of v
j

contributing to its parent as output context in network X as
�in

j

, the corresponding objective function can be given as:

O1 = �
X

k2{X,Y }

X

v

j

2V

k

�out

i

KL(bpk1(i, j)||p1(vkj |vki ))

�
X

k2{X,Y }

X

v

i

2V

k

�in

j

KL(bpk2(i, j)||p2(vki |vkj )). (3)

By setting �out

i

as the output-degree dout
i

of v
i

and �in

j

as the
input-degree din

j

of v
j

, the objective function can be rewritten
as:

O1 = �
X

k2{X,Y }

X

(v
i

,v

j

)2E

k

wk

ij

log p1(v
k

j

|vk
i

)

�
X

k2{X,Y }

X

(v
i

,v

j

)2E

k

wk

ij

log p2(v
k

i

|vk
j

). (4)

To formulate the second objective, we set the node vector
representations of the corresponding anchor nodes in the two
networks to be identical as hard constraints. In other words,
we make the IONE embeddings of the X and Y aligned at the
anchor nodes. On top of that, to enhance the alignment accu-
racy for nodes other than the anchor ones, we train a classifier
for anchor link prediction and use the anchor link prediction
results as “soft” constraints. To implement both, we adopt a
second objective function.

We denote p
a

(vX
i

|vY
k

) as the probability that vX
i

and vY
k

are the same user as predicted by a pre-trained classifier. If
say there is an anchor link between vX

i

and vY
k

as provided in
the training set, we set the value of the corresponding p

a

to 1.
It can be proved that this is equivalent to setting the hard con-
straints for the representations of the corresponding anchor
users to be identical (see Appendix I). For non-anchor nodes,
the estimated p

a

(vX
i

|vY
k

) acts as a “bridge” between vX
i

and
vY
k

, and vY
k

in network Y can contribute as input context to
vX
i

in network X with the probability p
a

(vX
i

|vY
k

). Then, vY
k

in network Y can contribute to other nodes in network X as
if it is vX

i

with a probability p
a

(vX
i

|vY
k

). Based on this idea,
we first define the empirical probabilities p̂1(v

X/Y

j

|vY/X

k

) =

P
v

i

2X/Y

p
a

(v
X/Y

i

|vY/X

k

) ⇤ w
ij

/dout
i

, p̂2(v
X/Y

i

|vY/X

k

) =

P
v

j

2X/Y

p
a

(v
X/Y

j

|vY/X

k

) ⇤ w
ij

/din
j

. We can again mini-
mize the KL-divergence of p and the empirical distribution
bp, and the corresponding objective function becomes:

O2 = �
X

v

k

2Y

X

(v
i

,v

j

)2E

X

wX

ij

p
a

(vX
i

|vY
k

) log p1(v
X

j

|vY
k

)

�
X

v

k

2Y

X

(v
i

,v

j

)2E

X

wX

ij

p
a

(vX
j

|vY
k

) log p2(v
X

i

|vY
k

)

�
X

v

k

2X

X

(v
i

,v

j

)2E

Y

wY

ij

p
a

(vY
i

|vX
k

) log p1(v
Y

j

|vX
k

)

�
X

v

k

2X

X

(v
i

,v

j

)2E

Y

wY

ij

p
a

(vY
j

|vX
k

) log p2(v
Y

i

|vX
k

) (5)

Thus, the multiple networks can be aligned in the embed-
ded space by minimizing the combined objective function
O = O1 + O2 over the parameters {(�!u

x

X ,�!u
x

0
X ,�!u

x

00
X

)}
and {(�!u

y

Y ,�!u
y

0
Y ,�!u

y

00
Y

)} where O1 helps ensure that two
nodes (users) sharing more common input and output con-
texts (common followers and followees) will be drawn closer
in the embeded space, and O2 allows the contexts of the an-
chor nodes to be propapated across the networks which in turn
can enhance the individual learning of the two embeddings.

3.3 Model Inference
We use the stochastic gradient descent to learn the vector rep-
resentations of the two networks. To update the node vector
of v

i

in network X , i.e., �!u
i

X , the gradient is computed as:

@O

@�!u
i

X

=

@O1

@�!u
i

X

+

@O2

@�!u
i

X

= wX

ij

⇤
@log p1(v

X

j

|vX
i

)

@�!u
i

X

+

X

v

k

2V

X

wY

ij

⇤ p
a

(vY
i

|vX
k

)

@log p1(v
Y

j

|vX
k

)

@�!u
i

X

(6)

Calculating the conditional probability p1 in Eq.(6) requires
the summation over the entire set of nodes. To reduce the
computational complexity, we adopt the negative sampling
approach [Mikolov et al., 2013]. In short, it makes the prob-
lem of minimizing the above objective function equivalent to
a problem of estimating the parameters of a probabilistic bi-
nary classifier that uses the same parameters to distinguish
samples of the empirical distribution from samples generated
by the noise distribution. The equivalent counterparts of the
objective function can be derived, given as:

log p1(v
X

j

|vX
i

) / log �(�!u
j

0XT ·�!u
i

X

) (7)

+⌃

K

m=1Ev

n

⇠p

n

(v) log �(��!u
n

0XT ·�!u
i

X

)

log p1(v
Y

j

|vX
k

) / log �(�!u
j

0Y T ·�!u
k

X

) (8)

+⌃

K

m=1Ev

n

⇠p

n

(v) log �(��!u
n

0Y T ·�!u
k

X

)

where �(x) = 1/(1 + exp (�x)) is the sigmoid function,
K is the number of negative samples v

n

sampled from the
“noisy distribution” of p

n

(v) = d
3/4
v

as in [Mikolov et al.,
2013], and d

v

is the output degree. Thus the partial derivative
of Eq.(6) w.r.t. �!u

i

can be rewritten as:

@O

@�!u
i

X

= wX

ij

⇤ {[1� �(�!u
j

0XT ·�!u
i

X

)]

�!u
j

0X

� �(�!u
n

0XT ·�!u
i

X

)

�!u
n

0X}+
X

v

k

2X

p
a

(vY
i

|vX
k

) ⇤ wX

ij

⇤ {[1� �(�!u
j

0Y T ·�!u
k

X

)]

�!u
j

0Y � �(�!u
n

0Y T ·�!u
k

X

)

�!u
n

0Y }

(9)

Similarly, we can obtain the partial derivatives w.r.t. the other
context vectors of the concerned nodes given as:

@O

@�!u
j

X

= wX

ij

⇤ {[1� �(�!u
i

00XT ·�!u
j

X

)]

�!u
i

00X

� �(�!u
n

00XT ·�!u
j

X

)

�!u
n

00X}+
X

v

k

2X

p
a

(vY
j

|vX
k

) ⇤ wX

ij

⇤ {[1� �(�!u
i

00Y T ·�!u
k

X

)]

�!u
i

00Y � �(�!u
n

00Y T ·�!u
k

X

)

�!u
n

00Y }

(10)
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@O

@�!u
i

00X = wX

ij

⇤ [1� �(�!u
i

00XT ·�!u
j

X

)]

�!
uX

j

+

X

v

k

2Y

p
a

(vX
j

|vY
k

) ⇤ wY

ij

⇤ [1� �(�!u
i

X

T ·�!u
k

Y

)]

�!u
k

Y

(11)

@O

@�!u
j

0X = wX

ij

⇤ [1� �(�!u
j

0XT ·�!u
i

X

)]

�!u
i

X

+

X

v

k

2Y

p
a

(vX
i

|vY
k

) ⇤ wY

ij

⇤ [1� �(�!u
j

0XT ·�!u
k

Y

)]

�!u
k

Y

(12)

@O

@�!u
n

0X = wX

ij

⇤ [��(�!u
n

0XT ·�!u
i

X

)

�!u
i

X

]

+

X

v

k

2Y

p
a

(vX
i

|vY
k

) ⇤ wY

ij

⇤ [��(�!u
n

0XT ·�!u
k

Y

)

�!u
k

Y

]

(13)

@O

@�!u
n

00X = wX

ij

⇤ [��(�!u
n

00XT ·�!u
j

X

)

�!u
j

X

]

+

X

v

k

2Y

p
a

(vX
i

|vY
k

) ⇤ wY

ij

⇤ [��(�!u
n

00XT ·�!u
k

Y

)

�!u
k

Y

]

(14)

With reference to Eqs.(9-14), the updating rules for network
Y can be obtained by swapping the superscripts X and Y .
They are not listed due to the page limit. The overall algo-
rithm is shown in Algorithm 1:

Algorithm 1 Learning Aligned IONE Across Networks
Require: Two networks GX and GY , a set of anchor links
E

a

, learning rate ⌘, # of negative samples K
Ensure: Node representations ⇥ = {(�!u

x

X ,�!u
x

0
X ,�!u

x

00
X

),
(

�!u
y

Y ,�!u
y

0
Y ,�!u

y

00
Y

)}
1: procedure LEARNING(GX ,GY , E

a

, ⌘, K)
2: Initialize ⇥ = {(�!u

x

X ,�!u
x

0
X ,�!u

x

00
X

),
(

�!u
y

Y ,�!u
y

0
Y ,�!u

y

00
Y

)}
3: repeat
4: for N in {X,Y } do
5: Sample one edge (v

i

,v
j

) from GN

6: Update �!u
j

0,�!u
i

,�!u
i

00,�!u
j

based on Eqs.(9-12)
with ⌘

7: for i = 0; i < K; i = i+ 1 do
8: Sample a negative node v

n

9: Update �!u
i

,�!u
j

,�!u
n

0,�!u
n

00 based on Eqs.(9,
10, 13, 14) with ⌘

10: end for
11: end for
12: until convergence
13: return ⇥

14: end procedure

3.4 Time Complexity
Sampling an edge takes constant time O(1). Optimization
using K negative samples takes O(d(K + 1)) time, where d

Table 1: Statistics of The Datasets Used for Evaluation
Networks #Users #Relations #Anchors

Twitter 5,220 164,919 1,609Foursquare 5,315 76,972

is the dimension. Therefore, the overall complexity for each
step is O(dK). In practice, the number of steps need for the
optimization is usually proportional to the number of edges
|E| [Tang et al., 2015b]. Therefore, the overall time complex-
ity of our model is O(dK|E|) which is linear to the number
of edges |E| and does not depend on the number of nodes |V |.

3.5 Mapping Users Across Social Networks
To map users across networks, we compute cosine similarity
between the vector representations of one node in network X
and another in Y to determine their correspondence.

rel(vX
i

, vY
j

) =

P
d

p=1 u
X

ip

⇥ uY

jpqP
d

p=1 u
X

ip

2 ⇥
qP

d

p=1 u
Y

jp

2
(15)

So, for each user vX
i

in network X , we can find the most
relevant user vY

j

in network Y to be an anchor candidate.

4 Experiments
For performance evaluation, we employ two real-world so-
cial network datasets collected from Foursquare and Twitter
[Zhang and Yu, 2015a]. Table 1 lists their statistics. The
ground truth of anchors are provided in Foursquare profiles.

4.1 Comparative Methods
We compare the proposed IONE with several state-of-the-art
methods, which are summarized as follows:

• MAG: A graph-based manifold alignment [Tan et al.,
2014] where the similarity of a linked user pair is defined
as 1.

• MAH: A hypergraph-based manifold alignment [Tan et
al., 2014] where the hyperedges model the high-order
relations in a social network.

• CLF: A method proposed in [Zhang and Yu, 2015a]
which includes two phases: 1) collective multi-network
link prediction and 2) collective link fusion across par-
tially aligned probabilistic networks.

• CRW: A method called collective random walk with
restart that is essentially the second step of CLF, which
is used here as a baseline.

Also, we abbreviate the proposed model with only the hard
constraints on anchor nodes as IONE and that with also the
soft constraints as illustrated in Sec.3.2 as IONE-S. And, we
abbreviate the proposed model with only input context as INE
and with only output context as ONE.

4.2 Evaluation Metrics
In our experiments, Precision@N is the evaluation metric,
given as:

Precision@N =

|CorrUser@N |X + |CorrUser@N |Y

|UnMappedAnchors|⇥ 2

(16)
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Table 2: Performance Comparison - P@30

% Improvement CRW MAH MAG
(0.16) (0.32) (0.34)

INE (0.43) 168.75% 34.37% 26.47%
ONE (0.44) 175.00% 37.50% 29.41%
IONE (0.58) 262.50% 81.25% 70.58%

where |CorrUser@N | is the number of unmapped anchor
users with their corresponding users found among the top-N
neighbors in the embedded space. |UnMappedAnchors| is
the total number of all unmapped anchor users.

Also, since the network alignment performance in general
depends on the degree of overlapping of the two networks,
we measure the degree as in [Tan et al., 2014], given as

Interop(X,Y ) =

|Correlations|⇥ 2

|RelationsX |+ |RelationsY | (17)

where RelationsX/Y is the set of direct edges in network
X/Y and Correlations is their intersection.

4.3 Experimental Results
The experimental results are presented in Figure 2. IONE is
found to outperform all the baselines consistently and sig-
nificantly given different @N settings as well as different
training-to-test ratios. MAH and MAG perform better than
CRW, showing that the random walk approach is not as ac-
curate as the manifold alignment approach. However, both
MAG and MAH fail to differentiate the follower-ship and
followee-ship when constructing the incidence matrices of
the hypergraph. We found that even INE and ONE can give
better results, while IONE performs the best. Table2 tabulates
our detailed quantitative improvement over the comparative
baselines for P@30. Note that, different from our proposed
method, the methods based on random walks (e.g.,CLF and
CRW) are “asymmetric” in which taking a different network
as the source network for a particular network pair will lead to
different prediction results. For such methods, the alignment
has to be computed in both directions and thus the computa-
tion complexity doubles. For different training-to-test ratios,
as observed from Fig.2(b), IONE outperforms all the base-
lines. Even for ratio settings as low as 10% to 20%, the per-
formance enhancement is still significant.

Among the subspace learning based methods, we also com-
pare their performance under the settings using representa-
tions of different dimensions. According to Fig.2(c), both
MAG and MAH achieve good performance when the dimen-
sionality setting is around 950, while IONE reaches good per-
formance when the dimensionality is under 50. It is well
known that the complexity of the learning algorithm is highly
depending on the dimensionality of the subspace. Besides,
low-dimensional representation also leads to an efficient rel-
evance computation. We conclude that the proposed network
embedding approach is significantly more effective and effi-
cient than the matrix factorization-based approach.

Fig.2(d) shows how different methods perform at different
values of Interop1. Intuitively, it will be easier to align the

1In our experiments, we vary the Interop value by removing non-

networks if they share more common edges. We observe that
the performance of all the methods consistently achieve bet-
ter results as the Interop value increases. Again, IONE con-
sistently outperforms all the baseline methods, even when the
resemblance of the networks is rather low.

For IONE-S, the soft constraint p
a

(vX
i

|vY
k

) was derived
similar to what being proposed in CLF [Zhang and Yu,
2015a]. By considering the labeled anchor links as positive
data and those randomly sampled from unlabeled user pairs
across networks as negative data, we compute structural fea-
tures including common neighbors, extended Jaccard’s coef-
ficient and extended Adamic/Adar Measure for a SVM-Platt
scaling classification model to estimate p

a

(vX
i

|vY
k

). With the
estimated p

a

(vX
i

|vY
k

) incorporated as the soft constraints, the
network embedding is then obtained via IONE-S. In general,
the classification model achieves better performance when
the training sets are more balanced. Here we use imbal-
ance ratio |�ve anchor links|

|+ve anchor links| as a proxy to reflect the perfor-
mance of the empirical classification model. Fig.3(a) shows
that IONE-S outperforms CLF where a similar SVM classi-
fication method is used. The performance of CLF is slightly
better than that of the classification model indicating its high
dependence on the ability of the classification model. For
IONE-S, we found that it is very robust even when the accu-
racy of the estimated value of p

a

(vX
i

|vY
k

) is limited. As there
is an edge sampling process in learning IONE (See in Algo-
rithm 1), whether the learning algorithm can converge is an
important issue. Fig. 3(b) shows that IONE-S and IONE both
converge in a stable manner. Specifically, IONE-S achieves
its convergence much earlier than IONE. We believe the gain
comes from the empirical soft constraints.

4.4 A Case Study
Here we plot Fig.4 to illustrate the effectiveness of IONE by
showing two subgraphs, which are part of the corresponding
social networks, and their embeddings in the inferred sub-
space. We adopt t-SNE [Van der Maaten and Hinton, 2008]
for visualizating the embeddings. The red, green and blue
nodes in the two subgraphs denote the anchor users in the
training set, the anchor users in the test set, and the users only
belonging to one network respectively. Generally speaking,
topologically similar nodes with the help of the clue provided
by the anchor links are projected to locations close to each
other in the embedded space. In particular, we observe that

1) Two nodes sharing more common edges in one net-

work appear closer in the learned low dimensional space.
In the Twitter network, Bar tw shares with jac tw two input
edges from kyl an and hue an, but none with JES tw which in
turn has an input edge to kyl an. Thus Bar tw appears closer
to jac tw than JES tw in the embedded space (near the left
side).

2) The anchor links do help the network alignment.
We observe that jam fs has 3 input edges and 3 output
edges from 3 anchor users (kyl an, hue an, mil an) in the
Foursquare network, while jam tw also has 3 input and 2
output edges from the same set of anchor users in the Twitter
network. In the plot of the embedded space (near the lower

anchor relations in the networks.
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Figure 2: Detailed Performance Comparison on Twitter-Foursquare Dataset
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Figure 3: Performance Comparison for IONE-S

Figure 4: Subgraphs of Twitter-Foursquare Projected in Em-
bedded Space.

side), jam tw (green octagon) and jam fs (green cross) are
located very close to each other.

3) User proximity is preserved in the embedded space

based on both follower-ship and followee-ship collabora-

tively. Consider jes fs, rad fs and tim fs in the Foursquare
network. All three have edges connecting to kyl an. Node
jes fs has a bi-directed edge with kyl an. Nodes rad fs and
tim fs have only input edges from kyl an. Therefore, rad fs
and tim fs are closer to each other in the inferred space (near
upper right corner) and farther apart from jes fs. For an-
other example, JES tw is the only node in the Twitter net-
work pointing to kyl an, and jes fs is one of two nodes in the
Foursquare network pointing to kyl an. Thus, kyl an has sig-
nificant contribution to both jes fs and JES tw, drawing them
close in the inferred space (near lower left corner).

5 Conclusion
We studied the problem of mapping users across networks.
A representation learning model with the objective to learn
an aligned network embedding for multiple networks was
proposed. The proposed approach explicitly models the
follower-ship and followee-ship of each user as the input and
ouput contexts. Both given and potential anchor links can
be used in this model as hard and soft constraints in a uni-
fied framework for learning. Stochastic gradient descent and
negative sampling are used for the efficient learning of the
model. The extensive experiments conducted on two real-
world datasets demonstrate that our proposed model outper-
forms several state-of-the-art methods. Future work includes
extending it to multiple networks and exploring its applica-
bility to other types of network data.

Appendix I
We prove that our proposed formulation is equivalent to
setting hard constraints to force the representations of the
mapped anchor users equivalent. Suppose (vX

i

, vY
i

) is an an-
chor link, and thus p

a

(vX
i

|vY
i

) = p
a

(vY
i

|vX
i

) = 1
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X

)]

�!u
j
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X
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0Y }.

(18)

The updating rule for �!u
i

Y can also be obtained:
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i
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Y
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�!u
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0XT ·�!u
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Y

)

�!u
n
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(19)

which is equivalent to Eq.(18) when we set the anchors’ ini-
tial values as �!u

i

Y = �!u
i

X . This completes the proof.
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