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Abstract
Advances in video technology and data storage
have made large scale video data collections of
complex activities readily accessible. An increas-
ingly popular approach for automatically inferring
the details of a video is to associate the spatio-
temporal segments in a video with its natural lan-
guage descriptions. Most algorithms for connect-
ing natural language with video rely on pre-aligned
supervised training data. Recently, several models
have been shown to be effective for unsupervised
alignment of objects in video with language. How-
ever, it remains difficult to generate good spatio-
temporal video segments for actions that align well
with language. This paper presents a framework
that extracts higher level representations of low-
level action features through hyperfeature coding
from video and aligns them with language. We
propose a two-step process that creates a high-
level action feature codebook with temporally con-
sistent motions, and then applies an unsupervised
alignment algorithm over the action codewords and
verbs in the language to identify individual activi-
ties. We show an improvement over previous align-
ment models of objects and nouns on videos of
biological experiments, and also evaluate our sys-
tem on a larger scale collection of videos involving
kitchen activities.

1 Introduction
With advances in video technology, we have seen an increase
in the availability of large scale video datasets. However,
as video data becomes abundant, the work required in gen-
erating accurately segmented, aligned, and labeled data for
these sets also increases in difficulty. Unlike the smaller ac-
tion datasets used in the past, with carefully crafted domains
and annotations that have been defined to the level of individ-
ual frames, longer term activity datasets are becoming more
common with annotations in the form of natural language de-
scriptions and only loosely associated with language.
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Figure 1: An overview of our text and video alignment frame-
work. Codebooks of motion features (left) are accumulated
over multiple frames and encoded into action fragments and
clusters (center), and associated with verbs in text (right).

While manually labeling datasets requires a great amount
of effort on the part of the annotators, annotations in the form
of natural language descriptions can often be retrieved as a
byproduct of data collection without human intervention. For
example, during a video of a person performing a multiple
step kitchen activity (e.g., baking a cake), it is relatively easy
for the person to add their own descriptions through speech
with the intent of teaching someone how to conduct the activ-
ity. Also, if the person is following instructions according to a
recipe, the text in the recipe is a good resource for describing
the video. It would be beneficial to use indirect descriptions
that are readily available, rather than having to manually go
through and tag each video segment.

For actions in particular, generating labels directly from
text descriptions becomes more crucial. Conventionally, the
act of manual annotation assumes the domain of labels is ei-
ther known or defined in advance. While this fact may hold
for datasets collected in a controlled setting, defining the do-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2025



main of actions from data collected in a live and complex
scene is much more ambiguous. Unlike objects, which are
generally well defined, identical motions may belong to dif-
ferent actions in a hierarchy, and the boundaries of actions
may overlap or not be strictly defined. In this case, the as-
sociated verbs in language can point us to what actions are
relevant for that particular activity. By creating labels for ac-
tions directly from verbs in the language, we naturally focus
only on the events stemming from text, and assume the labels
of the most relevant actions come from the descriptions in the
language themselves.

In this paper, we consider the problem of recognizing ac-
tions from text descriptions and multiple instances of video.
In particular, we focus on the problem of mapping sentences
in language to their corresponding segments in video, and
also mapping verbs to their corresponding action representa-
tions. We aim to expand on the work on unsupervised align-
ment by Naim et al. [2014; 2015] which introduces a frame-
work to ground words in language with objects in the video.
While their work exploited co-occurrences of video objects
with nouns and verbs in the text, they did not use information
on activities in the video. We argue that while objects have a
fixed spatial boundary and directly connect with constituents
in language, actions are generally more free-form both spa-
tially and temporally with ambiguous boundaries, making it
harder to form a common visual vocabulary and requiring a
more robust form of representation.

Unlike previous papers which assume a set of labeled ac-
tions [Bojanowski et al., 2014], classify a set of actions from
training data [Regneri et al., 2013], or try to directly asso-
ciate low-level motion features with language [Bojanowski et
al., 2015], we introduce and evaluate a process that groups
temporally consistent motion features together using hyper-
feature coding that provides a natural mapping from action
clusters to verbs without any supervision. By evaluating the
actions in two different datasets of varying domains, we show
that it is possible to describe actions in the video in detail,
without the need to explicitly label each action individually.

2 Related Work
Our system integrates work from a variety of fields includ-
ing action recognition, unsupervised clustering, and work on
aligning video and language. We give an overview of litera-
ture in each of these related areas relevant to our framework.

2.1 Features for Action Recognition
Space-time motion descriptors based on local video fea-
tures have been widely accepted in human action recogni-
tion. Many of these low-level features usually consist of
two parts: a detector that locates points of interest, and
a descriptor that captures space-time information on these
points, generally independent of shift in space-time and back-
ground noise. Harris3D, Cuboid, and Hessian detectors are
commonly used [Wang et al., 2009], while descriptors are
extensions of commonly used image descriptors, such as
HOG/HOF [Laptev, 2005] and MBH [Wang et al., 2011].
These features have been well suited for recognizing coarse
actions through classification.

A commonly used descriptor which is also used in our
evaluations are the space-time interest points (STIPs) by
Laptev [2005], which uses a Harris3D detector to localize
points of interest, and extracts histograms of gradient (HOG)
and histograms of optical flow (HOF) of varying temporal and
spatial scales from video segments surrounding these points.
The alternative is a dense features approach which samples
from regularly spaced points in space and time instead of
looking at particular points of interest. In particular, methods
based on dense [Wang et al., 2011] and improved [Wang and
Schmid, 2013] trajectories extract motion descriptors from
densely sampled points in the video and track them, and show
improvement over previous descriptors.

There has also been research on using deep architectures
for action recognition. In particular, convolutional neural
networks (CNNs) [LeCun et al., 2001] have been especially
successful in large scale classification of images [Krizhevsky
et al., 2012], and have recently been applied to actions.
Yang et al. [2015] trained neural network classifiers on a
limited set of grasping actions to learn hand manipulation
actions on videos collected from the web. Motion fea-
tures derived from CNN models [Gkioxari and Malik, 2015;
Wang et al., 2015] show improvements in the case of ac-
tion classification, showing that the quality of features gen-
erated from CNNs can exceed those of hand-crafted fea-
tures. We evaluate our system on action features generated
by CNN models trained using the UCF101 action recognition
dataset [Soomro et al., 2012].

2.2 Clustering and Segmentation of Actions
There is a large pool of literature on unsupervised segmen-
tation of activities. Various techniques, such as change-point
detection [Harchaoui et al., 2009] and PCA [Barbič et al.,
2004] are used to detect action boundaries based on changes
in distributions over time. Other algorithms use repetitive
motions as a basis for clustering and segmentation. Aligned
cluster analysis (ACA) and its hierarchical variant [Zhou et
al., 2013] focus on the problem of conducting joint tempo-
ral clustering and segmentation through a generalization of
kernel k-means and spectral clustering.

However, unlike the action clustering algorithms men-
tioned above, we do not have to solve the problem of clus-
tering and segmentation simultaneously, as segmentation is
conducted through the alignment of text. Instead, we con-
sider the creation of a flexible high level representation of ac-
tion features that can be used for alignment and can be learned
without supervision. We borrow the notion of aggregating vi-
sual features across local patches in images [Coates and Ng,
2012], and choose to perform a hierarchical codebook gener-
ation [Agarwal and Triggs, 2006] of motion features at mul-
tiple temporal scales.

2.3 Alignment of Video and Language
Given features that roughly correspond to actions in lan-
guage, we would like to learn the ideal mapping of natu-
ral language action expressions with their referents in the
video. This is known as grounded language learning [Yu
and Ballard, 2004]. Most grounded language learning algo-
rithms are supervised or semi-supervised [Kollar et al., 2010;
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Yu and Ballard, 2004; Kate and Mooney, 2007; Tellex et al.,
2014], which assume that each sentence in the text descrip-
tion is manually aligned to its corresponding image frame
or video clip. Manually acquiring such sentence-level seg-
mentation and alignment can be tedious for large collection
of parallel video and text datasets, and hence unsupervised
alignment is crucial for scaling to large datasets.

Naim et al. [2014; 2015] introduced several different gen-
erative and discriminative models for aligning text with video
without the need for individual labeling or segmentation.
While they exploited the co-occurrences of the tracked ob-
jects in video with the nouns and verbs in the text, they did
not consider actions. We extend their alignment model by in-
corporating the correlations between actions and verbs, which
can be applied even if object tracking does not work well.
Malmaud et al. [2015] aligned YouTube cooking videos with
recipes by matching the words in the recipes with the video-
speech transcripts, which may not be available for many do-
mains. Recently, Bojanowski et al. [2015] proposed a dis-
criminative clustering approach using integer quadratic pro-
gramming to align low level action features with text, whereas
our model jointly aligns both objects and actions in video
with their corresponding nouns and verbs in the text.

3 Joint Alignment and Matching for Actions
The input to our system is a corpus of videos and associated
text descriptions where individuals are performing complex
activities. The text can either be a list of instructions that are
followed by the user, or a set of descriptions that are anno-
tated after the activity is conducted. We make the assumption
that there is a correlation between the temporal progression of
video and the order in which the text is written. Our goal is to
align the video to sentences in the corresponding text, while
simultaneously learning the mapping of each action and ob-
ject with the corresponding verbs and nouns.

3.1 Multilevel Features for Action Representation
The matching of video segments with text requires that we
extract action feature representations from the video that are
temporally comparable to those in text. However, commonly
used low-level motion features do not provide a good rep-
resentation of the actions in the larger temporal and spatial
contexts that are present in text descriptions.

We adopt the concept of hyperfeatures from Agrawal and
Triggs [2006] and apply it to action representations. Motion
features are accumulated using a sliding temporal window
and quantized over a codebook of action fragments, defined
as clusters of commonly occurring motion histogram vectors.
These fragments are subsequently aggregated to detect co-
occurrences, resulting in higher-level feature representations
of actions.

Hyperfeature Codebooks for Motion Features
Many popular image recognition algorithms base their meth-
ods on the aggregation of visual features across local image
patches [Lowe, 2004; Coates and Ng, 2012]. Similarities can
also be found in convolutional neural networks, where local
filters are learned codebooks, and pooling is spatial or tem-
poral aggregation. However, unlike neural networks, hyper-

features are created purely from the bottom up without any
supervision; higher-level representations are derived from ex-
isting lower layers representing smaller image patches. We
draw a similar analogy for representing actions in action clas-
sification. Here, the aggregation of motion features can occur
over temporal intervals of various lengths. In supervised clas-
sification, this interval is given as training data along with the
action labels. In our case, we evaluate our system using tem-
poral intervals of various lengths to quantize the action occur-
ring for the interval in question.

A common way of aggregating motion features is by using
a bag-of-features approach [Wang et al., 2009; 2011]. Since
a motion feature may be of a variable length, we create a
codebook of commonly occurring motion features over the
entire dataset and conduct vector quantization. From this, we
create an action fragment: a normalized histogram of quan-
tized features over a designated window, characterizing the
distribution of features over that interval. We use k-means for
codebook creation because of its simplicity and scalability to
large datasets [Coates and Ng, 2012]. However, our approach
is not limited to any particular clustering algorithm. Different
values for codebook and window sizes are evaluated in the
experiments section.

To capture co-occurrences of action fragments in our data,
we conduct vector quantization over all action fragments in
the dataset, similar to what we have done for motion features.
The code vector results in a higher level representation for ac-
tions, which will be used as input to the alignment algorithm.
For even higher-level actions, it is also possible to create a
hyperfeature stack; repeating the process by using the aggre-
gated fragments as motion features for the next level of the
stack.

Algorithm 1 Hyperfeature coding for motion features

8(v, t, s), F (0)
v,t,s  sth feature in video v at frame t

for l = 1 ... L do
cluster {F (l)

v,t,s | 8(v, t, s)} using k-means with
d(l) centroids such that a code vector c(l)v,t,i

is generated for each F (l)
v,t,s

if l < L then
8(v, t, s), F (l+1)

v,t,s  accumulate features
in the neighborhood of window size w
as a histogram of d(l) vectors

normalize F (l+1)
v,t,s

end if
end for
return code vectors c(l)v,t,s, 8(v, t, s)

Algorithm 1 describes this process in detail. The total num-
ber of levels in the hyperfeature stack is defined by L, where
l is the current level. The 0th level feature vector of length s

is defined as F (0)
v,t,s for each video v and frame t. Once cluster

centroids d(l) are created from features, code vectors c(l)v,t,i are
generated based on the centroids with i being the ith element
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of the code vector. Next level features F (l+1)
v,t,s are defined

by accumulating code vectors of centroids from the previous
level over a window defined by w, and are normalized. At the
last level L, code vectors c(L)

v,t,s for each video v and frame t
are returned and provided as input to the alignment process.

3.2 Aligning Language with Video Activities
We detail the process of taking verbs from language and
aligning them with hyperfeatures of actions learned from Al-
gorithm 1. We use the Latent-variable Conditional Random
Field (LCRF) alignment model by Naim et al. [2015] origi-
nally applied to blob and noun alignment, and modify the pro-
cess to capture the correlations between hyperfeatures gener-
ated from the videos and verbs in the text sentences.

Let the input dataset consist of N pairs of observa-
tions {(xi,yi)}Ni=1, where xi represents the ith text de-
scription and yi represents the corresponding ith video.
Each text description xi is a sequence of sentences: xi =

[Xi,1, . . . , Xi,mi ], where mi is the number of sentences in
xi and Xi,m represents the set of head nouns and verbs ex-
tracted from the mth sentence in xi. The head-nouns and
verbs are extracted by parsing each sentence in xi using
the two-stage Charniak-Johnson parser. We lemmatize each
verb to normalize the verbs across different tenses. Each
video yi is a sequence of short fixed-duration disjoint chunks:
yi = [Yi,1, . . . , Yi,ni ], where ni is the number of chunks in yi

and Yi,n represents the blobs and actions detected from that
chunk. The details of detecting blobs and actions from video
are described in the next section. Our goal is to learn the la-
tent alignment hi between the sentences in xi with their cor-
responding video chunks in yi. The latent alignment variable
is hi[n] 2 {1, . . . ,mi}, for 1  n  ni, where hi[n] = m
indicates that the video segment Yi,n is aligned to the text
sentence Xi,m.

Given a text description xi and a video sequence yi with
lengths |xi| = mi and |yi| = ni, the conditional likelihood
of the video sequence is defined as:

p(yi|xi, ni) =

X

hi

p(yi,hi|xi, ni). (1)

The conditional probability p(yi,hi|xi, ni) is modeled using
a log-linear model:

p(yi,hi|xi, ni) =
expw

T
�(xi,yi,hi)

Z(xi, ni)
, (2)

where Z(xi, ni) =

P
y

P
h expw

T
�(xi,y,h). Let

�(xi,y,h) be a feature function that decomposes linearly,
similar to a linear-chain graphical model. The model param-
eter w represents the feature weights, which are trained by
maximizing the following conditional log-likelihood function
via stochastic gradient ascent:

L(w) =

NX

i=1

log

X

hi

p(yi,hi|xi, ni). (3)

We include the standard features used by Naim et
al. [2015]: every pair of (noun, blob) and (verb, blob), jump

Average Alignment Accuracy (%)
Hand and LCRF LCRF LCRF LCRF
Object Tracking Naim et al. +STIP +DTraj2 +CNN
Vision Tracks 65.59 66.55 67.77 66.91
Manual Tracks 85.09 87.10 86.92 87.38

Table 1: Average alignment accuracy (% of video chunks
aligned to the correct protocol step) for the Wetlab dataset.
Vision Tracks show results where object and hand tracking
was handled by a hand and object recognizer based on color
and depth. Manual Tracks show results where hand and ob-
jects were manually annotated. LCRF is the current state-of-
the-art model used for the alignment of objects to language
without incorporating actions.

size (0 or 1 for monotonic alignment), and diagonal path fea-
tures to encourage alignment states to be close to diagonal.
Furthermore, we capture the co-occurrences between actions
and verbs by incorporating new features (a, v) for each action
cluster a and verb v.

4 Experiments
This section describes the evaluation of hyperfeature con-
struction and alignment of actions on two multimodal
datasets with parallel video and text. The Wetlab
dataset [Naim et al., 2014; 2015] has RGB and depth video
with text in the form of lab protocols. Participants conduct a
variety of biology lab experiments following the steps speci-
fied in the protocol. The TACoS corpus [Regneri et al., 2013]
has RGB video with text in the form of multiple natural lan-
guage descriptions collected via crowdsourcing on Amazon
Mechanical Turk1. Subjects conduct common kitchen activ-
ities. Both datasets are focused on conducting a sequence of
complex actions to complete a high level activity.

4.1 Features for Action Representation
For each dataset, we extract STIP and CNN motion features.
STIPs consist of a 72-element HOG and 90-element HOF de-
scriptor, and each frame can have multiple STIPs. For the
CNN motion features, we used a CNN trained on the UCF101
dataset (split 1) [Soomro et al., 2012], consisting of 5 convo-
lutional and 3 fully connected layers. Each frame in the video
is resized to a pixel size of 227x227 and optical flow is calcu-
lated for each sequential video frame pair. The output from
optical flow is then given as input to the CNN, and the output
of the first fully connected layer (k = 4096) is considered as
a feature vector for that frame.

For the Wetlab dataset, we also extract dense trajectories,
which consist of 30-element trajectory, 96-element HOG,
108-element HOF and 192-element MBH descriptors. Since
the camera was stationary at all times during our experiments,
we did not make use of MBH descriptors in our evaluations.
For our evaluations, we follow the code of Algorithm 1 to
extract hyperfeatures with varying centroids d(l) and window
sizes w.

1https://www.mturk.com
2Dense trajectories
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Avg. Alignment Accuracy (%)
Uniform 34.87
Unsupervised LCRF +STIP 43.07
Unsupervsied LCRF +CNN 44.14
Segmented LCRF 51.93

Table 2: Average alignment accuracy (% of video chunks
aligned to the correct protocol step) for the TACoS dataset.
Uniform is a complete uniform assignment from text to
video. Unsupervised LCRF conducts alignment between ac-
tion clusters and verbs in the language, using STIP and CNN
motion features. Segmented LCRF refers to the case when
the segmentation is given along with action clusters for the
segments, but the action itself is not identified. Unlike the
Wetlab dataset, only actions were used for alignment.

4.2 Wetlab Dataset
The Wetlab dataset consists of a set of RGB-Depth videos
of different biological experiments being conducted in a wet
laboratory setting. A total of 12 videos were collected for 3
protocols, with 4 videos per protocol. Each protocol has a set
of natural language instructions which each lab member is ex-
pected to follow. The protocols have 9 steps and 24 sentences
on average, with 34 unique nouns and 25 unique verbs.

Unsupervised Hand and Object Detection
Color models of gloves were created by manually labeling
20 randomly sampled frames in RGB and LAB color space
from a separate wetlab dataset. The 3D coordinates of the
hands are extracted by creating a point-cloud of the extracted
hands, and calculating the center of mass at each frame. A
Kalman filter was used to smooth out jitter and lost frames
during tracking.

For objects, the scene is segmented using an adjacency ma-
trix representing the set of connected components that cor-
respond to blobs in the depth video. The connected com-
ponents are over-segmented by color using a modified ver-
sion of the SLIC superpixel algorithm [Achanta et al., 2012],
and superpixels are grouped using a greedy approach by their
color and boundary map [Luo and Guo, 2003]. Hand and ob-
ject interactions are inferred in 3D space, with interactions
within a designated threshold corresponding with object us-
age. Alignment of nouns and objects are conducted using the
LCRF alignment introduced in Naim et al. [2015].

Wetlab Evaluation
We measure the alignment accuracy by the percentage of
video chunks that are aligned to the correct protocol step.
In order to estimate the error due to alignment and tracking,
we apply alignment on both automatically generated tracks
and manually labeled tracks via the Anvil video annotation
tool [Kipp, 2012].

We experimented with various numbers of clusters and
window sizes. In Table 1, we report the average results for
three different motion features: STIP, dense trajectories, and
CNN features. For hyperfeature variables {d(1), w, d(2)},
we achieved best results using {64, 150, 32} for STIP,
{128, 150, 32} for dense trajectory, and {128, 150, 64} for
CNN features. For all the variations, we train LCRF models

Centroids Window Size w
15 75 150 300 450 600

d(1)=64 35.17 43.40 44.14 42.44 41.58 39.67
d(1)=128 37.65 42.52 42.85 43.01 42.01 39.59

Table 3: Average alignment accuracy for different hyperfea-
ture variables (d(1), w, d(2)=64) on the TACoS dataset for
Unsupervised LCRF+CNN.

by running 200 iterations over the entire dataset. Each itera-
tion per video took an average of 6.6 seconds on a single core
of a 2.4GHz Intel Xeon processor with 32GB of RAM. We
also compare our results with the state-of-the-art alignment
results on the same dataset.

Our results show that using actions and verbs in addition to
objects and nouns for alignment produces an improvement in
overall average alignment accuracy regardless of the type of
motion features used, with the largest improvements shown
when using dense trajectory and CNN features. However,
we believe the increase in improvement is limited because
a majority of actions in the wetlab dataset are synonymous to
object-use, therefore the results from Naim et al. [2015] are
already highly correlated with a majority of action features.
To further evaluate our framework, we use a larger dataset
with a wider variety of fine-grained actions without object-
use annotations.

4.3 TACoS Dataset
We extend our evaluation to a larger dataset of kitchen activi-
ties. The TACoS corpus [Regneri et al., 2013] is a multimodal
corpus that consists of 127 videos of 21 people performing
26 types of kitchen tasks. Each kitchen video is annotated
with text descriptions by multiple Amazon Mechanical Turk
workers, resulting in significantly richer and more diverse
language compared to the Wetlab dataset. There are 2204

text descriptions for the 127 kitchen videos. We aim to align
the sentences in these text descriptions with their correspond-
ing video segments. The TACoS dataset includes the ground
truth manual segmentation and alignments to corresponding
text sentences, which we use for evaluating our automated
alignment results.

Unlike the Wetlab videos, the assumption of each object
having different color distributions is not valid in the TACoS
dataset. As a result, object and hand tracking is significantly
harder, making it even more crucial to incorporate actions.
Moreover, multiple consecutive sentences may indicate dif-
ferent actions with the same object. It is essential to detect
the actions to correctly align these sentences to their corre-
sponding video frames.

TACoS Evaluation
To evaluate the performance of the alignment in various sce-
narios, we consider two different situations with different
amounts of prior knowledge:

1. Segmented: The ground truth segmentation is known,
but their alignment to the text sentences is unknown.
We apply action clusters only on these ground truth seg-
ments, and exclude other frames that do not belong to
any sentence in the text description.
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Frame # 1000 2000 3000 4000 5000

Ground Truth
Segmented

Unsupervised

The man takes out
a cutting board

and a knife

The man gets
an orange

and washes it

The man slices off
the ends

of the orange

The man then
peels the orange

with a knife

The man slices the
orange and puts

the pieces into the plate

Uniform

Frame 480 Frame 1230 Frame 2065 Frame 2590 Frame 4265

Figure 2: An example of text and video alignment generated by our system on the TACoS corpus for sequence s13-d28.
Alignments for Ground truth, Segmented, Unsupervised (+STIP), and Uniform are shown. Each color-coded, crowd annotated
sentence (bottom) is aligned to a set of video frames.

2. Unsupervised: A fully unsupervised setting where both
the segmentation and alignment are unknown. We apply
a fixed-duration sliding window on the video, and assign
each window to one of the action clusters. All the frames
in a video are considered for clustering and alignment.
However, when we measure the alignment accuracy, we
exclude the video frames that do not align to any text
sentences in the ground truth data.

We compare the results with a uniform/diagonal baseline
alignment, which assigns an equal number of video chunks
to each of the text sentences. Figure 2 shows a detailed align-
ment output for one of the sequences in the dataset. Each
sentence is aligned with a set of video frames, shown as color-
coded intervals. In the segmented case, action intervals from
the ground truth are given, and the alignment matches each
action interval to its most likely sentence. In the unsuper-
vised case, the alignment also provides a segmentation of the
sequence. It is important to note that while ground truth an-
notations are used for evaluations, action intervals are often
ambiguous and there are cases where system generated align-
ments provide better results than the ground truth.

Table 2 shows the alignment accuracy of actions on
the TACoS dataset. We list our results using hyperfea-
ture variables {d(1), w, d(2)} = {128, 75, 64} for STIP, and
{64, 150, 64} for CNN features. Each LCRF iteration per
video took an average of 125 seconds on a single core of a
2.4GHz Intel Xeon processor with 32GB of RAM. The align-
ment accuracy is significantly higher for the segmented case,
since different actions take different amounts of time, and
a fixed duration window may split an activity in the wrong
places and introduce errors. However, the unsupervised fixed-
window approach outperforms the baseline by a large margin.

Table 3 looks at the effects of varying hyperfeature vari-
ables, in particular the window size w. While different ac-
tions in the TACoS dataset are of varying lengths, our top
accuracy is at w=150 frames or 5 seconds, with accuracy

rapidly dropping off at extremely short or long window in-
tervals. This is consistent with the timespan of an average
action in the TACoS dataset, which is around 5 seconds.

While our experiments are a step in showing that our sys-
tem is capable of generating high-level hyperfeatures for ac-
tions in an unsupervised manner, there are limitations in our
method that still need addressing. The ideal number of clus-
ters will vary depending on the number of actions at each
point of aggregation, and ideal window size will vary on the
length of the action. We use k-means and fixed windows for
efficiency and have tested our dataset on a variety of different
hyperfeature settings, but results may improve by evaluating
over different methods of clustering and aggregation.

5 Conclusion and Future Work
In this paper, we present a framework for recognizing actions
from text descriptions and multiple instances of video. While
previous approaches for unsupervised alignment of language
and video primarily exploited the co-occurrences between
nouns and blobs, we extend prior work by including the align-
ment of actions with verbs and show an improvement in over-
all alignment accuracy. Furthermore, incorporating actions
allows us to align text with complex videos, for which object
tracking is extremely difficult (e.g., TACoS dataset).

We introduce the concept of hyperfeatures for actions,
where we use low-level action features combined with unsu-
pervised clustering to generate temporally consistent action
fragments and clusters, which we then use as input to the
alignment system. We evaluate our framework on two activ-
ity datasets, and demonstrate the effectiveness of generating
action labels from weakly supervised datasets. We expect our
framework to be effective in various domains with even larger
datasets and overlapping actions. We also plan on extend-
ing our model to different parts of speech (e.g., prepositions),
and recognizing spatial and temporal relationships between
objects and/or actions.
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and Patrick Haffner. Gradient-based learning applied to docu-
ment recognition. In S. Haykin and B. Kosko, editors, Intelligent
Signal Processing, pages 306–351. IEEE Press, 2001.

[Lowe, 2004] David G. Lowe. Distinctive image features from
scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91–110,
November 2004.

[Luo and Guo, 2003] Jiebo Luo and Cheng-en Guo. Perceptual
grouping of segmented regions in color images. Pattern Recog-
nition, 36(12):2781–2792, 2003.

[Malmaud et al., 2015] Jonathan Malmaud, Jonathan Huang, Vivek
Rathod, Nicholas Johnston, Andrew Rabinovich, and Kevin Mur-
phy. What’s cookin’? interpreting cooking videos using text,
speech and vision. In Proceedings of NAACL HLT, pages 143–
152, Denver, CO, USA, 2015.

[Naim et al., 2014] Iftekhar Naim, Young Chol Song, Qiguang Liu,
Henry A. Kautz, Jiebo Luo, and Daniel Gildea. Unsupervised
alignment of natural language instructions with video segments.
In Proceedings of AAAI, pages 1558–1564, Québec City, Québec,
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