
Modifying MCTS for Human-Like General Video Game Playing

Ahmed Khalifa, Aaron Isaksen, Julian Togelius, Andy Nealen
New York University, Tandon School of Engineering

ahmed.khalifa@nyu.edu, aisaksen@nyu.edu, julian@togelius.com, nealen@nyu.edu

Abstract

We address the problem of making general video
game playing agents play in a human-like manner.
To this end, we introduce several modifications of
the UCT formula used in Monte Carlo Tree Search
that biases action selection towards repeating the
current action, making pauses, and limiting rapid
switching between actions. Playtraces of human
players are used to model their propensity for re-
peated actions; this model is used for biasing the
UCT formula. Experiments show that our modified
MCTS agent, called BoT, plays quantitatively simi-
lar to human players as measured by the distribution
of repeated actions. A survey of human observers
reveals that the agent exhibits human-like playing
style in some games but not others.

1 Introduction and Background
When developing an algorithm to play a game, the goal is
usually to play the game as well as possible. For many games,
there is a suitable and unambiguous quantitative metric of
success. This might be the score, progress in the game (e.g. by
number of pieces captured, level reached, or distance driven),
or the highest skill level of an opponent that the player can
beat. This metric then becomes the measurement of success
for computer algorithms playing the game; the AI agent’s role
is to maximize the success metric. Such metrics are used for
most game-based AI competitions, including those focused on
Chess, Go, Simulated Car Racing or StarCraft.

There are however other concepts of success that are more
suitable in many cases. In particular, one concept of success is
to what extent an artificial player plays in the style of human
players (either a particular human or humans in general). In
other words, a metric that measures how human-like the agent
plays. This is important for several different scenarios. One
case is when procedurally generating content, such as levels
or items, for a game using a search-based procedural content
generation method. Such methods typically rely on simulation-
based testing of the content, i.e. an artificial player plays
the new content in order to judge its quality [Nelson, 2011;
Togelius et al., 2011]. In such cases the content needs to be
tested by a human-like artificial player [Isaksen et al., 2015],

as a non-human-like AI player might engage with the con-
tent in significantly different ways, even if the human-like
and non-human-like players have the same general skill level.
Automatic playtesting of this kind is also important for human-
designed game content, regardless of whether it is designed
by professional game developers as part of traditional content
production pipeline or by amateurs (e.g. the recent success of
Super Mario Maker, which almost entirely is built on player-
created content). Human-like playing is also important for
creating tutorials and other forms of demonstrations. Finally,
it can be important for the immersion and general player ex-
perience to have human-like non-player characters in a game.
It is commonly thought that the popularity of multi-player
games is at least partly due to the lack of believable agents in
games [Hingston, 2012]. Similarly, playing against a too-good
AI opponent is not enjoyable, so there is often an effort to
decrease the skill level of the agent to better match that of
the human player. It is worth noting that while the argument
here mainly refers to entertainment-focused games, it applies
equally well to serious games, virtual reality, games with a
purpose, and real-time interactive simulations in general.

In many cases, AI agents that play games well do not play
in a human-like manner. This is an informal observation
that has been made many times for different game genres.
It has been claimed that Chess-playing programs play dif-
ferently from humans, even when playing at the same skill
levels [Simon and Schaeffer, 1990; Sloman, 1999]. When
it comes to video games, this has been observed in for ex-
ample Super Mario Bros [Ortega et al., 2013], simulated car
racing [Muñoz et al., 2010], Quake II [Thurau et al., 2004]
and Unreal Tournament [Schrum et al., 2011]. Several re-
searchers (see citations in previous sentence) have attempted
domain-specific human-like AI players for these games. Two
recent series of game-based AI competitions, the 2k BotPrize
[Hingston, 2009] and the Mario AI Championship Turing
Test [Shaker et al., 2013], have focused specifically on pro-
ducing artificial players that play in a human-like manner.
In these competitions, the human-likeness of the submitted
agents were compared directly to humans, and judges were
asked which characters were human-controlled and which
were AI-controlled. The results suggest that in many cases,
it is harder to create a human-like game-playing agent than
to create a high-performing agent that wins many games or
achieves superhuman scores.

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2514

Another thing that these competitions and related studies
have suggested is a preliminary and incomplete list of ways
in which the behavior of common game-playing algorithms
differ from human gameplay. As these agents are typically not
bound by human reaction times, a characteristic “jitteriness”
can be observed, where player actions are changed more often
than would be practical or possible for a human. A related
phenomenon is the lack of pauses; most human players will
occasionally stop and pause while evaluating the possibilities
ahead. Finally, many algorithms are prone to a kind of cow-
ardice in that high-risk strategies are not pursued (alternatively,
one might say that many humans are prone to recklessness).

1.1 General Video Game Playing and MCTS
While there have been a number of attempts to produce human-
like agents for specific games, taking into account domain-
specific knowledge about the affordances of the game’s design,
there have been very few investigations of human-like game-
playing in general

[Hingston, 2012; Shaker et al., 2013]. We
are not aware of any other work that examines which features
are “AI giveaways” across multiple games and how to create
agents that can play any game of some given type in a human-
like manner. The challenge of playing any game, not just
a particular game, is called General Game Playing (GGP)
[Genesereth et al., 2005] for combinatorial games and board
games or General Video Game AI (GVG-AI) [Perez et al.,
2015] for real-time action/arcade games – both are built around
AI competitions. For these competitions, agents play not only
a single game, but must play games they have not yet seen –
they are not known ahead of time by the agent or the developer
of the agent. (This differentiates GGP and GVG-AI from e.g.
the Arcade Learning Environment, where agents are trained
for a finite and well-known set of games [Bellemare et al.,
2012].) In this paper, we will focus on human-like agents for
the GVG-AI competition.

Most of the best-performing players for GVG-AI are based
on Monte-Carlo Tree Search (MCTS) [Perez et al., 2015].
This is a relatively recently invented algorithm for stochastic
planning and game-playing [Browne et al., 2012]. Compared
to other tree-search algorithms used for game playing there
are two main differences: (1) MCTS balances exploration and
exploitation when selecting which nodes to expand, leading to
a more focused search; and (2) MCTS usually utilizes random
playouts instead of (or in addition to) state evaluation functions.
MCTS was popularized after revolutionizing computer Go;
Go-playing agents that utilize MCTS thoroughly outperform
agents based on any other methods, as well as the best human
players [Silver et al., 2016]. In the case of General Video
Game AI, the relative success of MCTS is largely due to the
impossibility of deploying game-specific modifications to the
agent; MCTS has proven very useful because of its generality.

Standard MCTS plays real-time video games (e.g. Mario)
worse than board games (e.g. Go) for multiple reasons: de-
cisions have to be made in real-time (at approximately once
every 40ms), non-player characters can react stochastically,
there are often no simple heuristics to evaluate the fitness of
a particular action in the short term, a lack of immediate re-
wards, and there is a large amount of hidden information. In
addition, the game tree will often need to be reconstructed

from the scratch each time step. Although standard MCTS has
all these problems in playing real-time video games, it still
performed decently in the 2014 GVG-AI Competition [Perez
et al., 2015].

1.2 This Paper
The challenge that this paper addresses is that of creating high-
performing human-like players for the GVG framework. The
agent needs to be able to perform well on the game as well as
play in a human-like manner.

The structure of the paper is as follows. First we describe
the GVG-AI testbed and the games we used for data collec-
tion. We then describe the quantitative measures we use to
characterize human playing behavior and compare it to the
game-playing AI agents. Next, we describe a number of mod-
ifications to the core MCTS algorithm in order to increase
its human-likeness. This is followed by our simulation re-
sults, where we use the quantitative measures to compare the
agents with humans. Next, we perform a user study where
we ask human observers to identify human players among a
set of agents and humans playing these games; we discuss
the quantitative results of this study as well as the qualitative
reasons given by observers for their judgments. We conclude
by discussing how this work can be furthered and what it says
about the possibility for creating general game AI that plays
in a human-like manner.

2 Testbed and Data Collection
We used the GVG-AI competition framework for our exper-
iment, as it includes a large number of video games with
the same agent API and can be easily instrumented for data
collection. Games are encoded in Video Game Description
Language (VGDL) [Ebner et al., 2013; Schaul, 2013], capable
of representing a wide variety of 2D arcade games. The central
assumptions are that the games feature graphical logic and 2D
movement; currently, 60 games are included with the frame-
work, including remakes of arcade classics such as Seaquest,
Frogger and Space Invaders.

We first collected human play traces for analysis, to com-
pare with a standard MCTS agent. For this purpose, we dis-
tributed a small program which allowed humans to play the
selected games and saved their play traces to a server. Each
row in the game analytics database stores a play trace that
contains the sequence of actions at every frame (including
a nil-action if nothing was performed on a frame), the final
score, and whether the game was won before 1000 frames or
lost by player death or time expiring on the 1000th frame. We
collected 209 play traces from 11 different human players, all
members of our lab. We also recorded 50 play traces from the
standard MCTS agent included with GVG-AI. All players and
the MCTS agent played the first level of three different games:

• Aliens: VGDL implementation of Space Invaders. The
avatar can move left, move right, and fire bullets. The
goal is to kill all the aliens spawned at the top of the level.
Aliens try to kill the player by moving across the screen
and downwards while intermittently dropping bombs.

• PacMan: VGDL implementation of Pac-Man. The
avatar moves in all four directions around a maze, eating

2515

Figure 1: Action length histogram Pa for human players.

dots, fruits, and power pellets. The goal is to eat all dots
while avoiding being caught by chasing ghosts.

• Zelda: VGDL implementation of the dungeon system
in the early The Legend of Zelda games. The avatar can
move in all four directions and attack in the direction
they are facing with a sword. The goal is to grab a key
and then reach the exit without dying. Monsters move
randomly, killing the player if they overlap locations. The
player can either avoid monsters or kill them for extra
points by using the sword.

3 Quantitative Measures of Player Behavior
We analyzed the collected data and compared the differences
between Human and standard MCTS play traces. This compar-
ison showed significant difference in several different aspects.
We noticed that the standard MCTS rarely repeated the same
action (e.g. Left, Right, Up, Down, and Attack) two frames in
a row, while human players tended to repeat actions several
frames in a row. MCTS also rarely repeated the nil-action,
while human players would perform a nil-action for multiple
frames in a row. As a result, the standard MCTS has a high ten-
dency to switch from one action to another much more often
than human players do. The following subsections explains
these aspects in detail.

3.1 Action Length
Action Length is number of repetition of each action, ex-
cluding nil actions. In real-time games, humans have a ten-
dency to press a button for more than one frame due to non-
instantaneous reaction time [Schmidt and Lee, 1988]. Agents,
on the other hand, can react far more rapidly, and therefore
tend to make many single frame actions of length 1.

To calculate Action Length, we examine the time series of
actions taken by the player from each play trace. We count
the total number of frames an action was held (x is recorded
when an action is used for x frames) and add it to a histogram.
After dividing by the histogram sum, the final action length
probability histogram is Pa, shown in Figure 1.

3.2 Nil-Action Length
Nil-Action Length is the number of frames that an empty nil-
action is repeated. In real time games, humans have a tendency
to occasionally wait (i.e. do no actions) to think or change

Figure 2: Nil-action length histogram Pn for human players.

direction. However, AI agents typically have a fast response
time, so there is no need to pause and think.

To calculate Nil-Action Length, we again examine the time
series of actions taken by the player from each play trace, but
now we only count how long a nil-action is repeated. The final
nil-action probability histogram is Pn, shown in Figure 2.

3.3 Action to New Action Change Frequency
The Action to New Action Change Frequency metric measures
the number of times that a player switches from one action to
another (e.g. from Up to Left in consecutive frames), divided
by the total number of frames in the play trace. AI agents
in real time games, free to select the optimal move on every
frame, often change actions quite frequently which increases
the jittery effect we are trying to avoid. High values indicate
high-jitter and generally only occurred in AI agents. We do
not use this in our model to select actions, but we use this
metric to compare agents to humans in Section 6.

4 Proposed MCTS Modifications
Monte Carlo Tree Search (MCTS) is a stochastic tree search
algorithm which is widely used for general game playing as
well as playing specific games such as Go; in applicable cases,
it asymptotically approaches the same result as a Minimax
algorithm [Browne et al., 2012]. Instead of exploring the tree
in a depth-first or breadth-first manner, MCTS stochastically
explores new areas of the search tree that have not been visited
previously, while also exploiting promising areas that have
already been discovered but not fully explored. In order to
understand the modifications, we first describe the four main
steps of the standard MCTS algorithm:

1. Selection: the algorithm selects a node in the tree to
expand. In this step MCTS tries to balance between
exploitation and exploration using the Upper Confidence
Bound (UCB) equation.

UCBj =
¯Xj + C

s
ln N

nj
(1)

where ¯Xj is the average node value for all the runs that
pass through this node and is responsible for exploitation
(high averages will be exploited more often), C is a con-
stant to encourage exploration, N is the total number of

2516

visits to all children of node j, and nj is the number of
visits for this node.

2. Expansion: MCTS picks a random unvisited child of
node j to expand.

3. Simulation: MCTS plays the game using random moves
until it reaches a termination state (win/loss) or decides
to approximate the simulation using a heuristic.

4. Backpropagation: MCTS updates all ancestor nodes of
the child using results from the simulation step – includ-
ing the average scores ¯Xj , total visits N , and child visits
nj for each node up the tree.

The GVG-AI framework comes with a standard MCTS
implementation as one of the AI agents, with some changes
to support video games instead of the typical combinatorial
games that MCTS is more commonly used for. Instead of
playing until it reaches a final state, it only simulates it for a
fixed number of actions and then uses a heuristic function to
evaluate the reached state. The function gives a large positive
value for a winning terminal state, a large negative value for
a losing terminal state, or the total score which the agent
achieves during the game if a terminal state is not reached.

Next, we describe the changes we made to the GVG-AI
MCTS algorithm to make it act in a more human-like manner.
We incorporate these modifications into an agent we call BoT.

4.1 Human-Modeling
We first added a term Hj to the standard UCB equation to
model more human-like behavior, with a tuning constant ↵
to balance between exploration, exploitation, and human-like
modeling.

UCB+
j = UCBj + ↵Hj (2)

Hj itself is a function that depends on the state of the game
and the previous move that has been selected. The function
helps the MCTS selection process model human-like actions.
For example if the previous move is action of length 1 and the
current state is the same action, this means the value should
be high to encourage picking the same action (as explained in
Section 3.1). As the action is held longer, Hj will decrease.

The parameters for Hj are calculated from the histograms
recorded from human play traces in Section 3; we tune the
MCTS algorithm to follow similar human distributions for ac-
tion length and nil-action length. We first select the appropriate
histogram based on the previous action in the tree: if a normal
action we use P = Pa and if a nil-action we use P = Pn. We
then count l, how long the current action has been held, and
calculate the cumulative probability T (l) =

P
l P (l). The

probability of changing to a different action after holding for l
frames is then T (l) while the probability of continuing to hold
the action is 1 � T (l). Thus, Hj is calculated from a proba-
bilistic data-driven model and depends on recent ancestors in
the MCTS game tree.

At this stage, we only used modification as described in this
section. The resulting AI agents exhibited actions conforming
to the sampled human distribution but they did not appear to
be fully human. Useless moves like walking into walls, a lack
of long term planning and cowardice are some reasons for
the agents to appear unbelievable. We therefore added the
following techniques to increase agents believability.

4.2 Trivial Branch Pruning
Trivial Branch Pruning eliminates any ineffective movements,
such as walking into walls, immediately reversing direction,
and attacking indestructible objects, which are occasionally
selected by MCTS. An ineffective action is when the player’s
orientation and position does not change after executing a
move action. A branch with an ineffective action will not be
further explored. The rules for action pruning were specified
a priori as we want our method to be applicable to games
without a learning or training phase; they could conceivably
also be learned from data.

4.3 Map Exploration Bonus
The Map Exploration Bonus encourages MCTS to explore
new locations in the game map by giving a bonus for visiting
map tiles that have been less frequently visited. This was
introduced to help the agents improve their long term planning.
We modified Equation 2 to add a bonus exploration term.

(3)UCB++
j =UCB+

j +E ·
✓
1� visited(xj , yj)

maxi(visited(xi, yi))

◆

where E is a constant for the contribution of the bonus ex-
ploration term and visited(xj , yj) is the how many times the
current map tile has been visited by the player.

4.4 MixMax
MixMax is inspired from Jacobsen et al. [2014], where several
techniques were applied to enhance the performance of MCTS
playing Infinite Mario Bros. MixMax was originally suggested
as a method for overcoming cowardly behavior in Mario – the
avatar would unproductively avoid gaps and enemies. The
same problems appear in many GVG games, where the agent
often flees from enemies instead of killing them.

Instead of using the average value ¯Xj from the UCB equa-
tion, a mixed value is used between the average ¯Xj and the
maximum child value. Equation 4 shows the new exploitation
part of Equation 1, replacing ¯Xj with ¯X⇤

j .

¯X⇤
j Q ·max+ (1�Q) · ¯Xj (4)

where Q is the mixing parameter between both terms, max
is the maximum value achieved at that child and ¯Xj is same
average value as originally described for UCB.

A value of Q = 0.25 has an approximately best effect,
chosen by visual inspection of the output behavior to make it
appear most human. High values of Q cause the agent to be
overly courageous and often dies from enemy attacks, while
low values of Q cause the agent to be too cowardly.

5 Simulation Results
This section compares the quantitative measurements ex-
plained in Section 3 for four types of players: (a) standard
MCTS, (b) AdrienCtx, the winner of the GVG-AI competition
in 2014 [Perez et al., 2015], (c) our BoT algorithm, and (d) ac-
tual human play. We compared them on the same three games:
Aliens, PacMan, and Zelda.

Figure 3 compares different agents to human players by
Action Length. As can be seen, both AdrienCtx and standard

2517

MCTS favors short moves of length 1 while humans favor
repeating the same action. Our BoT algorithm (in blue) in-
creased the tendency of selecting the same action which leads
to having a closer distribution to human players (in red).

Figure 3: Action Length distribution for human players, stan-
dard MCTS, AdrienCtx, and our BoT agent.

Figure 4 compares different agents to human players by
Nil-Action Length. Standard MCTS (green) has mostly short
nil-actions – almost all of them of length 1. On the other hand
AdrienCtx (purple) has the longest nil-action of length 11.
This agent stands still for 11 frames at the beginning of each
game in order to analyze the world and never performs a nil-
action again, which explains this particular time distribution.
BoT (blue) has a higher tendency to select the nil-action which
leads it to having a similar distribution to human players (red).

Figure 4: Nil-Action Length distribution for human players,
standard MCTS, AdrienCtx, and our BoT agent.

Figure 5 shows how different agents compare with human
players, using Action to New Action Change Frequency his-
tograms. Human players, indicated in light blue, rarely switch
from an action to a new action. However, standard MCTS and
AdrienCtx both switch quite often from one action to another,
as indicated in the histograms. Our agent, BoT, has a distribu-
tion much closer to humans. This reduces the amount of jitter,
which we believe makes a more human-like agent.

Our aim is not just mimicking human distributions, but to
combine human-like action distributions with the generality

Pacman Zelda Aliens
Human 0.00% 4.26 12.4% 0.57 22.5% 13.09
MCTS 0.66% 4.63 0.66% 0.64 32.0% 21.77
BoT 0.00% 5.33 7.33% 0.40 0.0% 25.19

AdrienCtx 24.6% 15.57 33.3% 2.08 32.0% 0.56

Table 1: Win percentage and average score for humans, stan-
dard MCTS, AdrienCtx, and our BoT agent.

and positive behaviors of MCTS. An algorithm that simply
sampled actions from the human distribution would fit per-
fectly but would be an atrociously bad game player. In order
to make sure that the modified MCTS is still generic, we also
use score and win rate as a performance metrics.

Table 1 compares the performance for three algorithms to
human players. The first number is the win rate while the
other is the average score across all plays of that game/agent
pairing. These metrics show that our BoT algorithm is scoring
as well as standard MCTS. It is clear from the values that our
BoT performs at least as well in both PacMan and Zelda, but
worse in Aliens. The likely reason for the bad performance
in Aliens is that spatial exploration is unfortunately always
preferred over shooting due to the Map Exploration Bonus.

6 User Study
To verify that our algorithms perform in a more human-like
manner than the standard MCTS, we performed a Turing-test-
like user study. We evaluated our algorithms on three games:
Zelda, Pacman, and Boulderdash. Boulderdash is a recreation
of the classic game Boulder Dash by First Star Software. The
player has to dig through dirt, collect gems and reach the exit,
while avoiding falling rocks and moving monsters. This game
was selected because the differences in playing style could be
seen more clearly in this game than in Aliens.

For each game, we compared four different players: (a)
Standard MCTS, (b) AdrienCtx, the winner of the GVG-AI
competition in 2014 [Perez et al., 2015], (c) our BoT algo-
rithm, and (d) actual human play. For each of these conditions,
we generated 3 videos using the GVG-AI system, for a total
of 3 games * 4 algorithms * 3 videos = 36 videos.

The user study was performed within a web browser. Each
participant was shown two videos chosen from the same game,
side by side and labeled A and B. The participant was asked
“Which of these videos appear to show a human player?” and
given 4 possible answers: A, B, Both, Neither. They were
also given a free form field labeled “How did you decide?
(optional)” so we could better understand how they made their
choices. The participants were asked to rate at least 10 games
and results were not included if participants only evaluated
one game. We had 34 participants in our study, with a median
number of games evaluated per participant of 10 and a mean
of 9.18, for a total of 312 evaluations. Since each evaluation
contained two games, our study has n = 624 samples.

Table 3 shows the results of our user study. For each cell, we
show the fraction of times the video was indicated as coming
from a human (either indicated as A, B, or Both) divided
by the number of times it was shown to the participants. In

2518

Figure 5: Action to New Action Change Frequency for Pacman. Humans have a very low frequency for this metric (light blue).
(a) Standard MCTS and (b) AdrienCtx have much higher values, leading to jittery AIs. (c) BoT has a distribution much closer to
human players.

the first row, we see that at best humans correctly identify
human play with 88.7% accuracy for Zelda, and at worst with
70.2% accuracy for Pacman. In the second row, we see that
Standard MCTS performs quite poorly, at best attributed as
a human 33.3% of the time for Pacman and at worst 8.3% of
the time for Boulderdash. For the two remaining algorithms,
BoT performs the best at Pacman, coming close to matching
the same attribution rate for human players, while AdrienCtx
performs the best for Zelda and Boulderdash.

To test for significance, we use a binomial test for each
game and agent, with the null hypothesis that the percent-
age of human-like attributions matches the percentage for
Standard MCTS. Except for Pacman/AdrienCtx, we have a
p-value < .01, rejecting the null hypothesis for all other agents
and games at the ↵ = .01 significance level. This shows a
significant result for n = 624 that the algorithm has an effect
on how participants attribute human-like behavior to an AI.

We also analyzed the observers’ optional free-text responses
(163 were given) on the videos to see what are the common
problems that make humans believe the game performance
they are observing is not from a human. Answers were coded
for the occurrence of keywords or expressions with essentially
the same meaning. Table 2 shows the frequency of top qualita-
tive keywords that identify that the player is an AI agent.

Keyword Number of occurrences
Jitteriness 40 / 163

Useless Moves 39 / 163
No long term planning 25 / 163
Too fast reaction time 21 / 163

Overconfidence 10 / 163

Table 2: Most common qualitative reasons for claiming an
observed player is not human, taken during the user study.

By combining our own observations with an analysis of
the reasons given by the respondents, the overall findings can
be explained as follows. Standard MCTS exhibits most of
the problems that were noted in the beginning of this paper:
jitteriness, performing ineffective actions such as running into
and hitting walls, and often has no apparent long-term goal.
AdrienCtx avoids most of these problems, but is given away

by having obvious superhuman reflexes, including the ability
to counteract multiple enemies much faster and more reliably
than a human. In fact, some observers thought the AdrienCtx
agent was cheating. BoT has the advantage that it has more
human-like reaction times because of its tendency to repeat
moves and wait. It also gives the appearance of following up
on a course of action because of its “momentum” (tendency
to continue moving in the same direction), which helps in
particular in Pacman.

Pacman Zelda Boulderdash
Human 70.2% 40/57 88.7% 47/53 80.7% 46/57
MCTS 33.3% 13/39 10.0% 5/50 8.3% 5/60
BoT 60.0% 33/55 26.5% 13/49 25.0% 14/56

AdrienCtx 38.2% 21/55 50.0% 26/52 39.0% 16/41

Table 3: Percentage and fraction of evaluations indicating the
presented video came from a human.

7 Conclusions
MCTS is currently the most successful algorithm—or per-
haps algorithmic framework—for playing unseen games in
the GGP and GVG-AI competitions and associated software
frameworks. However, in its standard form, the algorithm
does not play in a human-like manner. In this paper, we have
quantitatively and qualitatively characterized the differences
in playing style between humans and MCTS-based agents in
three representative games within the GVG-AI framework.
We have also suggested a number of modifications to the core
of standard MCTS algorithm in order to make its behavior
appear more human-like; the core modifications are a new
term in the UCT equation that biases action selection towards
observed human histograms. The effectiveness of the modifi-
cations, collectively known as “BoT”, was ascertained through
computational testing as well as a Turing-test-like user study.
We believe the BoT agent we have presented in this paper
could be useful for automated testing and demonstration of
games in the GVG-AI framework, generation of new games,
and for pointing a way forward for developing methods for
human-like game-playing across games and game genres.

2519

References
[Bellemare et al., 2012] Marc G Bellemare, Yavar Naddaf,

Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 2012.

[Browne et al., 2012] Cameron B Browne, Edward Powley,
Daniel Whitehouse, Simon M Lucas, Peter Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, Simon Colton, et al. A survey of monte
carlo tree search methods. Computational Intelligence and

AI in Games, IEEE Transactions on, 4(1):1–43, 2012.
[Ebner et al., 2013] Marc Ebner, John Levine, Simon M Lu-

cas, Tom Schaul, Tommy Thompson, and Julian Togelius.
Towards a video game description language. Dagstuhl

Follow-Ups, 6, 2013.
[Genesereth et al., 2005] Michael Genesereth, Nathaniel

Love, and Barney Pell. General game playing: Overview
of the aaai competition. AI magazine, 26(2):62, 2005.

[Hingston, 2009] Philip Hingston. The 2k botprize. In Com-

putational Intelligence and Games, 2009. CIG 2009. IEEE

Symposium on. IEEE, 2009.
[Hingston, 2012] Philip Hingston. Believable Bots. Springer,

2012.
[Isaksen et al., 2015] Aaron Isaksen, Dan Gopstein, and

Andy Nealen. Exploring game space using survival analy-
sis. Foundations of Digital Games, 2015.

[Jacobsen et al., 2014] Emil Juul Jacobsen, Rasmus Greve,
and Julian Togelius. Monte mario: platforming with mcts.
In Proceedings of the 2014 conference on Genetic and

evolutionary computation, pages 293–300. ACM, 2014.
[Muñoz et al., 2010] Jorge Muñoz, German Gutierrez, and

Araceli Sanchis. A human-like torcs controller for the
simulated car racing championship. In Computational In-

telligence and Games (CIG), 2010 IEEE Symposium on,
pages 473–480. IEEE, 2010.

[Nelson, 2011] Mark J Nelson. Game metrics without players:
Strategies for understanding game artifacts. In Artificial

Intelligence in the Game Design Process, 2011.
[Ortega et al., 2013] Juan Ortega, Noor Shaker, Julian To-

gelius, and Georgios N Yannakakis. Imitating human play-
ing styles in super mario bros. Entertainment Computing,
4(2):93–104, 2013.

[Perez et al., 2015] Diego Perez, Spyridon Samothrakis, Ju-
lian Togelius, Tom Schaul, Simon Lucas, Adrien Couëtoux,
Jeyull Lee, Chong-U Lim, and Tommy Thompson. The
2014 general video game playing competition. 2015.

[Schaul, 2013] Tom Schaul. A video game description lan-
guage for model-based or interactive learning. In Computa-

tional Intelligence in Games (CIG), 2013 IEEE Conference

on, pages 1–8. IEEE, 2013.
[Schmidt and Lee, 1988] Richard A Schmidt and Tim Lee.

Motor control and learning. Human kinetics, 1988.

[Schrum et al., 2011] Jacob Schrum, Igor V Karpov, and
Risto Miikkulainen. Ut 2: Human-like behavior via neu-
roevolution of combat behavior and replay of human traces.
In Computational Intelligence and Games (CIG), 2011

IEEE Conference on, pages 329–336. IEEE, 2011.
[Shaker et al., 2013] Noor Shaker, Julian Togelius, Geor-

gios N Yannakakis, Likith Poovanna, Vinay S Ethiraj, Ste-
fan J Johansson, Robert G Reynolds, Leonard K Heether,
Tom Schumann, and Marcus Gallagher. The turing test
track of the 2012 mario ai championship: entries and evalu-
ation. In Computational Intelligence in Games (CIG), 2013

IEEE Conference on, pages 1–8. IEEE, 2013.
[Silver et al., 2016] David Silver, Aja Huang, Chris J Maddi-

son, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. Mastering the game
of go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[Simon and Schaeffer, 1990] Herbert A Simon and Jonathan
Schaeffer. The game of chess. Technical report, DTIC
Document, 1990.

[Sloman, 1999] Aaron Sloman. What sort of architecture is

required for a human-like agent? Springer, 1999.
[Thurau et al., 2004] Christian Thurau, Christian Bauckhage,

and Gerhard Sagerer. Learning human-like movement be-
havior for computer games. In Proc. Int. Conf. on the

Simulation of Adaptive Behavior, pages 315–323, 2004.
[Togelius et al., 2011] Julian Togelius, Georgios N Yan-

nakakis, Kenneth O Stanley, and Cameron Browne. Search-
based procedural content generation: A taxonomy and sur-
vey. Computational Intelligence and AI in Games, IEEE

Transactions on, 3(3):172–186, 2011.

2520

