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Abstract

In energy conservation research, energy disaggre-
gation becomes an increasingly critical task, which
takes a whole home electricity signal and decom-
poses it into its component appliances. While
householder’s daily energy usage behavior acts as
one powerful cue for breaking down the entire
household’s energy consumption, existing works
rarely modeled it straightforwardly. Instead, they
either ignored the influence between users’ energy
usage behaviors, or modeled the influence between
the energy usages of appliances. With ambiguous
appliance usage membership of householders, we
find it difficult to appropriately model the influence
between appliances, since such influence is deter-
mined by human behaviors in energy usage. To ad-
dress this problem, we propose to model the influ-
ence between householders’ energy usage behav-
iors directly through a novel probabilistic model,
which combines topic models with the Hawkes pro-
cesses. The proposed model simultaneously dis-
aggregates the whole home electricity signal into
each component appliance and infers the appliance
usage membership of household members, and en-
ables those two tasks mutually benefit each other.
Experimental results on both synthetic data and
four real world data sets demonstrate the effective-
ness of our model, which outperforms state-of-the-
art approaches in not only decomposing the entire
consumed energy to each appliance in houses, but
also the inference of household structures. We fur-
ther analyze the inferred appliance-householder as-
signment and the corresponding influence within
the appliance usage of each householder and across
different householders, which provides insight into
appealing human behavior patterns in appliance us-
age.

1 Introduction

One critical data analysis issue in modern society is en-
ergy conservation, which encourages the exploration of en-
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ergy usage behaviors in households. Energy disaggrega-
tion — the task of taking a whole-house energy signal and
separating it into its component appliances, is an impor-
tant task in this area, since existing studies [Darby, 2006;
Neenan and Robinson, 2009; Wytock and Kolter, 2014;
Shao et al., 2013] claimed that household members pay more
attention to energy conservation if they’re shown breakdown
energy consumption records, especially the records of ap-
pliance usage behaviors of each householder. However, the
collection of such fine-grained energy consumption data re-
quires numerous additional monitoring hardware. Nowadays,
a limited number of families are equipped with smart-grid de-
vices, which are only able to record the energy consumption
for each appliance, rather than the householder who uses it.
While several energy disaggregation methods have been pro-
posed to obtain the first type of fine-grained records, few of
them studied the corresponding household structures, which
can provide us the record of appliance usage membership of
householders. We notice that those two tasks are closely re-
lated as their underlying key cues are the same — house-
holder’s behavior in energy usage [Baptista et al., 2014],
which can include: how users perform their daily routines,
how they share the usage of appliances, and users’ habits
in using certain types of appliances. Thus we explore solu-
tions that simultaneously address those two tasks, based on
the modeling of energy usage behaviors of householders.

Despite of the importance of understanding householders’
energy usage behaviors, existing works on energy disaggre-
gation rarely modeled them directly. Those works mostly fo-
cused on the distribution of energy consumption of each ap-
pliance alone [Kolter e al., 2010; Kolter and Jaakkola, 2012;
Parson et al., 2012]. They either learned the energy usage pat-
terns of each appliance within a certain period (for instance, a
week), or studied the relationship between energy usage pat-
terns across adjacent time slots. One critical cue in under-
standing householders’ energy usage behaviors is the influ-
ence in between, i.e., whether and how much a householder’s
current appliance usage motivates his/her or other people’s
usage of certain appliances in the future. Appropriate mod-
eling of the influence between householders’ energy usage
behaviors enables an accurate inference of the energy usage
at each time slot, thus benefits the disaggregation of the en-
ergy consumption in each time slot into different appliances.
The major challenge in such influence modeling is that, the



state-of-the-art smart-grid data rarely records the number of
household members, and the exact timestamp when a certain
member uses a certain appliance. Recent studies attempted to
capture the relationship between the energy usages of differ-
ent appliances instead, since the energy consumption of each
appliance is determined by the user behavior. Those works
expected such relationship will be able to reveal the influence
between the energy usage behaviors of different users in the
same household across different time slots. However, with
ambiguous appliance usage membership of householders, it
is difficult to infer such relationship appropriately and explain
reasonably.

To this end, we propose a novel probabilistic model that
combines the Hawkes processes with topic models. This
model is designed to simultaneously infer the appliance us-
age membership of household members and disaggregate the
whole home electricity signal into each component appliance.
In the proposed model, the topic model part models the distri-
bution of the appliance usage of householders, designed to in-
fer the appliance usage membership of householders in each
time slot, while the Hawkes process part models the occur-
rences of observed events, and captures the influence between
the energy usage behaviors from the same or between differ-
ent householders across different time slots.

In a nutshell, our major contributions include: 1) We
make use of the temporal and energy amount information in
solving both the energy disaggregation and household struc-
ture analysis task, based on the exploration of householders’
daily routines in energy consumption; 2) We directly model
the influence between energy usage behaviors from different
householders across different time slots, which many existing
works failed to model; 3) We propose a novel probabilistic
model that combines the Hawkes processes with topic mod-
els, which is able to solve the above two tasks simultaneously,
and makes them mutually benefit each other.

2 Problem Definition

Let us look into an energy consumption scenario that contains
M houses. In each house, a number of C' appliances are used
in a sequence of N time slots T' = {t,,n =1,..., N}. No-
tice that multiple appliances may be used side by side in the
same time slot, while one appliance is not necessarily always
in use.

On one hand, in the task of energy disaggregation, we only
observe the total amount of consumed energy X, ,, in each
time slot n in house m, while the amount of consumed en-
€rgy Ty, n,q Of each appliance a used in that time slot is not
available. The target of energy disaggregation is to predict
each x,, », , based on the observed 7" and X. Since the exact
amount of x,, ,, . is difficult to be predicted from X, ,, di-
rectly, we assume each appliance has L energy consumption
levels (with the amount from low to high), and introduce a
set of latent variables {Y},, ,, o} to denote whether the a-th
appliance is used at level [ in the n-th time slot in house m,
along with the consumption level of each appliance 0, ;.

On the other hand, in the task of household structure analy-
sis, we are to learn the number of household members in each
family and each appliance’s usage membership of household-
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ers, which we denote using a set of latent variables Z. For
each Y, ., = 1, which denotes one occurrence of appli-
ance usages in a single time slot, we have a corresponding
Zm.n,a, that indicates the corresponding householder mem-
bership, i.e., which householder uses the appliance a at level
[ in the n-th time slot within house m. Next we show how the
tasks of energy disaggregation and household structure infer-
ence can be addressed simultaneously and mutually benefit
each other in a unified model.

2.1 LDA in Household Structure Inference

In the exploration of the household structure of each family
in the smart-grid data, the key idea is that each householder
performs a certain type of appliance usage pattern in his/her
daily routine, and our task is to cluster householders based on
their appliance usage patterns. One popular solution for clus-
tering problems is graphical models like LDA [Blei et al.,
2003], which has been proven to be effective in topic discov-
ery by clustering words that co-occur in the same document
into topics. Let us first introduce how to use LDA to detect
appliance usage patterns given inferred Y. One straightfor-
ward idea is to treat each family as a document, and clus-
ter appliance usages (as words in document clustering) that
co-occur in the same family into topics, since appliance us-
ages of householders from the same family are more likely to
follow the same pattern than those of householders from dif-
ferent families. Notice that under such circumstances, each
topic/pattern ¢y, is actually the distribution of appliance us-
ages. Our LDA model assumes K patterns lie in the ob-
served smart-grid data, and each family m is associated with
a randomly drawn vector ,,, where 7, j, denotes the prob-
ability that a householder from family m performs appliance
usage pattern k. If an appliance a is used in energy con-
sumption level [ in the n-th time slot in the daily routine of
family m, i.e., Yy, n.a1 = 1, a K-dimensional binary vector
Zmmad = [Ymom.adds-- s Ymmnalx)’ is used to denote the
appliance’s usage pattern membership.

2.2 Parametric Hawkes Processes

The multi-dimensional Hawkes process is a class of self-
or mutually-exciting point process models [Hawkes, 19711,
which are widely used to describe data that are localized at
a finite set of time points {¢1,...,¢x} [Schoenberg, 2010].
Formally, the multi-dimensional Hawkes process on an event
cascade {t;}1¥, is defined to be a M-dimensional point pro-
cess with the intensity of the m-th dimension given by:

/\m(t) = HUm + Z O‘m,l,m/{(t - tl) (1)

<t

Here p,, denotes the base intensity of the m-th dimension,
k(t — t;) is a time-decaying kernel, while ay, ,,» denotes the
infectivity from events in the m-th dimension to events in
the m/-th dimension. Hawkes process has been widely used
in applications, such as earthquake prediction [Ogata, 1988],
sales modeling [Errais et al., 2010], crime modeling [Stom-
akhin et al., 2011], and information retrieval [Li et al., 2014].

In many real world social networks, a’s are not indepen-
dent from each other, and may vary with respect to time. Un-
der such scenarios, learning one separate « for each pair of



Table 1: Patterns in Constructing Time-varying Features

[ Patternp [ Description |
a the historical usage of appliance a
a&a’ the historical usage of appliance a’ before using
appliance a
(a,k) the historical usage of appliance a of householder
k
(a&a’,k) | the historical usage of appliance a’ of house-
holder k before using appliance a
(ar) the historical usage of appliance a at level [
(a1&aj,, k) | the historical usage of appliance a” at level I’ of
householder £ before using appliance a at level [

dimensions (m,m’) becomes inappropriate. Instead, recent
work [Li and Zha, 2014] decomposed each « into a linear
combination of K time-varying features as:

)

where [ is the vector of coefficients that we are to learn in-
stead of a. Xy, my (%) is a time-varying dyad-dependent vec-
tor, which is supposed to reflect some kind of relationship
between dimension m and m’.

In the application of energy disaggregation, the event we
are to model is the usage of an appliance at a certain level in a
time slot. Under such scenario, the dimension m of an event
is the pair of appliance and its usage level (a,l). Thus, the
intensity of the usage of appliance a at level [ in time slot ¢
can be formulated as:

Xag(t) = prag+ Y Xarpr.an(t)s(t —t')

t'<t

QO om! = 5Txm,m’(t)7

3

Time-varying Features based on Household Structures
Time-varying features [Swan and Allan, 1999] attract ever in-
creasing attentions in analyzing temporal data, such as email
communication [Perry and Wolfe, 2013], seismic events [C.-
PenA et al., 2013], and Heart Rate Variability (HRV) signals
[Mendez et al., 2010]. These features usually vary with re-
spect to time, and count the number of appearances of a cer-
tain pattern involving one individual or one individual-pair in
a certain time range formulated as:

(L’(p)(t,At) = #{p € [t - At,t)},

where p represents a certain defined pattern, [t — At,¢) is
the time interval from some ancient timestamp to the current
timestamp.

Table 1 shows several patterns we adopt in this paper.
Our feature design is inspired by the features proposed in
[Perry and Wolfe, 2013]. The novelty of our design is that
we propose features in more general forms, and also explore
brand-new patterns in networks (the household structure in
our problem), thus producing far more features.

As shown in Table 1, our features are generally designed
to measure the appliance usage history related to a certain
appliance and a certain pair of appliances, and imply how a
householder’s historical appliance usages influence the cur-
rent appliance usage of him/her or other householders in the
same family. Based on above collected features, we are able
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to form a length-V feature vector x, (¢, Z) for the appliance
a with consumption level [ used at timestamp ¢ through:

Xa,ar (6, Z) = {z(p)(t, At)|p € Pay,ar 1(Z), At > 0},

where P, 1 /17 (Z) refers to the set of patterns that involves
both appliance a (at level /) and appliance a’ (at level I') listed
as in Table 1, based on the current inferred appliance usage
membership of householders Z. Thus for each timestamp ¢,
we have a unique set of feature vectors {Xg ;o7 (t, Z)} uti-
lized in intensity function A(¢).

In our tasks, building a parametric Hawkes processes on Y’
relates Y}, , o, the inference of a-th appliance usage state [
in the n-th time slot in house m, with those of other appli-
ances in different time slots, thus can be expected to sharply
raise the inference accuracy.

2.3 ParaHawkes-LDA

According to the above description of the inference of house-
holder structure and the prediction of energy disaggregation,
we find that the inference of Y and Z depends on each other
as the observed data. Thus we can propose a novel probabilis-
tic model that combines the LDA model with the parametric
Hawkes process to make them mutually benefit each other in
solving the above two tasks side by side.

The generative model produces the entire energy consump-
tion as follows:

* For each appliance a,

— draw a L dimensional vector 6,, in which each
dimension indicates a single energy consumption
level of the appliance.

* For each family m,

— draw a K dimensional membership vector m,, ~
Dirichlet(«).
— For the n-th time slot,
+ For the a-th appliance,
- draw whether it will be used by Y, na1 ~
ParaHawkes(A(+)), where the intensity A is de-
fined as in Eqn (3);
- draw the amount of consumed energy of device
Lm,n,a ™~ Zl Kn,n,a,lGaussjan(ea,ly U);l
% Calculate the total amount of consumed energy
in the n-th time slot X, , = > T na-

Note that in our ParaHawkes-LDA model, the number of ap-
pliances used in the same time slot is constrained by the total
amount of consumed energy at that time. Such constraints
not only benefit the inference of appliance usage patterns of
householders, but also enable the modeling of multiple events
that occur in the same time slot, which most existing Hawkes
processes failed to handle.

Under our ParaHawkes-LDA model, the joint probability
of data T = {N())} = {{ta})_1}. X = {{X.}}L,} and
latent variables 7, Y, Z can be written as follows:

p(T, X, 10, Y, Zle, 0,9, p,0) = P(T,Y|Z, p,0) [ Prem| )
m

H P(Ym,n|Zm,n, SD)HHP(Zm,n‘Wm)HP(Xn|Yn,0),

m,n m n n

'In our experiments, we use a constant o.



2.4 Inference

In this section, we describe the inference algorithm for our
proposed model. Since the latent variables Y for solving the
energy disaggregation task and Z for solving the household
structure analysis task mutually depend on each other as the
respective input, we adopt a coordinate descent framework
and update each set of latent variables alternatively.

Under ParaHawkes-LDA model, given observations of
both temporal information 7" and consumed energy X of en-
ergy consumption event sequences, the log-likelihood for the
complete data is given by log p(T, X|a, 0, ¢, p,w). Since
this true posterior is hard to infer directly, we turn to varia-
tional methods [Blei and Jordan, 2005], which posits a dis-
tribution over the latent variables to make it close to the true
posterior in Kullback-Leibler (KL) divergence.

(T, Y, Zlvm, @, p)
= H q1 (7T17’L|’Y’m) H H q2(Ym7n|¢m7n)q2(Zm,n|pm,n)

m n

where ¢; is a Dirichlet, ¢ is a multinomial, and {~1.5s, @, p}
are the set of variational parameters. We optimize those free
parameters to tight the following lower bound £’ for our like-
lihood:
log p(T, X|a, 0, ¢, p,w) >Eqllogp(T, X, m1.0m,Y, Z|at, 0, @, 1, w)]
— Eqllogq(m1:m,Y, Z)) 4)

Under a coordinate descent framework, we optimize the
lower bound as in Eqn (4) against each latent variable, and
obtain the update rule for the variational variable ¢ corre-
sponding to appliance usage states as:

bm,n,a,1 < exp(log(pa, + Z ﬁTxa’,l’,a‘l(tmmv p)(tn — t,r))
n/<n

+ log([Xm,n — Z

(a’ 1) #(a,l)

Pmnal 17 0ar 1714))

And the update rule for the variational variable p corre-
sponding to appliance usage membership of householders is:

Pm,n,a,l,k X exp(z(ql(ﬂﬁn,k) - \P(Z 'Ym,,k)) + ¢7n,n,a,l§9k,a,l)
k

m

To learn the parameters in the proposed ParaHawkes-LDA
model, we use a variational expectation-maximization (EM)
algorithm [Dempster et al., 1977]. This variational EM al-
gorithm optimizes the lower bound as in Eqn (4) instead of
the real likelihood, it iteratively approximates the posterior
by fitting the variational distribution ¢ and optimizes the cor-
responding bound against the parameters.

To update «, we use a Newton-Raphson method, since the
approximate maximum likelihood estimate of o doesn’t have
a closed form solution. The Newton-Raphson method is con-
ducted with a gradient and Hessian as follows:

oL’

tar = NG aw) = ¥lan) + 3@ 0mr) = ¥ mr)),
) k m k
oL’ , ,

Baryary = Vo= ¥ () — (3 e

The learning of base intensity p and coefficients 5 in the
part of parametric Hawkes model are performed based on the
equations introduced in [Li and Zha, 2014].
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In our mean-field variation inference algorithm, the
computational cost of inferring variational variables is
O(MNC?L?KV), where V is the length of the feature vec-
tor x. The computational cost of the estimation of Hawkes
hyper-parameters is O(M N2C2L?V), which can be reduced
to O(MNC?L?V) by only considering the influence in
temporally-close time slots. Thus the total computational
cost of our algorithm is O(MNC?L2KYV). Since in real-
world scenario, influence exists only among limited pair of
appliances and patterns, C? L% can be reduced to some much
smaller constant. Furthermore, the number of appliance us-
age patterns K and the feature vector size V' is under the
control of our model, which can be also very small, thus the
above cost can be viewed as linear in the number of events.

3 Experiments

We evaluated our ParaHawkes-LDA model on both synthetic
and real-world data sets, and compared the performance with
the following baselines:

Cox: This is a normal Cox proportional hazards model that
influence between the occurrences of events only without the
inference of household structure [Cox, 1972];

M-Hawkes: This is a marked Hawkes process that is able to
capture the influence from the occurrence and the marks of
one energy usage event to the occurrence and the marks of
subsequent usage events in the future [Li and Zha, 2015];

AFAMAP: This is an approximation inference algorithm,
named Additive Factorial Approximate MAP, to efficiently
solve the additive factorial hidden Markov model by looking
at the observed difference in consumed energy, and incorpo-
rating a robust mixture component that can account for un-
modeled observation [Kolter and Jaakkola, 2012];

NIALM: This method, named non-intrusive load monitoring,
iteratively separates individual appliances from an aggregate
energy consumption record, and turns prior models of general
appliance types for each appliance [Parson et al., 2012].

3.1 Synthetic data

Data Generation. Given parameters (M, N, K,C LV,
a, 8, ¢, p,w), the synthetic data is sampled according to the
proposed generative model. Here each element in i and w are
randomly generated in [0.5/, 1.5/ and [0.5w, 1.50] respec-
tively before the simulation. In addition, « is a vector of size
K, where the element oy, is generated in [0.5&, 1.54]. Our
synthetic data are simulated with two different settings:

* Small: M =10, N =100, K =3,C =10, L = 3,
V =20, =001, =05 &=0.1,60 = 10. Sim-
ulations were run 1,000 times using the pre-generated
parameters u, w;

* Large: M = 100, N = 9,000, K = 5, C' = 50,
L=3,V =100, 4=0.01, o =0.5,a=0.1,0 = 10.
Simulations were run 10 times.

To test the robustness of our method, we add two types of
noise to the original synthetic data:

Event Noisy: We generate additional 10% of total num-
ber of events randomly in the time window of each already
sampled event sequence, and add them to the sequence;
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Figure 1: Performance Comparison of Energy Disaggregation on Real World Data Sets.

Table 2: Inference and Estimation of ParaHawkes-LDA

[ Dataset | MAE(u) [ MAE(w) | MAE(Y) [ MAE(Z) |
S-Synthetic | 0.047 0.183 0.140 0.224
S-E-Noisy | 0.067 0.261 0.152 0273
S-M-Noisy | 0.083 0.287 0.166 0322
L-Synthetic | 0.121 0.323 0.195 0.239
L-E-Noisy | 0.134 0.332 0.226 0311
L-M-Noisy | 0.143 0.356 0.261 0.365

”S-” stands for data setting Small, "L-” stands for Large, "E-”
stands for Event Noisy, and "M-" stands for Mark Noisy.

Table 3: Log Predictive Likelihood
[ Dataset [PHawkes-L]| Cox [M-Hawkes[AFAMAP[NIALM|

S-Synthetic| -85.13 -98.74 | -90.92 -100.25 |-103.38
S-E-Noisy | -95.08 [-106.86| -101.53 | -109.76 |-114.52
S-M-Noisy | -100.31 |-121.42| -108.06 | -122.48 |-122.89
L-Synthetic| -134.18 |-159.39| -149.94 | -162.85 |-169.08
L-E-Noisy | -144.82 |-172.71| -162.01 -176.69 |-181.43
L-M-Noisy | -150.17 |-178.68| -168.39 | -182.15 |-186.71
Smart* -142.03 |-163.48| -145.39 | -157.83 |-160.35
Pecan -188.82 |-221.05| -192.17 | -209.12 |-216.43
REDD -167.89 |-191.73| -171.37 | -182.37 |-187.51

In this table, PHawkes-L stands for ParaHawkes-LDA.

Mark Noisy: Instead of using the simulated X, as the con-
sumed energy at the n-th time slot, we use a noisy value X/,
which is obtained by adding Guassian noise on X ;:

X! =max(0.1e + 1,0)X,,, e ~ N(0,0"). 3)

The default value of ¢’ is set to be 1.

Inference and Estimation. Table 2 evaluates both the ac-
curacy of our proposed variational inference algorithm in
parameter estimation and latent variable inference on the
synthetic data. We find that, on the small synthetic data,
ParaHawkes-LDA can recover the Hawkes parameters u
and w very well, and accurately estimate the LDA hyper-
parameters «. On the large synthetic data, ParaHawkes-
LDA’s performance on parameter estimation becomes worse.
The sharply increased number of appliances makes the event
occurrence prediction more difficult, and further affects the
learning of users’ energy usage behavior patterns. On both

M ParaHawkes-LDA
[ Cox
[CIM-Hawkes

ParaHawkes-LDA

EAFAMAP
ENIALM

(b) CER

(a) Pecan

Figure 2: Performance Comparison of Household Structure
Inference on Real World Data Sets.

noisy data sets, the performance of ParaHawkes-LDA be-
come worse.

3.2 Real-world Data

We also conducted extensive experiments on four real-world
data sets. The first data set is Smart* [Barker et al., 20121,
which is a high-resolution data set from three homes includ-
ing over 50 appliances. The second data set is Reference En-
ergy Disaggregation Dataset (REDD) [Kolter and Johnson,
2011]. This data set comprises six houses, for which both
household aggregate and circuit-level power demand data are
collected. The third data set is Pecan Street 2. This data set
collects one-minute resolution disaggregated data for 450+
homes, dating from late 2012 to late 2014. Meanwhile, this
data set also records the number of householders in each
home, thus can also be used to justify the performance of
household structure inference. The fourth data set is a Irish
smart-grid data set collected by Commission for Energy Reg-
ulation (CER) 3. This data set collects energy data from over
4000 homes, but only records the total amount of consumed
energy of a house in each time slot, and lacks the ground-
truth information of the amount of disaggregated energy of
each appliance, thus unable to be used for the evaluation of
the performance of energy disaggregation. However, this data
set records the number of household membership, thus we use
it to evaluate the performance on household structure analysis
in addition.

Zhttp://www.pecanstreet.org/
Shttp://www.cer.ie/
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Figure 3: Appliance Usage Patterns of Householders on Real World Data Sets.

Model Fitness. Table 3 shows the log predictive likelihood
on energy consumption falling in the final 10% of the total
time of data. To avoid overfitting issues, we adopt a k-fold
cross validation strategy, and select the optimal number of
user appliance usage pattern /. In Table 3, ParaHawkes-
LDA fits both synthetic and real-world data significantly bet-
ter than alternative probabilistic models, which illustrates the
importance of exploring household structure in smart-grid
data. The comparison on synthetic data is meaningful since
we add noise into it. On both noisy data sets, the perfor-
mances of all models become worse. However, the decrease
of the performance of ParaHawkes-LDA is smaller than base-
lines, which demonstrates the robustness of our proposed
model. Thus when the usage timestamps and the amounts
of consumed energy of some appliances are misrecorded,
ParaHawkes-LDA performs better in energy disaggregation,
and learns householders’ appliance usage behaviors better.

Performance on Energy Disaggregation. To illustrate the
effectiveness of the proposed model in energy disaggregation,
we compare it with all baselines measured by MAE(X), i.e.,
the mean absolute error between the ground-truth consumed
energy of each appliance = and the estimated consumed en-
ergy . According to Figure 1, ParaHawkes-LDA not only
outperforms all compared methods in general, but also gains
a better performance than competing methods on all catego-
rized appliances. Such results demonstrate the importance of
inferring the household structure in smart-grid data. In par-
ticular, the advantage of the proposed model over M-Hawkes
shows that modeling the influence between the appliance us-
age behaviors of householders straightforwardly is more ap-
propriate than vaguely modeling the influence between the
energy usages of appliances without considering the partici-
pation of householders. M-Hawkes performs better than the
rest baselines, which emphasizes the importance of modeling
influence between the appliance usage behaviors.

Performance on Household Structure Analysis. We eval-
uate the performance of household structure analysis by the
mean absolute error (MAE) of the number of householders
in each house. For each house m, the proposed model esti-
mates an optimal householder number based on the inferred
pattern distribution 7,,,, and compare it with the ground-truth
number. Here we choose MAE as the metric since the struc-
tures of houses with a large number of members are more
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difficult to analyze. Moreover, since all alternative models
for energy disaggregation are unable to infer the household
structure, in this series of experiments, we use those models
in a two-step framework that 1) first disaggregates the con-
sumed energy into each appliance, and then 2) employ the
LDA model to infer the household structure according to the
disaggregated results of energy consumption. According to
Figure 2, ParaHawkes-LDA performs at least 7% better than
all compared methods on both real-world data sets, which il-
lustrates the effectiveness of the proposed model in analyz-
ing household structures along with addressing energy disag-
gregation. We also notice that using the parametric Hawkes
model and the LDA model in a two-step framework results in
a much worse performance than the proposed model, which
highlights the mutual benefit of those two parts when com-
bined into a unified model.

Appliance Usage Patterns of Householders. Based on the
appliance distribution parameters ¢ of appliance usage pat-
terns learned by the proposed model, we analyze the appli-
ance usage patterns of householders detected in real world
smart-grid data. According to Figure 3, the appliance usage
preferences in different patterns are very different from each
other. The results in the Smart* data highlight the difference
between the type of householder who is busy with housework
and the type of householder who enjoys work and games
through IT devices. The REDD data mainly records the en-
ergy usage in kitchen. However, we can still tell the differ-
ence between housework people and people who use kitchen
mainly for self-feeding. In Pecan, the difference of appli-
ance usage distribution between housework people and non-
housework people is also very significant. The latter group of
people use pool and living rooms for fun more frequently.

4 Conclusion and Future Work

In this paper, we propose to solve the tasks of energy dis-
aggregation and household structure analysis simultaneously
and make them mutually benefit each other. Our paper pre-
sented a probabilistic model that integrates the LDA with the
parametric Hawkes process to capture the influence between
the appliance usage behaviors of householders in the same
family. In future work, it would be interesting to consider ad-
ditional features that capture the influence between the energy
usage behaviors of householders.
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