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Abstract
This paper investigates online stochastic planning
for problems with large factored state and action
spaces. We introduce a novel algorithm that builds
a symbolic representation capturing an approxima-
tion of the action-value Q-function in terms of ac-
tion variables, and then performs gradient based
search to select an action for the current state. The
algorithm can be seen as a symbolic extension of
Monte-Carlo search, induced by independence as-
sumptions on state and action variables, and aug-
mented with gradients to speed up the search. This
avoids the space explosion typically faced by sym-
bolic methods, and the dearth of samples faced
by Monte-Carlo methods when the action space is
large. An experimental evaluation on benchmark
problems shows that the algorithm is competitive
with state of the art across problem sizes and that
it provides significant improvements for large fac-
tored action spaces.

1 Introduction
Recently there is increased interest in stochastic planning in
domains with large combinatorially structured action spaces.
Such structure arises, for example, when multiple units can
operate in parallel to achieve a joint objective. Such problems
have been modeled using factored Markov decision processes
(MDP) where state and action descriptions are composed of
the values of sets of variables. Factored MDPs have been in-
vestigated with a variety of approaches which are reviewed in
the next section including symbolic dynamic programming,
probabilistic inference, Monte Carlo Search, linear function
approximation and more. However, apart from function ap-
proximation with manually tuned representations, scalability
to large action spaces is still a significant challenge. Notably,
methods that rely on exact representation of value functions
are space bound due to the inherent complexity of represent-
ing the corresponding functions. On the other hand symbolic
search based methods are not able to explore the space suffi-
ciently when given a strict time limit for action selection.

The main contribution of this paper is a novel algorithm
that offers such scalability. The algorithm is based on the

idea of Monte Carlo search with a strong simplifying assump-
tion on independence of state and action variables. Such as-
sumptions are common in variational inference [Wainwright
and Jordan, 2008], and have been used for estimation in state
space models [Murphy and Weiss, 2001] and even for plan-
ning [Lang and Toussaint, 2010]. Our recent work [Cui et

al., 2015] made the observation that, under this assumption,
sampling of trajectories can be done in aggregate form by
rewriting the transition model as algebraic expressions and
then computing marginals on state variables by direct cal-
culation instead of explicit sampling. While this efficiently
samples trajectories for a given root action it requires action
enumeration and does not scale for large action spaces.

In this paper we make two additional observations. First,
the algebraic computation can be done symbolically. We
show how the sampled trajectories and the corresponding
marginals can be captured using an explicit graph represent-
ing the computation, where the state marginals and the reward
are functions of action variables. Second, given this graph,
we can calculate gradients and perform gradient ascent over
the action space, effectively optimizing the action for the cur-
rent state. Several additional algorithmic ideas make for a
robust search algorithm that dynamically adjusts to the prob-
lem and balances the benefits of Monte Carlo search and gra-
dients. An extensive experimental evaluation demonstrates
that the algorithm performs significantly better than previous
work and that all its components contribute to that success.

2 Background and Related Work
This section gives a brief review of factored MDPs and re-
lated algorithms. A MDP [Puterman, 1994] is specified by
{S,A, T, R, �}, where S is a finite state space, A is a fi-
nite action space, T (s, a, s0) = p(s0|s, a) defines the transi-
tion probabilities, R(s, a) is the immediate reward of taking
action a in state s, and � is the discount factor. A policy
⇡ : S ! A is a mapping from states to actions, indicat-
ing which action to choose at each state. Given a policy ⇡,
the value function V ⇡(s) is the expected discounted total re-
ward E[

P
i

�iR(s
i

,⇡(s
i

)) | ⇡], where s
i

is the ith state vis-
ited by following ⇡ (and s0 = s). The action-value function
Q⇡ : S ⇥ A ! R is the expected discounted total reward
when taking action a at state s and following ⇡ thereafter.

MDPs with large state and action spaces are typically rep-
resented in factored form [Boutilier et al., 1995a]. The state
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space S is specified by a set of binary variables {x1, . . . , xl

}
so that |S| = 2l. Similarly, A is specified by a set of bi-
nary variables {y1, . . . , ym} so that |A| = 2m. Often, when
domains are described using a higher level language, action
constraints limit the choice of legal actions so that |A| < 2m.

Basic MDP optimization algorithms require enumeration
over states and actions making them impractical for large
problems. Symbolic versions of these algorithms have been
developed for factored state and action spaces [Hoey et

al., 1999; Boutilier et al., 1995b; Raghavan et al., 2012;
2013]. However, scalability is still problematic due to the
description size of value functions and policies. Paramet-
ric methods represent the value function using some compact
representation (e.g., as a linear function over a fixed feature
space) and thus avoid the space problem. Such approaches
have been very successful in reinforcement learning [Tesauro,
1992] and in policy gradient algorithms [Williams, 1992].

Online planning avoids the space complexity by focusing
on choosing a high-quality action for the current state and re-
peatedly applying this procedure to states visited. The Roll-

out Algorithm

[Tesauro and Galperin, 1996], which performs
one step lookahead from the current state, is the simplest such
procedure. In particular, given a state s and baseline policy
⇡, the rollout algorithm calculates an estimate of Q⇡(s, a)
for each action a and then picks the a maximizing this value.
To estimate Q⇡(s, a) simply use the MDP model to sample
s0 from p(s0|s, a) and then apply ⇡ for h steps where h is
the desired horizon. Repeating this and averaging we get an
estimate for Q⇡(s, a). More sophisticated online planning
methods include real time dynamic programming [Barto et

al., 1995] and Monte Carlo Tree Search (MCTS) [Browne
et al., 2012] and the Gourmand [Kolobov et al., 2012] and
PROST [Keller and Helmert, 2013] systems based on these
have won top places in recent planning competitions.

The performance of sample based Rollout procedures de-
grades significantly when the action space is large because
one has to sample multiple trajectories for each action in or-
der to get reasonable estimates. With combinatorial action
spaces there are very few samples per action and the estimates
have high variance and are not reliable. The ARollout algo-

rithm

[Cui et al., 2015] is a heuristic that attempts to address
this issue. Since our algorithm uses some of the ideas from
ARollout we describe it in more detail in the next section.

2.1 The ARollout Algorithm
We illustrate the ARollout algorithm using the following ex-
ample. In this example, as in our implementation, we use the
RDDL language [Sanner, 2010] to specify the domain. The
problem has three state variables s(1), s(2) and s(3), and three
action variables a(1), a(2), a(3) respectively. In addition we
have two intermediate variables cond1 and cond2 which are
not part of the state. The dynamics is given by the following
expressions where primed variants of variables represent the
value of the variable after performing the action.
cond1 = Bernoulli(0.7)

cond2 = Bernoulli(0.5)

s’(1) = if (cond1) then ˜a(3) else false

s’(2) = if (s(1)) then a(2) else false

s’(3) = if (cond2) then s(2) else false

reward = s(1) + s(2) + s(3)

ARollout translates the RDDL code into algebraic expres-
sions using standard transformations from a logical to a nu-
merical representation. In our example this yields:
s’(1) = (1-a(3))

*

0.7

s’(2) = s(1)

*

a(2)

s’(3) = s(2)/2

r = s(1) + s(2) + s(3)

These expressions are used for efficient approximation of
marginal distributions over state variables, and the distribu-
tion is used to estimate the Q function. Like Rollout, to
estimate Q⇡(s, a) ARollout first samples s0 from p(s0|s, a).
However, unlike Rollout, instead of simulating individual tra-
jectories, ARollout approximates the simulation of state dis-
tributions through their marginals over individual variables.

To illustrate, let the sampled s0 be s0 = {s(1)=1, s(2)=
1, s(3)=1}. ARollout first translates s0 into a representa-
tion of marginals over individual variables, referred to as
aggregate states and denoted as. In this case, as0 =
{s(1)=1, s(2)=1, s(3)=1}. The algorithm then calculates
marginals over action variables which are induced by using
the rollout policy ⇡ in the current aggregate state as. This
can be estimated by first sampling a concrete state cs from as,
then calculating the action ca = ⇡(cs) and averaging over ac-
tion variable values. For our example, assume that this yields
aa0 = {a(1)=0.3, a(2)=0.4, a(3)=0.3}. The reward r0 from
the current state and action is estimated by directly plugging
in the values of each variable into the expression for r. So
we get r0 = 1 + 1 + 1 = 3. Similarly, as1 is obtained by
substituting marginals into the expressions for state variables.
In this case, as1 = {s0(1)=(1 � 0.3) ⇤ 0.7=0.49, s0(2)=1 ⇤
0.4=0.4, s0(3)=0.5}. The algorithm continues in this manner,
computing aggregate actions, aggregate states and estimating
the reward to the required depth. This provides one aggre-
gate trajectory. This simulation is correct under extreme as-
sumptions [Cui et al., 2015] and it can be seen as a heuristic
estimate when the conditions do not hold.

ARollout repeats this to obtain multiple aggregate trajecto-
ries per action and averages the reward to get Q⇡(s, a). This
process is repeated for every action a, and the maximizing a
is picked to be used in the current state. ARollout’s estimates
are more stable than Rollout’s estimates but the need to enu-
merate actions limits applicability to large action space.

3 Gradient Based Optimization
The main contribution of this paper is to provide an algorithm
that scales successfully for factored action spaces. The algo-
rithm is based on two important observations. The first is that
the calculation illustrated in the previous section can be per-
formed symbolically to yield a compact expression capturing
the approximation of the Q function as a function of action
variables. The second is that, once such a representation ex-
ists, one can use gradient based optimization to search for the
best action in the current state. Several additional ideas are
used to make the search more robust and to diversify its ex-
ploration. We denote this algorithm as SOGBOFA (symbolic
online gradient based optimization for factored actions).

The input to SOGBOFA is the same as in ARollout. As ex-
plained below, we assume that constraints over legal actions,
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if they exist, are given as sum constraints (sum of all or some
variables is bounded, e.g., concurrency constraints). Unlike
ARollout, SOGBOFA maintains an aggregate action aa for
the current state. This represents a distribution over actions
to be chosen in the current state. The algorithm is as follows:

SOGBOFA(S)
1 Qf  BuildQf(S, timeAllowed)
2 As = { }
3 while time remaining
4 do A RandomRestart()
5 while time remaining and not converged
6 do D  CalculateGradient(Qf)
7 A MakeUpdates(D)
8 A Projection(A)
9 As.add(SampleConcreteAct(A))

10 action Best(As)

Overview of the Algorihm: In line 1, we build an expression
graph that represents the approximation of the Q function.
This step also explicitly optimizes a tradeoff between simula-
tion depth and run time to ensure that enough updates can be
made. Line 4 samples an initial action for the gradient search.
Lines 6 to 8 calculate the gradient and make an update on the
aggregate action. Line 9 makes the search more robust by
finding a concrete action induced by the current aggregate ac-
tion and evaluating it explicitly. Line 10 picks the action with
the maximum estimate. Line 5 checks our stopping criterion
which allows us to balance gradient and random exploration.
In the following we describe these steps in more details.
Building a symbolic representation of the Q function: We
build a DAG representing the Q function by expanding from
the current state one level at a time. The depth of this pro-
cess, which is equivalent to the search depth in standard algo-
rithms, is determined dynamically as explained below. The
construction is analogous to the construction of expression
trees in a compiler. Leaf nodes represent either constants
or state or action variables. Internal nodes represent alge-
braic operations over the children. Our implementation uses
+,�, ⇤, / as operations but it can be easily extended to in-
clude other operations. The implementation directly follows
the algebraic expressions compiled from the RDDL descrip-
tion (as in ARollout) to build explicit expression DAGs. The
only exception is the flattening of multiple levels of + or ⇤;
for example (+(+(a, b)), c) is flattened to +(a, b, c).

We start from representing each initial state variable as a
leaf node whose value is 0 or 1. We also represent each action
variable at the initial state as a leaf node. In this case the node
represents the marginal probability of that variable, serving as
a parameter to be optimized. For each step of expansion, we
create a copy of the algebraic expressions in DAG form. To
simulate the rollout, action variables other than at the root are
given a numerical value capturing the marginal probability
over the action variable induced by ⇡. The marginals can be
calculated dynamically exactly as in ARollout. In the experi-
ments in this paper we report on rollout of the random policy
where marginals can be calculated explicitly even with sum
constraints.1 If the MDP domain requires discounting we add

1For example, if the constraints choose at most k bits out of n to

Figure 1: The DAG approximation of the Q function.

this to the expression tree. The sum of discounted rewards is
the estimate of the Q value. Figure 1 illustrates the construc-
tion for our example for horizon 1. For deeper horizons this
construction is repeated sequentially.

We note that action variables at levels 2 and above (nodes
with value 1/3 in the figure) can also be treated as parameters,
exactly as the variables of the first level. This leads to an
algorithm related to conformant planning. We discuss this
idea further in the concluding section of the paper.
Dynamic control over simulation depth: In principle we
should build the DAG to the horizon depth. However, if the
DAG is large then evaluation of Q⇡(s, a) and gradient com-
putation are expensive so that the number of actions explored
in the search might be too small. This tradeoff must be con-
trolled by any domain independent online search algorithm.

Our algorithm limits depth when the expected number of
gradient updates is below a pre-fixed threshold. This can
be done dynamically. In particular we estimate if the time
left is sufficient for building one more level of the DAG
and making enough updates. The time cost of adding one
level to the DAG, t

a

, is independent of the level and can be
estimated by the average of the previous levels. The time
cost of an update at the current level, t

I

, is estimated by
simulated updates on the current DAG (we use min{0.3 ⇤
NumberOfLegalAction, 5} updates). We estimate t

I+1,
by t

I

+�t where �t is the average increase in cost over pre-
vious levels. Finally, we expand one more level if t

a

+k⇤t
I+1

is smaller than the remaining time, guaranteeing at least k ex-
pected updates (where k = 200 in our experiments).
Random Restarts: A random restart generates a concrete
(binary) legal action in the state.
Calculating the gradient: The main observation is that once
the graph is built, representing Q as a function of action vari-
ables, we can calculate gradients using the method of auto-
matic differentiation [Griewank and Walther, 2008]. This is a

be true we can use p =
Pk

j=1 (j/n) ⇤ (
�
n
j

�
)/(

Pk
j=0

�
n
j

�
).
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standard method that has also been recently used in machine
learning. Our implementation uses the reverse accumulation
method since it is more efficient having linear complexity in
the size of the DAG for calculation of all gradients. Intu-
itively, the idea can be seen to generalize the backpropagation
algorithm for learning in neural networks to an arbitrary com-
putational circuit. Since the ideas are well known we refer the
reader to [Griewank and Walther, 2008] for details.
Maintaining action constraints: Gradient updates allow
the values of marginal probabilities to violate the [0, 1] con-
straints as well as constraints on legal actions. To handle this
issue we use a standard algorithm, projected gradient ascent
[Shalev-Shwartz, 2012], where one first takes a gradient step
and then projects the values back to the legal region.

Projection onto combinatorial constraints can be computa-
tionally expensive. Our implementation limits allowed con-
straints to sum constraints over action variables. This is typ-
ical, for example, in high level representations that use 1-of-
k representation for actions where at most one bit among a
group of k should be set to 1. It is important to enforce these
constraints during search. If this is not done then, if all actions
are somewhat useful, we will end up with the uninformative
choice of setting all variables to 1.

Our algorithm supports multiple sum constraints. As a first
step we clip all values to the [0, 1] range. We then iteratively
project to respect all sum constraints. To achieve this we
use a known algorithm [Wang and Carreira-Perpiñán, 2013;
Duchi et al., 2008] to project onto a scaled probability sim-
plex

P
a
i

 B for a given bound B. The algorithm repeat-
edly subtracts the surplus amount from all non-zero entries,
clipping at 0. For example, given {1.2, 1, 0.9, 0.5, 0.1} and
B = 2, we subtract (3.7 � 2)/5 = 0.34 from each entry
(clipping the last) to get {0.86, 0.66, 0.56, 0.16, 0} and then
subtract 0.24/4 = 0.06 to get {0.8, 0.6, 0.5, 0.1, 0}.
Optimizing step size for gradient update: Gradient ascent
often works well with a constant step size. However, in some
problems, when the rollout policy is random, the effect of the
first action on Q is very small implying that the gradient is
very small and a fixed step size is not suitable. We therefore
search for an appropriate step size. To mitigate the fact that
we are using continuous search over the discrete space we use
a brute force search instead of standard line search.

We first choose a range for ↵ with enough flexibility so
that any ↵ 2 [0,maxAlpha] won’t push the variables beyond
maxV ar + 1 or below -1 where maxV ar is the max value
among the variables. We then perform a linear search using
10 evenly spaced values a0, a1...a9 in that region to find the
best ↵ where quality is measured by the value of the Q func-
tion DAG. If the best ↵ happens to be a0, implying that the
original maxAlpha may not be at the right scale, we reset
the legal region to be [0, a0] and run the process again. This
is repeated until the best ↵ is not a0 with a max of 5 levels.
Sampling concrete Actions: The gradient optimization per-
forms a continuous search over the discrete space. This
means that the values given by the Q are not always reliable
on the fractional aggregate actions. To add robustness we as-
sociate each aggregate action encountered in the search with
a concrete action chosen from its distribution and record the

more reliable value of the concrete action. Search proceeds
as usual with the aggregate actions but final action selection
is done using these more reliable scores for concrete actions.

Selecting a concrete action from the aggregate one can be
formulated as a weighted max SAT problem similar to [Sang
et al., 2005]. However, this is an expensive calculation. We
therefore use a heuristic that picks action variables with high-
est marginal probabilities as follows. We first sort action vari-
ables by their marginal probabilities. We then add active ac-
tion bits as long as the marginal probability is not lower than
marginal probability of random rollout and the constraints
are not violated. For example, suppose the marginals are
{0.8, 0.6, 0.5, 0.1, 0}, B = 3, and we use a threshold of 0.55.
Then we have {a1, a2} as the final action.
Stopping Criterion: Our results show that gradient in-
formation is useful. However, getting precise values for
the marginals at local optima is not needed, because small
changes are not likely to affect the choice of concrete action.
We thus use a loose criterion aiming to allow for a few gra-
dient steps but to quit relatively early so as to allow for mul-
tiple restarts. Our implementation stops the gradient search
if the max change in probability is less than S = 0.1, that
is, kA

new

� A
old

k1  0.1. The result is an algorithm that
combines Monte Carlo search and gradient based search.

4 Experimental Evaluation
We evaluate the SOGBOFA algorithm on several domains
showing its advantage and in addition present an ablation
study that shows that different components of the algorithm
contribute to this success. The evaluation is done over 6
domains, elevators from the RDDL distribution, two from
the International Probabilistic Planning Competition (IPPC)
2011, and three from IPPC 2014 where we chose domains
amenable to expansion of the action space. We follow the
setting of [Cui et al., 2015] and use the 10 competition prob-
lems (index 1 to 10) but add 10 more challenging instances in
each domain (index 11 to 20). The size of the action space in
these problems is shown in Table 1. The reported results rep-
resent averages from 20 runs in each problem instance where
each instance is run for 40 time steps. In these runs each algo-
rithm is given 60 seconds per step (on a cluster node having
Intel Xeon X5675@ 3GHz CPU, and 24GB memory).

As baselines we compare against Rollout and MCTS that
work by sampling concrete trajectories and against ARoll-
out. As in [Cui et al., 2015], these algorithms simulate tra-
jectories for min{20, horizon} steps, which we denote as
HalfDepth below. The work of [Cui et al., 2015] showed that
on large factored spaces ARollout dominates PROST [Keller
and Helmert, 2013] the winner of the recent IPPC so the com-
parison to ARollout serves as a reference point to state of the
art. For visual clarity we rescale reward values relative to the
values achieved by the random policy (as zero) and the value
achieved by a simple hand coded policy for the domain (as
1) or against the value of one of the algorithms (which is the
reference value of 1 in that case).

In addition we test several variants of the algorithm with
some of the features disabled to investigate their contribution.
In particular SARollout (Symbolic ARollout) uses the DAG
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Problem 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
elevators 16 64 64 64 256 256 256 1024 1024 1024 4096 4096 4096 16384 16384
sysadmin 31 41 41 51 51 3241 5051 7261 366276 562626 682801 972151 5.3E7 6.6E7 2.6E9

traffic 16 16 16 16 16 512 512 512 4096 4096 4096 65536 65536 65536 65536
skill 13 15 15 17 17 211 6580 52956 974982 1.8E7 5.6E8 8.5E9 2.6E11 5.1E12 4.8E13

academic 211 26 326 31 466 12384 231526 4216423 1.7E8 3.5E9 1.9E11 4.2E12 9.9E13 3.1E15 1.9E17
tamarisk 13 15 15 17 17 172 1351 12951 122438 1149017 1.0E7 1.0E8 9.3E8 8.6E9 8.0E10

Table 1: Number of legal actions in test problems (problems 1-5 which are smaller are omitted).

construction but does not use gradients at all. This algorithm
is identical to ARollout in terms of its individual estimates but
it provides speedup because the DAG is reused across sam-
ples. Comparing against SARollout allows us to separate the
contribution of the symbolic computation from the gradients.
We also use variants with dynamic depth disabled, and with
the dynamic setting of step size disabled, illustrate the contri-
bution of the projection step, and show both the importance of
the stopping criterion and insensitivity to its precise setting.

The top two rows in Figure 2 show a comparison of SOG-
BOFA to the baselines in all 6 domains showing a significant
advantage on the problems with large action spaces.

The third row of Figure 2 shows a comparison to SARoll-
out where for clarity in the comparison SARollout uses
HalfDepth, exactly as Rollout. In addition these plots com-
pare to HalfDepth variants of the gradient based algorithm
with fixed ↵ = 0.1 vs. the dynamic setting. Due to space
constraints we only show results for 3 of the domains but
the other 3 domains show similar behavior. The plots show
that SARollout dominates ARollout thus illustrating the sig-
nificance of the symbolic representation even without gradi-
ents. They also show that the gradient based algorithms with
HalfDepth either dominate SARollout or are comparable.

The choice between fixed and dynamic ↵ represents a
tradeoff. They mostly perform pretty closely but in some
cases one of the two dominates significantly. The importance
of the dynamic selection of ↵ arises in some of the large prob-
lems (e.g., academic advising 16-20) where the gradient with
respect to action variables is very small (around �1E�16),
and fixing the alpha to a small value makes for tiny updates
that make no progress. We prefer the dynamic setting as it
can adapt to the shape of the Q function more robustly.

It is insightful to look at the number of concrete actions
seen by SARollout and the gradient algorithms. When in-
spected (details omitted) we observe that SARollout sees
many more actions, in some cases more than 10 fold more,
than the dynamic ↵ variant. Nonetheless, the gradient algo-
rithms that see less actions have better performance.

The fourth row of Figure 2 evaluates the contribution of
dynamic depth selection for 3 domains. Results for the other
domains are omitted due to space constraints and they show
similar trends. We can observe that dynamic depth is compa-
rable and in some cases significantly better than fixed depth.

The left plot in the fifth row of Figure 2 illustrates that pro-
jection is crucial on the sysadmin domain. In this case, with-
out projection the algorithm is not distinguishable from the
random policy. The remaining plots in the fifth row illustrate
the importance of the tradeoff given by the stopping criterion.
Results are shown as a function of the L1 bound S (S=0.1 in
the main algorithm). The plots show results for S in the range

10�9 (very strict criterion, few restarts) to 1 (always stop af-
ter one gradient update) for problem 20 of sysadmin and aca-
demic advising. For reference we also include the SARollout
algorithm which makes no updates, and this is represented in
the plot at the point S = 2. The results show that neither
extreme is a good choice, that a criterion balancing gradients
and Monte Carlo steps provides better performance and that
there is a large range of values that provide this tradeoff.

5 Conclusion
The paper presented a novel algorithm for stochastic planning
in factored spaces that scales well to very large action spaces.
The main idea is to use symbolic simulation with an explicit
approximation induced by independence assumptions, and to
perform gradient search to maximize the Q function using
this symbolic representation. Several algorithmic tools serve
to make the algorithm robust, including dynamic choice of
simulation depth, dynamic choice of gradient step size, shad-
owing the gradient search with a search over concrete actions,
and a balance between gradients and random restarts. The ex-
periments demonstrate that the algorithm is significantly bet-
ter than previous work and that the different components of
the algorithm contribute to that success.

The algorithm also suggests an intriguing opportunity go-
ing beyond symbolic rollouts. In particular, as described
above, when constructing the DAG we can leave all action
variables in their symbolic form. In that case the Q func-
tion is a function of all action variables in all time steps.
Selecting concrete values for all these variables is the same
as deciding on the entire sequence of actions in advance
of execution. This is known as conformant planning [Pala-
cios and Geffner, 2009; Domshlak and Hoffmann, 2006;
Lee et al., 2014]. Interestingly, reverse accumulation auto-
matic differentiation allows us to perform gradient steps over
all these variables without an increase in run time. We can
therefore use essentially the same method to optimize an ap-
proximation of conformant planning. This has the potential
to improve over SOGBOFA, especially when rolling out the
random policy is not informative. Preliminary experiments
suggest that such improvement is obtained in some cases but
that in many cases the large scale optimization leads to degra-
dation in performance. We leave exploration of this optimiza-
tion challenge for future work.
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Figure 2: Data from experimental evaluation. The top two rows compare SOGBOFA to the baselines showing significant
advantage on problems with large action spaces (on the right of the plots). The third row, where all algorithms including
SOGBOFA are fixed at HalfDepth, compares Symbolic ARollout to SOGBOFA with and without step size optimization. The
forth row compares SOGBOFA to the variant fixed at HalfDepth. The fifth row (left) shows the necessity of projection, and
(middle, right) non-sensitivity with respect to the L1 bound parameter in the stopping criterion.
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