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Abstract
The components, such as characters and radicals,
of a Chinese word are important sources to help
in capturing semantic information of the word. In
this paper, we propose a novel framework, namely,
ladder structured networks (LSN), which contains
three layers representing word, character and rad-
ical, and learns their embeddings synchronously.
LSN captures not only the relations among words,
but also the relations among their component char-
acters and radicals, as well as the relations across
layers. Each layer in LSN is pluggable so that any
particular type of unit (word, character, radical) can
be removed and the LSN is thus adjusted for partic-
ular types of inputs. In evaluating our framework,
we use word similarity as the intrinsic evaluation
and part-of-speech tagging and document classifi-
cation as extrinsic evaluations. Experimental re-
sults confirm the validity of our approach and show
superiority of our approach over previous work.

1 Introduction
Embeddings have been proven to be useful in natural lan-
guage processing (NLP) with the rising of deep learning [Col-
lobert et al., 2011; Mikolov et al., 2013b; Pennington et
al., 2014]. Of all levels of granularities that have been in-
vestigated for embedding learning [Mikolov et al., 2013b;
Kiros et al., 2015; Le and Mikolov, 2014], word embeddings
have received the widest attention mainly for the reason that
words are conventionally considered the smallest element that
can be uttered in isolation with semantic or pragmatic con-
tent,1 especially for western languages such as English.

However, not all languages follow the practice of English.
Words in some languages are assembled by smaller units that
can be used separately to deliver semantic information. In
Chinese, words are made of characters, where each character
carries rich semantic knowledge so that the meaning of a Chi-
nese word is highly related to the characters it is comprised
of. For example, 汽车 (“automobile”) and 火车 (“train”)
are types of 车 (“vehicle”); the meanings of the two words

1Controversially in linguistics, morpheme is the smallest unit of
meaning, which however does not stand on its own in running texts.

Figure 1: Illustration of the ladder structured networks for joint
learning embeddings of words, characters and radicals.

are largely determined by the character they share. More-
over, characters in Chinese can be further decomposed into
radicals, and the meanings of the characters are also highly
dependent on their radicals. Especially majority number of
Chinese characters are phono-semantic compounds,2 whose
radicals in general are the semantic part in the character. For
example, characters江 (river),湖 (lake) and海 (sea) all have
on the left a radical 氵 meaning water, indicating that these
characters have a semantic connection with water.

With such internal structure, learning Chinese word em-
beddings can be enhanced accordingly. Previous work has
proven the validity of leveraging characters for learning
word embeddings [Chen et al., 2015; Xu et al., 2016],
and leveraging radicals for learning character embeddings
[Li et al., 2015] and word embeddings [Yin et al., 2016;
Su and Lee, 2017]. Thus, it is straightforward to consider
learning word, character and radical in a full decomposition
chain and learn their embeddings synchronously. In this pa-
per, we propose a ladder structured networks (LSN) to do
so based on the relations among words and their compo-
nents. The LSN is inspired by learning with lateral con-
nections among layers in ladder networks [Valpola, 2014],

2Xu Shen in Shuowen Jiezi (Explaining Graphs and Analyzing
Characters) (100 AD) placed approximately 82% of characters into
this type, while in the Kangxi Dictionary (1716 AD) the number is
close to 90%, owing to the extremely productive use of this tech-
nique to extend the Chinese vocabulary.
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which are designed to learn better intermediate representa-
tions with connections across layers [Rasmus et al., 2015a;
2015b]. The ladder networks’ structure has been proven
to be effective in learning with better generalization ability,
especially on image processing [Ronneberger et al., 2015;
Jégou et al., 2016], for the reason that its design enables the
model to encode information from different levels.

Different from conventional ladder networks, the interme-
diate layers in our model do not follow a typical auto-encoder
with automatic generated latent representations, but are su-
pervised by words and their components. Note that layers3

are the basic modules in LSN. As a result, LSN is modu-
lar in structure; every “stair-step” (layer) of the LSN “lad-
der” is pluggable and can be easily removed. The model
is thus easy to be adapted to the scenarios with only learn-
ing with word and character, word and radical, character
and radical, etc. Based on the layers, our model has mul-
tiple objective functions with respect to units of different
granularities, e.g., words, characters and radicals. There-
fore, using our proposed framework, one is able to incor-
porate more contextual information in a hierarchical man-
ner in learning Chinese word embeddings when compared
to previous studies [Chen et al., 2015; Li et al., 2015;
Xu et al., 2016]. Experimental results suggest that our ap-
proach outperforms all baselines in both intrinsic and extrin-
sic evaluations, especially when the training data is limited.

2 Ladder Structured Networks
As illustrated in Figure 1, in our model, three layers from bot-
tom to top represent radicals (E(1), D(1)), characters (E(2),
D(2)) and words (E(3), D(3)), respectively. Horizontally, the
model is divided into two parts across layers. Following the
terminology in ladder networks, we use “encoder path” and
“decoder path” as in Rasmus et al. [2015b] to describe the
left and right part of our model. In the encoder path, predic-
tions (the solid upward arrow on the left side in Figure 1) are
conducted from radicals (E(1)) to characters (E(2)), and from
characters to words (E(3)). This path ensembles the process
of how a word is composed, which complies with our intu-
ition: when one has a word in his mind, he composes the
word starting from radicals, and then characters. Formally,
for each word w, predictions from E(1) to E(2) and from E(2)

to E(3) is to maximize the likelihoods similar to the CBOW
model [Mikolov et al., 2013a], i.e.,

LE(1)E(2) =
∑
c∈w

log p(c |
∑
r∈w

υr) (1)

LE(2)E(3) = log p(w |
∑
c∈w

υc) (2)

respectively. For each word w, c are the characters that com-
pose this word and r are the radicals of these characters. υc
and υr refer to the embeddings of these characters and rad-
icals. Since a radical is the main component of a character,
each word has equal number of characters and radicals. We

3Layers herein correspond to different decomposition levels, i.e.,
radical (R), character (C) and word (W).

use r ∈ w to represent the relationship of a word and its rad-
icals. In the decoder path, we do not have a prediction chain
as that in the encoder path. The reason is that when a word
(D(3)) is given, its component characters (D(2)) and radicals
(D(1)) are constantly determined (the dotted arrows on the
right side in Figure 1). Thus predictions following this path
do not contribute to learning the model.

More importantly, there are predictions connecting differ-
ent components from the two paths. On the same layers,
we have word-word (E(3) → D(3)), character-character (E(2)

→ D(2)) and radical-radical (E(1) → D(1)) predictions. The
word-word prediction is essentially an SG model [Mikolov et
al., 2013b], which maximizes the following likelihood

LE(3)D(3) =
∑

0<|i|≤C

log p(wi | υw) (3)

where wi are words from w’s context w+C
−C , and υw is the

embedding of w. This is the core prediction of the model
because words are the direct input of the model. Characters
and radicals are derived from the input words observed from
the running texts. Similarly, the likelihoods of character-
character and radical-radical predictions are formulated as

LE(2)D(2) =
∑

0<|i|≤C

∑
ci∈wi

log p(ci |
∑
c∈w

υc) (4)

LE(1)D(1) =
∑

0<|i|≤C

∑
ri∈wi

log p(ri |
∑
r∈w

υr) (5)

For cross layer scenarios, two more prediction lines are drawn
from a word (E(3)) to characters (D(2)) and from charac-
ters (E(2)) to radicals (D(1)). They functionalize as auxil-
iary tasks to enhance representations at every layer of the
model by introducing extra contextual information for char-
acters and radicals from different granularities, which are
proven to be useful in previous studies [Li et al., 2015;
Xu et al., 2016]. These two prediction lines are formulated as

LE(3)D(2) =
∑

0<|i|≤C

∑
ci∈wi

log p(ci | υw) (6)

LE(2)D(1) =
∑

0<|i|≤C

∑
ri∈wi

log p(ri |
∑
c∈w

υc) (7)

Given a corpus with vocabulary V and N tokens, our LSN is
thus to maximize

LV =
1

N

N∑
i=1
wi∈V

LLSN (8)

over the entire corpus, in which
LLSN = LE(1)E(2) + LE(2)E(3) + LE(1)D(1)

+ LE(2)D(2) + LE(3)D(3)

+ LE(3)D(2) + LE(2)D(1)

(9)

Similar to the SG model, at each training step, LSN first
obtains a word pair from a training instance to feed the E(3)

and D(3) position, then decomposes their components for
other positions. Once all layers are assembled, LSN jointly
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Example Nearest Words Nearest Characters Nearest Radicals
word: 航线 (airline) 航班 (flight), 包机 (charter

flight),航点 (waypoint)
航 (navigate),国 (country),运
(transport)

舟 (boat),氵 (water),斤 (axe),

character: 航 (navi-
gate)

航线 (airline), 航空 (avia-
tion),航运 (shipping)

舱 (cabin),艘 (ship),船 (boat) 舟 (boat),飞 (fly),氵 (water)

radical: 舟 (boat) 高速 (high speed),官兵 (offi-
cers and men),战争 (war)

艘 (ship),舰 (ship),舷 (boat) 走 (to walk),尢 (particularly),
斤 (axe)

Table 1: Top 3 nearest words, characters and radicals of given examples according to cosine similarities of their embeddings.

国际 (international) 新 (new)
航空 (aviation) 服务 (service)
年 (year) 机场 (airport)
日 (day) 渡轮 (ferry)
开通 (launch) 香港 (Hong Kong)

Table 2: Top 10 context words of航线 extracted from Wiki data.

trains embeddings for them according to Eq 1 to 7. As a re-
sult, learning embeddings for words, characters and radicals
in each training instance is directly computed by stochastic
gradient descent (SGD) following a dimension-wise updating
from the partial derivatives ∂LLSN

∂υw
, ∂LLSN

∂υc
and ∂LLSN

∂υr
:

∂LLSN
∂υw

=
∂LE(3)D(3)

∂υw
+
∂LE(3)D(2)

∂υw
∂LLSN
∂υc

=
∂LE(2)E(3)

∂υc
+
∂LE(2)D(2)

∂υc
+
∂LE(2)D(1)

∂υc
∂LLSN
∂υr

=
∂LE(1)E(2)

∂υr
+
∂LE(1)D(1)

∂υr

(10)

Therefore, for example, when word embeddings are up-
dated, character and radical embeddings will be affected syn-
chronously until the model is converged.

With LSN, words, characters and radicals are learned in
linearly correlated vector spaces since the embedding updat-
ing processes are intertwined across different granularities.
As illustrated in Figure 1, 葡萄 (grape) is associated with
not only the word好吃 (delicious), but also its characters好
(good),吃 (eat) and its radicals女 (woman) and口 (mouth).
This spatial characteristic of embeddings facilitates leverag-
ing word components as useful knowledge source to provide
different levels of semantics. For example, 吃 and 口 are
closely related to 葡萄 in semantics since “grape” can be
“eaten” by “mouth”. Therefore, with only one pair of words,
LSN could capture more semantics than other models with
such decomposition. The learned embeddings of these char-
acter and radical components can further influence the em-
bedding learning for other words shared with the same char-
acters and radicals. In this way, LSN automatically learns the
roles of the characters and radicals in different words. As a
comparison, to distinguish the internal characters in a word,
similarity between a word and its component characters has
to be explicitly calculated, such as in SCWE [Xu et al., 2016].

Another advantage of using the hierarchical design is that
the layers in the full stacked LSN (W+C+R) are pluggable so
that it is easy to restructure the framework by taking off any

Figure 2: Partial t-SNE visualization of example words (green trian-
gles), characters (blue stars) and radicals (red dots) in Table 1.

particular layer and assemble the rest parts, e.g., LSN (W+C)
or LSN (C+R), which is trained only with words and char-
acters, or characters and radicals, respectively. This modular
characteristic ensures our model being detachable and thus it
can be used in a more flexible way for different scenarios.

3 Experiments
3.1 Experiment Settings
We use two corpora to train our embeddings. The first one
is the manually word segmented corpus composed of People
Daily of January 1998 (PD98), with 1M words. Its vocabu-
lary includes 56K words, 4.7K characters and 253 radicals.
The second one is the Chinese Wikipedia dump (Wiki)4. We
follow the procedures that done in Xu et al. [2016] for pre-
processing, by removing pure digits and non-Chinese charac-
ters and use ANSJ5 to segment words. The resulted dataset
has 145M words in total. Its vocabulary includes 3M words,
18K characters and 275 radicals. For radicals, we use online
Xinhua Dictionary6 to extract character-radical mappings.

In our experiments, CBOW and SG, character-enhanced
word embedding model (CWE) [Chen et al., 2015]7, similar-
ity based CWE (SCWE) and its extension multiple-prototype
SCWE (SCWE+M) [Xu et al., 2016]8, character CBOW
(charCBOW) and character SG (charSG) [Li et al., 2015],
multi-granularity embedding (MGE) [Yin et al., 2016]9 are
used as our baselines in different tasks. For all the models
in comparison, we set the dimension of embedding vectors to
200, the size of window to 5, the frequency cut-off to 5, the
initialized learning rate to 0.025. The numbers of window-
size and frequency cut-off are conducted on the word level.
In our model, we use hierarchical softmax for the predictions.

4http://download.wikipedia.com/zhwiki/
5https://github.com/NLPchina/ansj seg
6http://xh.5156edu.com/
7https://github.com/Leonard-Xu/CWE
8https://github.com/JianXu123/SCWE
9We reimplement charCBOW, charSG and MGE with our own

codes according to their papers.
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WS-240 WS-296
CBOW 19.22 10.94
SG 19.58 11.73
CWE 19.29 10.71
SCWE 18.88 11.03
SCWE+M 20.23 10.82
MGE 18.55 9.75
LSN (W+R) 17.79 10.30
LSN (W+C) 29.38 13.90
LSN (W+C+R) 34.23 18.23

Table 3: Word similarity results (ρ × 100) on WordSim-240 and
WordSim-296 with the embeddings trained from the PD98 dataset.

3.2 Qualitative Analysis
Since our approach is able to learn the embeddings of Chinese
words, characters and radicals in linearly correlated vector
spaces, it is straightforward to compute their relations through
their embeddings. Herein we select word 航线 (airline) and
its component character航 (navigate) and the component rad-
ical舟 (boat) to investigate their top 3 nearest words, charac-
ters and radicals in Table 1. The embeddings for this analysis
are from the LSN (W+C+R) model trained on the Wiki data.

For word航线, its component character航 and radical舟
are all included in the nearest characters and radicals, respec-
tively. Especially, 氵 and 斤 are also included in its nearest
radicals. Consider that 斤 (axe) is the radical of 新 (new),
it makes sense that “airline” is intensively associated with
“new” in the corpus. Interestingly, besides舟, the other radi-
cal纟 (silk) of航线 is not found in its nearest radicals, which
is a good example demonstrates the effectiveness of LSN in
distinguishing radical roles. As a result, 纟 is semantically
closer to other words (characters), such as纺织 (textile).

To better understand the results, Table 2 lists the top ten
frequent context words of 航线 in the Wiki data.10 For a
given word, although its nearest words (or characters, radi-
cals) computed in the vector space are not necessarily from
its context words, it is still a good reference of the high fre-
quent context words to explain the observations we have in
Table 1, e.g., all the nearest radicals in Table 1 can be found
in the words in Table 2. Particularly, for radical舟, its nearest
words are more likely to be the context words with characters
containing this radical, which is straightforward since it is
in multiple characters. Considering that in our model there
is no direct link between radical and word layer, the most re-
lated words to radical舟 are the ones related to all the charac-
ters sharing this radical. For its most related radicals, 走 (to
walk) has the highest similarity is mainly because multiple
characters sharing this radical, such as赶 (swiftly),起 (rise),
超 (surpass), etc., which have close semantic relations to the
characters containing the radical 舟. The radical 尢 (partic-
ularly) appeared in the top 3 nearest radicals is because it is
the component of the character尤 (particularly), which is one
of the characters in a common adverb 尤其 (particularly) in
Chinese. The visualization of the aforementioned examples

10We do not include stop words such as的 (of),是 (is),和 (and)
etc., in the list.

WS-240 WS-296
CBOW 51.25 53.82
SG 51.91 54.05
CWE 51.75 53.64
SCWE 52.11 54.20
SCWE+M 52.85 55.26
MGE 53.13 53.33
LSN (W+R) 52.01 53.44
LSN (W+C) 53.47 55.58
LSN (W+C+R) 54.14 57.04

Table 4: Word similarity results (ρ × 100) on WordSim-240 and
WordSim-296 with the embeddings trained from the Wiki dataset.

on a 2D plots using t-SNE [van der Maaten and Hinton, 2008]
further confirms the observations in above texts.

3.3 Word Similarity
The intrinsic evaluation is word similarity assessment. Nor-
mally the correlation between the scores generated by a
model and human judgment indicates how good the model
performs. We use WS-240 and WS-296 [Jin and Wu, 2012]
in this paper as our evaluation datasets. The Spearman’s rank
correlation (ρ) is adopted for calculating the correlation. We
evaluate our models trained on the PD98 and Wiki datasets.
The results are reported in Table 3 and 4, respectively.

We have the following observations. First, LSN model is
effective to learn meaningful embeddings. When trained on
either PD98 or Wiki dataset, LSN models yield better or close
ρ scores to state-of-the-art models. Second, jointly modeling
embeddings on the levels of word, character, and radical is
important. By exploring the joint effects of radicals, charac-
ters, and words in learning embeddings, LSN (W+C+R) pro-
duces better ρ scores than their counterparts, i.e., LSN (W+C)
and LSN (W+R), without modeling radicals or characters.

3.4 Part-of-Speech Tagging
It is by our intuition to hypothesize that the semantic at-
tributes of the internal components of Chinese words can help
to identify word syntactic types. For example, words with the
radical 扌 (hand) are very likely to be verbs, such as 打扰
(interrupt) and搅拌 (stir); In addition, radical木 (wood) of-
ten contributes to nouns, e.g., 森林 (forest) and 桌椅 (desk
and chair). In this task, we use part-of-speech (POS) tagging
as an extrinsic evaluation to assess how different embeddings
performed in solving syntax problems.

We implement the BiLSTM-CRF model [Huang et al.,
2015] as our POS tagger, fed by pretrained word embeddings
from different approaches. We set the hidden layer size to
256, with 10 epochs11 for training. Note that in spite of input
embeddings, no extra features are used in our model. We use
Penn Chinese Treebank v5.0 (CTB-5) [Xue et al., 2005] as
the evaluation data, under the standard split with training/test
as 18086/348 sentences, respectively. Similar to word simi-
larity task, we also test the emebeddings trained from PD98
and Wiki. The results are reported in Table 5.

11Normally the model convergence requires less than 10 epochs,
which is also addressed in Huang et al. [2015].
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PD98 Wiki
CBOW 94.26 94.96
SG 94.52 95.17
CWE 94.36 95.10
SCWE 94.48 95.35
SCWE+M 94.46 95.23
MGE 94.66 95.48
LSN (W+R) 94.54 95.20
LSN (W+C) 94.87 95.45
LSN (W+C+R) 94.97 95.58

Table 5: POS tagging accuracies with different input embeddings
trained from PD98 and Wiki datasets.

We observe that POS taggers using different embeddings
produce various accuracies. This indicates that the quality of
word embeddings is vital for POS tagging, which is consis-
tent with the conclusion in Huang et al. [2015]. It is also
observed that POS taggers with LSN (W+C+R) trained on ei-
ther PD98 or Wiki yield the best accuracy. This shows that
characters and radicals may provide critical word type infor-
mation, which is useful in POS tagging.

To further investigate the performance of taggers with dif-
ferent embeddings on particular POS tags, Table 6 compares
the tagging performance on the top six POS tags12 using
our LSN (W+C+R) and SG embeddings trained from Wiki
dataset. A ten-partition two-tailed paired t-test at p < 0.05
level is conducted on LSN results against the SG ones. It
is verified that tagging accuracies on noun (NN), verb (VV),
preposition (P) and adverbs (AD) are improved with using
LSN embeddings, where significant improvements are ob-
served on verbs, preposition and adverbs. We investigate
some adverbs and found their component characters provide
useful guidance. For example, 平稳 (smooth and steady) is
tagged with NN by baseline embeddings; our embeddings
correct its tag to AD, for its component character and radi-
cal 平 (long) has an JJ/AD attribute that has a strong indi-
cation for the adverb tag. The improvement on prepositions
is mainly contributed from other POS tags, especially nouns
and verbs. In Table 6 we also notice a slightly performance
degradation on proper nouns (NR). The reason is that proper
nouns are usually person and organization names, which typ-
ically do not have a pattern of characters and radicals, thus
cannot provide semantic guidance for word embeddings.

Above observations meet our expectation that words’ com-
ponents can help POS tagging, and our embeddings are
proved to be the most effective one in leveraging such infor-
mation for POS tagging when compared to other models.

3.5 Document Classification
The second extrinsic evaluation is document classification.
We experiment on Fudan Corpus13, which contains 9.8K
documents in 20 categories. We follow Xu et al. [2016]
by constructing two datasets from the Fudan corpus, namely,
Fudan-large and Fudan-small, with each dataset containing

12Frequency above 300 in the test data.
13http://www.datatang.com/data/44139

SG LSN
NN (noun) 94.46 95.95
VV (verb) 88.07 91.34∗
PU (punctuation) 100.0 100.0
NR (proper noun) 95.57 95.19
P (preposition) 87.78 91.06∗
AD (adverb) 86.27 91.94∗

Table 6: Tagging accuracies on top five POS tags that improved
the most with using LSN when comparing to SG model. * indicates
t-test significance at p < 0.05 level.

5 categories of documents. The Fudan-large dataset includes
categories of Agriculture, Economy, Environment, Politics
and Sports, while the Fudan-small includes Education, Med-
ical, Military, Philosophy and Transport. For each category,
we randomly select 80 percent of the documents as the train-
ing dataset and reserve the rest as the test dataset. As a result,
the training and test sets contain 4,894 and 1,227 documents
for Fudan-large dataset, 233 and 61 for Fudan-small dataset.
Similar to the Wiki dataset, pure digits and non-Chinese char-
acters are removed and word segmentation is conducted. The
publish information for each document is also removed be-
cause it contains strong indication of the categories, which
will bias the classifier with unfair benefits.

This document classification experiment is performed in
a conventional way as that in previous studies [Kiela et al.,
2015; Kiros et al., 2015]. For all the documents in train-
ing and test datasets, we first construct document level rep-
resentations by averaging the embeddings from all words in
a given document. A logistic regression classifier is then
trained on top of the resulted document level representations
on the training set and evaluated on the test set.

In addition to word embeddings, we also evaluate charac-
ter embeddings in this experiment. In order to do so, each
document is represented as average embeddings of the char-
acters in the document instead of words. Note for SCWE+M,
a character may have multiple embeddings for its different
prototypes, we then take the average embedding for the char-
acter from its multiple prototypes. In addition to the baselines
we have for previous experiments, we add charCBOW and
charSG as extra baselines in this task.14 We compare with
our variation LSN (C+R) in document classification task,
which jointly models embeddings for characters and radicals.
Although in Li et al. [2015], the bi-character embeddings
achieve slightly better performance in document classifica-
tion, we do not include them because, as stated in Xu et al.
[2016], bi-characters are meaningless and may not form a
Chinese word, thus are not comparable with words in other
approaches. For this task, The input word and character em-
beddings are trained from the Wiki dataset.

Table 7 and 8 report the classification accuracies evaluated
on Fudan-small and Fudan-large datasets, respectively. In
general, our approach outperforms baselines on both datasets.
This task well demonstrates the advantage of learning Chi-

14In previous experiments, we do not consider them in compari-
son because they are on character level and previous evaluation are
done on word level.
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Word Character
CBOW 85.25 88.52
SG 85.25 86.89
CWE 86.89 86.89
SCWE 88.52 88.52
SCWE+M 90.16 88.52
charCBOW - 85.25
charSG - 83.61
MGE 86.89 88.52
LSN (C+R) - 86.89
LSN (W+R) 86.89 -
LSN (W+C) 91.80 90.16
LSN (W+C+R) 93.44 91.80

Table 7: Document classification results on Fudan-small dataset
based on word and character embeddings from different methods.
Numbers are classification accuracies.

nese embeddings with considering different levels of compo-
nents. We also notice that LSN (C+R) model fails to yield
good results, which might because of the restricted alphabet
at character level. This reason may also explains the poor
performance of charCBOW and charSG.

Similar to what previous experiments show, learning on
multiple levels of word components is very important regard-
less whether training data is limited, especially for the case
that many words are unseen in the test data. Word embed-
dings with considering characters and radicals could help in
this scenario bridging the gap of the out-of-vocabulary words.
For example, in our experiment on Fudan-small dataset, the
word 航线 from test data never appears in the training data.
However, with the shared character航 (navigate) and radical
舟, the embeddings learned by LSN for 航线 have higher
similarity than other embeddings to 航空, which is a in-
vocabulary word in transport documents. Thus the document
containing航线 tend to have a closer distance to the transport
category. This joint learning with word components ensures
the stability of our approach in representing words’ seman-
tics. Therefore, it is observed from Table 7 and 8, our ap-
proach achieves comparable results across two datasets.

4 Related Work
Word representation models represent words as real val-
ued vectors that convey semantic information via explor-
ing word co-occurrence patterns in contexts of neighbor-
ing words [Bengio et al., 2003; Collobert et al., 2011;
Mikolov et al., 2013a; 2013b]. Despite of the success of
word2vec, its continuous bag-of-words (CBOW) and skip-
gram (SG) models are not capable of capturing morpholog-
ical information underlying internal word structure, which
has been proven to be useful in learning English word em-
beddings [Luong et al., 2013; Botha and Blunsom, 2014;
Trask et al., 2015; Miyamoto and Cho, 2016].

In Chinese, radicals, i.e., the internal structure of Chinese
characters, have shown their effectiveness in learning word-
level or character-level embeddings [Chen et al., 2015; Xu et
al., 2016; Yin et al., 2016]. In exploiting such structure, Su

Word Character
CBOW 91.69 90.63
SG 91.36 90.71
CWE 91.20 91.77
SCWE 91.93 91.85
SCWE+M 92.09 91.61
charCBOW - 91.04
charSG - 90.87
MGE 91.85 91.20
LSN (C+R) - 91.61
LSN (W+R) 91.61 -
LSN (W+C) 92.75 92.18
LSN (W+C+R) 93.07 92.50

Table 8: Document classification results on Fudan-large dataset
based on word and character embeddings from different methods.
Numbers are classification accuracies.

and Lee [2017] proposed to enhance word embeddings with
glyph features from character images. Nevertheless, these re-
ferred studies serve as extensions of CBOW model. Different
from them, our model essentially employs the concept of SG
model at word level with exploiting word co-occurrence pat-
terns in local context. As indicated in Mikolov et al. [2013a;
2013b] as well as our experiments (see §3), SG outperforms
CBOW in most NLP tasks when trained on small amount of
training data and presents better on rare words. Our approach
can be seen as started on a higher baseline than the previous
work. Although Li et al. [2015] followed both CBOW and
SG model for Chinese characters that combine radical infor-
mation, they focus on exploiting the character-radical rela-
tions, where the joint effects of words, characters, and radi-
cals are ignored. To the best of our knowledge, our approach
is the first to explore different component levels of words with
a hierarchical structure, which serves as a natural fit for learn-
ing embeddings of Chinese words and their components.

5 Conclusion
We proposed a novel framework, ladder structure networks
(LSN), to jointly learn embeddings of Chinese words, charac-
ters and radicals. LSN represents word, character and radical
as different layers in a hierarchical manner and learns their
embeddings by maximizing an overall likelihood based on
their relations. Experimental results from intrinsic and extrin-
sic evaluations confirmed the effectiveness of our approach.

LSN has several characteristics. First, the learning of LSN
ensembles the formation process of Chinese words and cap-
tures their relations to other words and components. Second,
words, characters and radicals are learned in linearly corre-
lated vector spaces, thus it is easy to compute their relations
through their embeddings. Third, with the character and radi-
cal information, LSN is able to learn word semantics without
relying on external resource, especially when training data
is very limited. This characteristic is highly important be-
cause word segmentation is vital and requires extra efforts for
processing Chinese texts, especially in the cold-start scenario
when entering a new domain. Overall, this work offers an
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alternative way to learn better word embeddings when there
is very few accurately (manually) segmented data. To further
extend this work, different structures or prediction chains are
worth exploring within current LSN framework, and the idea
of LSN can be applied to other similar tasks and languages.
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