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Abstract
Entity interaction prediction is essential in many
important applications such as chemistry, biology,
material science, and medical science. The prob-
lem becomes quite challenging when each entity is
represented by a complex structure, namely struc-
tured entity, because two types of graphs are in-
volved: local graphs for structured entities and a
global graph to capture the interactions between
structured entities. We observe that existing works
on structured entity interaction prediction cannot
properly exploit the unique graph of graphs model.
In this paper, we propose a Graph of Graphs Neu-
ral Network, namely GoGNN, which extracts the
features in both structured entity graphs and the
entity interaction graph in a hierarchical way. We
also propose the dual-attention mechanism that en-
ables the model to preserve the neighbor impor-
tance in both levels of graphs. Extensive exper-
iments on real-world datasets show that GoGNN
outperforms the state-of-the-art methods on two
representative structured entity interaction predic-
tion tasks: chemical-chemical interaction predic-
tion and drug-drug interaction prediction. Our code
is available at Github1.

1 Introduction
Interactions between the structured entities like chemicals are
the basis of many applications such as chemistry, biology,
material science, medical science, and environmental science.
For example, the knowledge of chemical interactions is a
helpful guide for the toxicity prediction, new material design
and pollutant removal [Xu et al., 2019]. In medical science,
understanding the interaction between drugs is vital for drug
discovery and side effect prediction which can save millions
of lives every year [Menche et al., 2015].

One immediate way to investigate the interactions between
two structured entities is to conduct experiments for them in
the laboratory or clinics. However, due to the enormous num-
ber of structured entities, it is infeasible in terms of both time
and resource to examine all possible interactions. Thanks to
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Figure 1: Interaction graph of molecule graphs.
the advances in the computational approaches for the struc-
tured entity interaction prediction, a variety of techniques
have been proposed to predict the interactions among struc-
tured entities effectively and efficiently by utilizing the deep
neural network or graph neural network (GNN) techniques
such as DeepCCI [Kwon and Yoon, 2017] for chemical-
chemical interaction prediction and DeepDDI [Ryu et al.,
2018] for drug-drug interaction prediction.

We observe that the interactions among structured enti-
ties can be naturally modeled by the graph-of-graphs (a.k.a
network-of-networks) where each structured entity is a lo-
cal graph, and the interactions of the entities form a global
graph. In Figure 1, we take the chemical-chemical interac-
tions as an example. Each chemical molecule is a structured
entity and can be represented by a local graph (i.e., molecule
graph) where nodes represent atoms and the bonds among
the atoms are the edges. On the other hand, the interactions
(edges) among the structured entities (nodes) form a global
graph. However, the existing studies for structured entity
interaction prediction do not make full use of the graph-of-
graphs model and only consider partial information. For in-
stance, MR-GNN [Xu et al., 2019] only considers the local
structure information of entities and their pairwise similarity;
Decagon [Zitnik et al., 2018] focuses on the interaction graph
and only treats the structured entity as a simple node. Other
works such as DeepCCI and DeepDDI even do not consider
the graph structure information.

These limitations motivate us to develop a new approach
to fully exploit the graph-of-graphs (GoG) model to pre-
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dict the structured entity interactions. In particular, we pro-
pose a novel model called Graph of Graphs Neural Net-
work(GoGNN). Our model builds a graph neural network
with attention-based pooling over local graphs and attention-
based neighbor aggregation on the global graph such that
GoGNN is able to capture broader information that enhances
the performance on the prediction. Furthermore, the GNNs
on both levels of graphs play synergistic effects on improving
the representativeness of GoGNN. The contributions of our
model can be summarized as follows:

• To the best of our knowledge, this is the first work to sys-
tematically apply the graph neural network on graph-of-
graphs model, namely Graph of Graphs Neural Network
(GoGNN), to the problem of structured entity interac-
tion prediction.

• The proposed GoGNN mines the features from both lo-
cal entity graphs and global interaction graph hierarchi-
cally and synergistically. We design dual attention archi-
tecture to capture the significance of the substructures in
the local graphs while preserving the importance of the
interactions within the global graph.

• The extensive experiments conducted on the real-life
benchmark datasets show that GoGNN outperforms the
state-of-the-art structured entity interaction prediction
methods in two representative applications: chemical-
chemical interaction prediction and drug-drug interac-
tion prediction.

2 Related Work
In this section, we introduce the closely related works.

2.1 Structured Entities Interaction Prediction
In many real-life applications such as chemistry, biology, ma-
terial science, and medical science, we need to understand
the interactions between the structured entities. In recent
years, a variety of techniques have been proposed for struc-
tured entity interaction prediction in some specific applica-
tions. In this paper, we focus on two representative appli-
cations: chemical-chemical interaction prediction and drug-
drug interaction prediction.

Many computational methods have been proposed for these
two applications. DeepCCI and DeepDDI [Kwon and Yoon,
2017; Ryu et al., 2018] utilize the conventional convolutional
neural network and PCA on the chemical data. Some models
are graph neural network-based. For example, Decagon [Zit-
nik et al., 2018] performs the GCN on drug-protein interac-
tion graph; MR-GNN [Xu et al., 2019] proposes a model
with dual graph-state LSTMs that extracts local features of
molecule graphs, and MLRDA [Chu et al., 2019] utilizes
graph autoencoder with a novel loss function to predict the
drug-drug interactions.

2.2 Graph Neural Networks
Node-level applications. Most GNNs are designed for node-
level applications such as node classification and link predic-
tion [Kipf and Welling, 2017; Veličković et al., 2017; Zhang
and Chen, 2018; Hamilton et al., 2017; Liu et al., 2019;
Lian et al., 2020b; 2020a]. They rely on the node embedding

techniques like skip-gram, autoencoder and neighbor aggre-
gation methods like GCN, GraphSAGE, etc. These methods
focus on the node relations within the graph and use the low-
dimension representations to preserve the structural and at-
tribute information.
Graph-level applications. Recently, some research works
on GNNs are proposed for graph-level applications such as
graph classification[Zhang et al., 2018; Lee et al., 2018]
and graph matching[Li et al., 2019b]. These works learn
the graph representations for each graph individually or
pair-wisely without considering the interactions between the
graphs.

2.3 Graph of Graphs
In most real-world systems, an individual network is one
component within a much larger complex multi-level net-
work. Applying the graph theory paradigm to these
networks has led to the development of the concept of
“Graph of Graphs” (also known as “Network of Networks”).
[D’Agostino and Scala, 2014] introduces the theoretical re-
search development [Dong et al., 2013], applications [Ni et
al., 2014] and phenomenological model [Rome et al., 2014]
on the network of networks. These works enable us to under-
stand and model the inter-dependent critical infrastructures.
SEAL[Li et al., 2019a] proposed graph neural network in a
hierarchical graph perspective for graph classification task.
With significant differences between GoGNN and SEAL in
tasks, loss functions and optimizers, GoGNN is the first work
to develop graph neural network technique on graph of graphs
for structured entity interaction prediction problem.

3 Preliminaries
3.1 Problem Definition
For ease of understanding of our techniques, in this paper, we
focus on two representative applications of structured entities
interaction prediction: chemical-chemical interaction (CCI)
prediction and drug-drug interaction (DDI) prediction. In the
CCI graph, there is only one type of interaction, and our goal
is to estimate the reaction probability score pij of given chem-
ical pair (Gi, Gj). As to DDI graph which has multiple types
of interactions, we aim to estimate the occurrence probabili-
ties prij of side effect type r with the given triplet (Gi, r, Gj).

3.2 Input Graph of Graphs
Overall, the input interaction graph is regarded as graph-of-
graphs as follows.
Molecule Graph. In both CCI and DDI prediction tasks, the
local graphs are molecule graphs, each of which can be mod-
eled as a heterogeneous graph with multiple types of nodes
and edges. In particular, the molecule graph GM consists of
atoms {ai} as nodes, and edges {eij} where eij denotes the
bond between atoms ai and aj . Each atom (i.e., node) a is
encoded as a vector xa. For each bond (i.e., edge), we assign
a weight to the corresponding edge depending on the type of
the bond. For example, the bond between the carbon atoms in
the ethylene molecule is a double bond. Therefore, the weight
of the edge eCC between the carbon atoms is set to 2.
Interaction Graph. The global interaction graph GI is
formed by the molecule graphs and the interactions between
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Figure 2: Framework of Graph of Graphs Neural Network.

them: GI = {N,EI}, where N denotes the node set of GI
which consists of molecule graphs {GM}, andEI denotes the
interaction edges between the molecule graphs. Note that, in
CCI graph, there is only one type of interaction between two
nodes. In DDI graph, there are multiple types of side effects
caused by the combination of two drugs. An attribute vector
er is assigned for each edge e based on the side effect type r.

4 Graph of Graphs Neural Network
In this section, we introduce our Graph of Graphs Neural Net-
work model.

4.1 Framework of GoGNN
The framework of GoGNN is illustrated in Figure 2. GoGNN
contains molecule graph neural network which takes the atom
features as input and interaction graph neural network which
produces the graph representation for the prediction task. The
two parts of GoGNN play a synergistic effect on improving
the performance. The hidden features learned by molecule-
level GNN provide the interaction-level GNN a representative
initial input. The feature aggregation on the interaction-level
GNN promotes the ability of molecule-level GNN to find key
substructure through back-propagation.

4.2 Molecule Graph Neural Network
In organic chemistry, functional groups (i.e., substructures) in
molecules are responsible for the characteristic chemical re-
actions between these molecules. For example, the reaction
between benzoic acid and ethanol in Figure 1 is the esterifica-
tion between two functional groups -COOH in benzoic acid
and -OH in ethanol.

The model could achieve better performance for predic-
tion if the model can identify the functional groups in the
molecules and represent the molecule with such functional

groups. Therefore, we designed our molecule graph neu-
ral network with the combination of multi-resolution archi-
tecture [Xu et al., 2019] which preserves the information
of multi-hop substructures and attention-based graph pool-
ing [Lee et al., 2019; Gao and Ji, 2019a] which selects the
substructures to represent the molecules.

As proved in previous work [Xu et al., 2018], one single
general graph convolution layer can only aggregate the fea-
ture of the node and its immediate neighbors. To obtain fea-
tures of the multi-scale substructure of the molecule graph,
we apply multiple layers of graph convolution operations to
the input graphs. The graph convolution operation at lth layer
is summarized as follows

M(l+1) = GCNl(A,Ml)

GCNl(A,Ml) = σ(D̃−
1
2 ÃD̃−

1
2MlWl)

(1)

where Ml ∈ Rn×d is the hidden feature matrix for
molecule graph at lth layer, Ã = A+ I is the adjacency ma-
trix with self-connection for molecule graph GM , D̃ is the
diagonal degree matrix of Ã and σ(·) denotes the activation
function.

Different from MR-GNN [Xu et al., 2019] which uses dual
graph-state LSTMs on the input of subgraph representations,
GoGNN applies graph pooling for learning the graph repre-
sentation that preserves the substructure information, in or-
der to reduce the time and space complexity significantly. As
shown in Figure 2, the self-attention graph pooling layer takes
the output of each graph convolution layer as input to se-
lect the most representative substructures (functional groups)
by learning the self-attention score sl ∈ Rn×1 for molecule
graph GM with n atoms at lth layer

sl = σ(D̃−
1
2 ÃD̃−

1
2MlW

l
att) (2)

where W l
att ∈ Rd×1 is the attention weight matrix for the

pooling layer to obtain the self-attention score. In order to
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select the most representative substructure, the graph pool-
ing layer calculates the attention score for each atom in the
graph and finds the top-dγne atoms with the highest atten-
tion scores. We set a hyperparameter pooling ratio γ ∈ (0, 1]
to determine the number of nodes dγne that are selected to
represent the molecule graph

idx = top(s,dγne), smask = sidx
Msel = M � smask

(3)

where top is the function that returns the indices of atoms
with top dγne attention scores as in [Gao and Ji, 2019b];
smask ∈ {0, 1}n×1 is the mask vector determined by the at-
tention score; � denotes the column-wise product for mask-
ing; Msel is the feature matrix of selected atoms in a
molecule graph. Afterward, the readout layer, which con-
tains mean and sum pooling, is applied on the embedding of
selected atoms Msel to produce the molecule graph hidden
feature. After multiple graph convolutional and self-attention
graph pooling layers, we got several graph hidden features.
Once obtained, we concatenate the outputs of the graph pool-
ing layers as the hidden feature vector xGM

for the molecule
graph. Because the hierarchical graph pooling architecture
is applied, the graph representation can preserve the multi-
hop substructure information effectively. Hence, GoGNN
can identify the function groups which play the key roles in
molecule interactions and use these functional groups to rep-
resent the molecule graph.

4.3 Interaction Graph Neural Network
Most of existing CCI and DDI prediction models train the
model with the input of pair of molecule graphs, but ignore
the molecule interaction graph. However, the information of
interaction graph is crucial for the interaction prediction be-
cause it enables the model to capture high-order interaction
relationship and enhance the model’s ability to capture the
representative molecular substructures synergistically.

We have the following observations that motivate us to per-
form graph neural network on the interaction graph: Firstly,
the type of interaction is dependent on the type of involved
molecules. As mentioned in Section 4.2, esterification is
the reaction between -OH in alcohols and -COOH in car-
boxyl acids. The neighbor aggregation of GNN can gather
the neighbor information that helps to summarize the types
of chemicals that interact with the selected one. Secondly, it
is necessary to assign importance score to the neighbors for
molecules in the interaction graph, since the chemical inter-
actions have different significance and frequency. For exam-
ple, vitamin C has two main properties: reducibility and acid-
ity. Therefore, vitamin C cannot be prescribed with oxidizing
drugs like vitamin K1 and alkaline drugs like omeprazole. In
an uncommon case, vitamin C reduces the therapeutic effect
of inosine because of their complex physical and chemical
reactions. Therefore, we apply the graph attention network
in order to preserve the frequencies of the chemical reactions
and reduce the influence of biased observation of the inter-
action graph. As for the DDI graph with edge attributes, an
edge-aggregation graph neural network is applied.
Graph Attention Network. The attention-based graph neu-
ral network [Veličković et al., 2017] is applied on the in-
teraction graph without edge attributes. With the learned

molecule hidden feature vector xGM
and interaction graph

GI = {N,EI} as input, molecule graph representations
are calculated by the neighbor aggregation on the interaction
graph as follows

xl+1
Gi

= ‖Kκ=1σ(
∑
j∈ηGi

ακijW
l
κx

l
Gj

) (4)

whereK is the number of attention heads, σ is a nonlinear-
ity function, W l

κ is the weight matrix at κth attention head in
lth layer and ηGi

is the set of neighbor molecule graphs of
Gi in the interaction graph GI . Notation ακij is the attention
coefficient between Gi and Gj which is calculated by the fol-
lowing equation:

αij =
exp(LeakeyRelu(a[WxGi ] ‖ [WxGj ]))

Σn∈ηGi
exp(LeakeyRelu(a[WxGi

] ‖ [WxGn
]))

(5)
where a is a learnable attention weight vector and ‖ is the

concatenation operation.
Edge Aggregation Network. In DDI graph, each edge has
an attribute vector erij which is determined by the side effect
type r of the drug combination (Gi, Gj). To capture the edge
attributes [Schlichtkrull et al., 2018], we propose an edge ag-
gregation network that aggregates the neighbor information
together with edge attribute:

xl+1
Gi

= σ(W lxlGi
+

∑
r

(
∑

Gj∈ηrGi

xlGj
· hWe(erij))) (6)

where hWe is the MLP layer with linear transformation
matrix We which transforms the edge attribute vector erij ∈
Rh×1 into a real number τ rij ∈ R. In this way, GoGNN ag-
gregates node’s neighbor information together with edge at-
tributes. Different from Decagon [Zitnik et al., 2018] which
sets side-effect-specific parameters, GoGNN shares the pa-
rameters for all types of side effects in order to improve the
robustness and generalization of the model.

4.4 GoGNN Model Training
We optimize the parameters with the task-specific loss func-
tions.
Chemical Interaction Prediction. Since there is no edge
attribute in the graph, we regard the chemical interaction pre-
diction as a link prediction problem. The dot product of two
graph representations is used as the link probability of two
graphs:

pij = σ(xTGi
· xGj

) (7)
where σ is the activation function such as sigmoid function
that ensures pij ∈ (0, 1). To encourage the model to as-
sign higher probabilities to the observed edges than the ran-
dom non-edges, we follow the previous study and estimate
the model through negative sampling. For each positive edge
pair (Gi, Gj), a random negative edge (Gi, Gm) is sampled
by choosing a molecule graph Gm randomly. We optimize
the model using the following cross-entropy loss function

LCCI =
∑

(Gi,Gj)∈GCCI

−log(pij)−Em∼Pj
log(1−pim) (8)
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Drug Interaction Prediction. The drug-drug interaction pre-
diction task is regarded as a multirelational link prediction
problem. Inspired by the loss design in [Zitnik et al., 2018],
we train the parameters with the following cross-entropy loss
function

prij = σ((WrxGi
)T · (WrxGj

)) (9)

Lrij = −log(prij)− Em∼P r
j
log(1− prim) (10)

LDDI =
∑

(Gi,r,Gj)∈GDDI

Lrij (11)

where Wr is the side-effect-specific weight for linear trans-
formation of xGi w.r.t. the side effect type r. Given observed
triplet (Gi, r, Gj), the negative sample is chosen by replacing
Gj with randomly selected graph Gm according to sampling
distribution P rj [Mikolov et al., 2013].

5 Experiment
In this section, we introduce the extensive experiment results
that demonstrate the effectiveness and robustness of GoGNN.

5.1 Dataset
To test the performance of our model on chemical-chemical
interaction and drug-drug interaction prediction tasks, follow-
ing datasets are chosen for the experiments:
CCI. The CCI dataset2 assigns a score from 0 to 999 to de-
scribe the interaction probability where a higher score indi-
cates higher interaction probability. According to threshold
score, we get two datasets with chemical interaction proba-
bility score over 900 and 950: CCI900 and CCI950. CCI900
has 14343 chemicals and 110078 chemical interaction edges,
and CCI950 has 7606 chemicals and 34412 chemical interac-
tion edges.
DDI. For the drug-drug interaction prediction problem, DDI
dataset3 and the side effect dataset SE4 [Zitnik et al., 2018]
are used. The DDI dataset is proposed by DeepDDI [Ryu
et al., 2018] which contains 86 types of side effects, 1704
drugs and 191400 drug interaction edges. SE dataset is the
integration of SIDER (Side Effect Resource), OFFSIDES and
TWOSIDES database. To familiarize the comparison, we use
the preprocessed data used by Decagon [Zitnik et al., 2018].
Therefore, the SE dataset contains 645 drugs, 964 types of
side effects and 4651131 drug-drug interaction edges. A vec-
tor representation ser ∈ R128 is assigned to each side ef-
fect type produced by pre-trained BERT model [Devlin et al.,
2018].

The molecules are transformed from the SMILE
strings [Weininger et al., 1989] into graphs by the open-
source rdkit [Landrum, 2013]. An initial feature vector
xa ∈ R32 is assigned for every atom. The edges in molecule
graphs are weighted by the type of the bonds.

2http://stitch.embl.de/download/chemical chemical.links.
detailed.v5.0.tsv.gz

3https://www.pnas.org/content/suppl/2018/04/14/1803294115.
DCSupplemental

4http://snap.stanford.edu/decagon

5.2 Baselines
The proposed GoGNN is compared with the following state-
of-the-art models:
DeepCCI [Kwon and Yoon, 2017] is the CNN based model
for predicting the interactions between the chemicals.
DeepDDI [Ryu et al., 2018] is the model designs a feature
called structural similarity profile(SSP) combined with tradi-
tional MLP for DDI prediction.
Decagon [Zitnik et al., 2018] is a GCN model on the drug
and protein interaction graphs to predict the polypharmacy
side effects caused by drug combinations.
MR-GNN [Xu et al., 2019] is an end-to-end graph neural
network with multi-resolution architecture that produces in-
teraction between pairs of chemical graphs.
MLRDA [Chu et al., 2019] is the multitask, semi-supervised
model for DDI prediction.
SEAL [Li et al., 2019a] is the neural network on hierarchical
graphs for graph classification.

We used the public code of the baselines and keep the set-
tings of models the same as mentioned in the original papers.
We reimplemented SEAL for CCI and DDI prediction.
Ablation Study

To investigate how the graph of graphs architecture and
dual-attention mechanism improve the performance of the
proposed model, we conduct the ablation study on the fol-
lowing variants of GoGNN:
GoGNN-M is the variant which only learns the representa-
tions for the molecule-level graphs without the graph con-
volution on the interaction graph. An MLP layer is applied
with the input of molecule-level graph representations for the
graph interaction prediction task.
GoGNN-I only conducts graph convolution operation on the
chemical interaction graphs. The initial molecule representa-
tions are the sum pooling of the atom representations within
the molecule.
GoGNN-noPool replaces the self-attention pooling on the
molecule graph by the concatenation of conventional mean
pooling and sum pooling.
GoGNN-noAttn replaces the attention-based neural network
on the interaction graph by a conventional GCN.

5.3 CCI Prediction Results
Settings. Following the previous study, we divide the CCI
datasets into training and testing set with ratio 9:1, and ran-
domly choose 10% data for validation. The dimensions of
molecule graph hidden feature, and the output molecule graph
representation are set to 384, 256, respectively. We set the
learning rate to 0.01 and the pooling ratio to 0.5. To evaluate
the performance, we choose area under the ROC curve(AUC)
and average precision score(AP) as metrics.
Results. As shown in Table 1, GoGNN outperforms all the
other state-of-the-art baseline methods on the CCI prediction
task. The improvement indicates that, compared with the
methods that only train the parameters with pair-wise or in-
dividual chemical inputs, GoGNN can preserve more useful
information on different scales by the feature extraction and
aggregation through the graph of graphs. The dual-attention
mechanism also helps the model to learn higher quality graph
representations by identifying and preserving the importance
of molecular substructures and chemical interactions.
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CCI900 CCI950
AUC AP AUC AP

DeepCCI 0.925 0.918 0.957 0.957
DeepDDI 0.891 0.886 0.916 0.915
MR-GNN 0.927 0.921 0.934 0.924
MLRDA 0.922 0.907 0.959 0.948

SEAL 0.894 0.886 0.941 0.937
GoGNN 0.937 0.932 0.963 0.962

GoGNN-M 0.914 0.909 0.938 0.931
GoGNN-I 0.921 0.898 0.929 0.912

GoGNN-noPool 0.931 0.930 0.958 0.954
GoGNN-noAttn 0.909 0.905 0.956 0.948

Table 1: Result of chemical-chemical interaction prediction task.

DDI SE
AUC AP AUC AP

DeepCCI 0.862 0.856 0.819 0.806
DeepDDI 0.915 0.912 0.827 0.809
MR-GNN 0.932 0.922 0.769∗ 0.752∗

MLRDA 0.931 0.926 0.847∗ 0.825∗

Decagon - - 0.872 0.832
SEAL 0.925 0.921 N/A N/A

GoGNN 0.943 0.933 0.930 0.927
GoGNN-M 0.905 0.902 0.862 0.817
GoGNN-I 0.922 0.917 0.860 0.834

GoGNN-noPool 0.900 0.891 0.912 0.909
GoGNN-noAttn 0.925 0.921 0.897 0.883
* indicates that the result is the output of the baselines

after two weeks’ training.
- DDI dataset has no protein data which is required by

Decagon
Table 2: Result of drug-drug interaction prediction task.

5.4 DDI Prediction Results
Settings. To familiarize the comparison, we divide the DDI
dataset for training, testing, validation with ratio 6:2:2, and
divide the SE dataset with ratio 8:1:1. The dimensions of
molecule graph hidden feature, and the output molecule graph
representation are set to 384, 256, respectively. We set the
learning rate to 0.001, pooling ratio τ = 0.5. We choose
AUC and average precision(AP) for evaluation.
Results. The experiment results for DDI prediction are listed
in Table 2. The results show that compared with the baseline
methods, GoGNN improves the performance with a signif-
icantly large margin. GoGNN improves the AUC and AP
by 1.18% and 1.19% respectively on DDI dataset, and 6.65%
and 11.42% respectively on the SE dataset. The improvement
is attributed to the abundant information brought by the graph
of graphs architecture and edge-filtered aggregation.

5.5 Ablation Experiments
The ablation experiment results on both tasks are shown in
Table 1 and Table 2. The results prove that the graph of
graphs architecture, attention-based pooling, attention-based
and edge-filtered aggregation are all effective for the side ef-
fect prediction task. Among all the variants, GoGNN-M and
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Figure 3: Parameter sensitivity experiment results

GoGNN-I have the most significant performance gaps be-
tween GoGNN, which indicates that the view of graph of
graphs contributes the most to helping the model to capture
more structural information that improves the prediction ac-
curacy.

5.6 Parameter Sensitivity Analysis
In this experiment, we test the impact of the hyper-parameters
of GoGNN.
Settings. We conduct the parameter sensitivity experiment on
the CCI950 dataset by changing the tested hyper-parameter
while keeping other settings the same as mentioned in Sec-
tion 5.3. We test the following hyper-parameters: the dimen-
sions of the output representation and hidden feature, learning
rate and pooling ratio.
Results. As shown in Figure 3, overall, the impact of hy-
perparameter variation is insignificant. Figure 3a shows that
GoGNN reaches the best performance with representation di-
mension 128. Figure 3b indicates that the salient point for
the hidden feature size is 384. As for the learning rate and
pooling ratio, the best point appears at 10 × 10−3 and 0.5,
respectively.

6 Conclusion
In this paper, we focus on structured entity interaction pre-
diction. This prediction demands the model to capture the
information of the structure of entities and the interactions be-
tween entities. However, the previous works represent the en-
tities with insufficient information. To address this limitation,
we propose a novel model GoGNN which leverages the dual-
attention mechanism in the view of graph of graphs to capture
the information from both entity graphs and entity interaction
graph hierarchically. The experiments on real-life datasets
demonstrate that our model could improve the performance
on the chemical-chemical interaction prediction and drug-
drug interaction prediction tasks. GoGNN can be naturally
extended to the applications on other graph of graphs such
as financial networks, electrical networks, etc. We leave the
extension for future work.
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