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Abs t rac t 

We apply reinforce merit learning methods to 
learn domain-specific heuristics for job shop 
scheduling A repair-based scheduler starts 
with a critical-path schedule and incrementally 
repairs constraint violations with the goal of 
finding a short conflict-free schedule The tem 
poral difference algorithm is applied 
to tram a neural network to learn a heuris-
tic evaluation function over s ta tes This eval­
uation function is used by a one-step looka-
head search procedure to find good solutions to 
new scheduling problems We evaluate this ap­
proach on synthetic problems and on problems 
from a NASA space shuttle pay load process-
ing task The evaluation function is trained on 
problems involving a small number of jobs and 
then tested on larger proble ms The TD sclied 
uler performs better than the best known exist­
ing algorithm for this task—Zwehen s iterative 
repair method based on simulated annealing 
The results suggest that reinforcement l<arn 
mg can provide a new method for constructing 
high-performance scheduling systems 

1 I n t r o d u c t i o n 
Many problems of commercial interest—including job 
shop scheduling—are instances of NP-Complete prob­
lems Hence, there is l i t t le hope of finding general-
purpose solutions to these problems However in any 
particular application setting there are usually domain-
specific constraints and regularities that can be exploited 
to construct fast, domain-specific heuristic algorithms 
While such domain-specific heuristics can be engineered 
bv hand, the process is expensive and time-consuming 
I he goal of the research described in this paper is to ex­
plore the possibility of applying reinforcement learning 
algorithms lo discover good domain-specifie heuristics 
automatically 

Reinforcement learning algorithms learn policies for 
state-space problem-solving tasks For each state, the 
policy specifies what action should be performed Dur­
ing learning, the learning system receives a reinforce­
ment signal (called a ' reward' ) after each action The 

T h o m a s G D i e t t e n c h 
Department of Computer Science 

Oregon State Universi ty 
Corvalhs, Oregon 97 511-3202 

U S A 

goal of tht learning system is to find a policy that maxi 
mizes the expected reinforce ment over future actions In 
the context of job shop scheduling, (he policy tells what 
scheduling action to make next in order to maximize 
some measure of the quality of the final schedule 

In this paper we focus on the application domain of 
space shuttle payload processing for NASA The. goal is 
to schedule a set of tasks a set of temporal and 
resource constraints while also seeking to minimize the 
total duration (makespan) of the schedule Of particular 
interest to NASA are scheduling methods that can also 
be used to re p u r a schedule when some unforeseen diffi 
cult\ arises In previous work on this task Zweben and 
colleagues [Zwehen developed an iterative 
repair-based scheduling procedur« that combines a set of 
heuristics with a simulaLed annealing se arch procedure 
The resulting scheduling system provides an efficient and 
flexible facility for scheduling space shuttle ground op­
erations It is in regular use at the Kennedy Space Cen­
ter [Deale ti al , 1994] The challenge Tor a 1 earning 
approach is to discover scheduling heuristics that ian 
match or exceed the quahtv- and efficiency of t Ins itera 
five repair method 

In the remainder of the paper we describe tht 
scheduling task in greater detail We then briefly de­
scribe 7weben s iterative repair-based scheduler Follow 
ing this we review the reinforcement learning method 
known as and describe how the scheduling task 
can be formulated so that can be applied We 
then describe our experiments on simulated problem sets 
and discuss the results These results indicate that re­
inforcement learning can outperform the iterative repair 
scheduler on realistic scheduling tasks Furthermore the 
knowledge learned through reinforcement learning can 
be applied to scheduling problems that are larger and 
more complex than the ones that were studied during 
training These init ial results suggest that reinforce­
ment learning has an important role to play in devel­
oping high-performance AI scheduling systems 

2 The N A S A Doma in and the I te ra t i ve 
Repai r M e t h o d 

The NASA space shuttle payload processing (SSPP) do­
main requires scheduling the various tasks that must 
be performed to install and test the payloads that are 
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placed in the cargo bay of the space shut t le In j ob -
shop schedul ing te rm ino logy each shut t le mission is a 
j ob Each j o b consists of a par t ia l l y -ordered set of tasks 
that mus t be per fo rmed Each task has a du ra t i on and 
a list of resource requirements For example, the task 
MISSION -SEQUENCE -TEST has a du ra t i on of 7200 and re­
quires two qua l i t y -con t ro l officers, two technicians, one 
ATE one SPCDS, and one HITS There are 35 different 
tvpes of resources There may be many uni ts of a re­
source avai lable For example, there are 8 qual i ty con­
trol officers avai lable and 25 technicians However these 
available resources may be spl i t i n to resource pools so 
that for example , the 8 qua l i t y contro l officers m i g h t be 
subdiv ided i n to three pools of size 2 2, and 4 If a task 
requires two qua l i t y contro l officers they must both be 
drawn from the same poo l Resource pools model m u l t i ­
ple work shi f ts and m u l t i p l e physical locat ions A com­
plete schedule mus t specify the star t t ime of each task 
and the resource poo l by which each resource require 
ment of each task is satisf ied 

A typ ica l SSPP p rob lem involves the s imultaneous 
scheduling of between two and six shut t le missions t cash 
mission involves between 32 and 164 tasks Hencr th< 
SSPP doma in requires solv ing schedul ing problems con 
taming several hundred tasks Most of these tasks must 
be per fo rmed pr io r to launch but some also take place 
after the shut t le has landed Fach shut t le mission has a 
fixed launch date bu t no s ta r t ing date or ending date 
Hence tasks pr ior to launch have deadlines but no ready 
t imes tasks after l and ing have readv t imes but no dead-
Imes A key goal of t he schedul ing system is to min imize 
the to ta l d u r a t i o n of the schedule Th is is much more 
chal lenging than s imp l y f ind ing a / e a i i M e schedule 

^weben et al 1994 developed the fo l low ing i te ra l i ve re 
pair m e t h o d for so lv ing th is schedul ing prob lem F i rs t 
a c r i t i ca l pa th schedule is constructed bv work ing back­
ward and f o rwa rd f r o m the launch and land ing dates 
Fach task pr io r to launch is scheduled as late as The l< m-
pora l pa r t i a l order w i l l pe rm i t each task after land ing is 
scheduled as earl> as the tempora l par t ia l o rd t r w i l l per­
m i t Resource constra ints are ignored, resource requests 
are r a n d o m l y assigned to resource pools Th i s cr i t ica l 
path schedule can be constructed verv eff iciently, and it 
provides the s ta r t i ng state for the scheduling problem 
space In each state of th is prob lem space there are two 
possible operators tha t can be appl ied The R F A S S I G N -
P O O L operator changes the pool assignment for one of 
the resource requi rements of a task It is only appl ied 
when the pool reassignment wou ld a l low the resource re=-
quirement to be successfully satisf ied The M O V F opera­
tor moves a task to a di f ferent t ime and then reschedules 
all of the t empora l dependents of the task using the cr i t ­
ical pa th m e t h o d ( leav ing the resource pool assignments 
of the dependents unchanged) The M O V L operator i s 
only appl ied to move a task to the f irst earl ier or the first 
later t ime at wh ich the v io la ted resource requirement can 
be satisf ied 

These two operators are appl ied by the i terat ive repair 
me thod as fo l lows At each step, the earliest constra int 
v io la t ion (l e , where a resource pool is over-al located) is 
ident i f ied If a REASSlGN-PoOL operator can be appl ied 

to reduce this over-allocation, then it is applied If not, 
then the MOVE operator is applied to move one of the 
offending tasks to an earlier or later time If several dif­
ferent pool re assignment a are possible, one is chosen at 
random If both an earlier and a later move are possi­
ble, then one is chosen at random Of the several tasks 
involved in the resource violation one is chosen at ran 
dom based on a heuristic that prefers to move the task 
that (a) requires an amounL of resource nearly equal Lo 
the amount that is over allocated (b) has few tempo-
ral dependents and (c) needs to be moved onlv a short 
distance lo satisfy the resource request 

The overall control structure of the algorithm applies 
simulated annealing to minimize the number of resource 
pool violations After each operator is applied the num 
her of violations m the resulting sche dule is computed If 
this has decreased, the resulting schedule is accepted as 
the "current' schedule if it has increased the resuiting 
schedule is accepted only Willi probability ' * ' / r T " 
where is the change in tin number of violations and 
1 is the current temperature the temperature is grddu 
ally, decreased Sean h proceeds until no constraints are 
violated To obtain a short schedule the algorithm is 
run sveral tunes and the shortest resulting schedule is 
selected 

3 Reinforcement Learn ing, Tempora l 
Difference Learn ing, and Scheduling 

He mforcement learning methods learn a policy for select­
ing actions in a problem space The pohev tells for < ach 
state which action is to be performed in that state After 
an action a is chosen and tpplied in state the problem 
space shifts lo slate ?' and the learning system receives 
reinforcement 

To view the scheduling problem as a reinforcemc nt 
learning problem we must describe the problem space 
and the reinforcement function Ft Wt employ the same 
problem space as Zweben et al the starting statt sn 

is lhe critical path schedule as discusstd above We 
define the reinforcement function to give a 
reinforcement of —0 001 for each schedule ' that still 
contains constraint violations This asse-sscs A small 
penalty for each scheduling action (REASSIGN-POOL or 
M O V L ) and it is intendi d to encourage reinforcement 
learning to prefer actions that quickly find i good sched­
ule For any schedule s' that is free of violations, the re m-
forcenient is the negative of the resource dilation factor 

The RDF attempts to provide a scale 
independent measure of the length of the schedule and 
this final reinforcement is intended to tncourag* rein­
forcement lea iiing to find short final schedules Because 
the reinforcement function depends only on the resulting 
stat< , we will write it as . 

The RDF is defined as follows L< I capacity{i) be the 
(fixed) capacity of resource type i—that is the combined 
capacity of all resource pools of resource ty pe i At each 
time t in the schedule let be the current utilization 

of resources of type i ifu(it) ' capacity(i), then the 
resource of type i is overallocated at time T (no matter 
how we assign resource requests to resource pools of this 
type) We define the resource utilization indez 

ZHANG AND DIETTERICH 1115 



for resource type t at t ime t to be 

If the resource is not over-allocated, oth­
erwise it is the fraction of overallocation 

The total resource uttltttzatton index (TRUI) for a 
schedule of length / is the sum of the resource util iza­
tion index taken over all n resources and all I times 

Given these definitions, the resource dilation factor is 
defined as 

To understand the rationale behind this formula, first 
note that in the final schedule s, is just n times 
the length of the schedule This is because in the final 
schedule, no resource is overallocated, 
Hence We could have used the neg 
ative of this value as the reinforcement function, but re­
inforcement learning is easier if the reinforcement func­
tion is independent of the difficulty of the scheduling 
problem A very difficult problem (e g , with man\ jobs 
that have simultaneous deadlines) would require a very 
long schedule, whereas a simple problem would require 
a much shorter schedule The total resource uti l ization 
index of the init ial schedule measures the 
amount of overallocation of resources in the init ial state, 
and hence, provides a crude measure of the difficulty of 
the scheduling problem Hence we use this to normalize 
the final schedule length to produce the resource dilation 
factor 

Now that we have specified how to view repair-based 
scheduling as a reinforcement learning problem, we turn 
our attention to the learning algorithm Suppose at a 
given point in the learning process we have developed 
policy which says that in state s the best action to 
select is a = We can define an associated function 
/T , called the value function, such that tells the cu­
mulative reward that we wil l receive if we follow policy 
from state 6 onward Formally, 
where N is the number of steps until a conflict-free sched­
ule is found 

As in most reinforcement learning work, we wil l at­
tempt to learn the value function of the optimal policy 

denoted , rather than directly learning 
Once we have learned this optimal value function, we 
can transform it into the optimal policy via a simple 
one-step lookahead search To choose the best action 
in state s we compute the state a(s) that would result 
from applying each possible action a to state s For each 
such action, we compute the value of the resulting state, 

and choose the action a that maximizes this 
value Note that this approach requires that we know 
the effects of our operators—which is certainly true for 
repair based scheduling operators 

To learn the value function, we can apply the method 
of temporal difference learning known as devel­
oped by Sutton 1988 In the value function is 

and updates the weights of the network according to 

Here, is a smoothing parameter that combines previous 
gradients with the current gradient in ej, and a is the 
learning rate 

The algorithm was designed to learn the value 
function for a stationary Markov random process such as 
would result from following a fired policy In reinforce-
menL learning however, we want to apply it to learn 
the value function of the optimal policy starting with an 
init ial random pohey To do this, we employ a form of 
value iteration is applied online to the sequences 
of states and reinforcements that result from choosing ac­
tions according to the current estimated value function 
/ At each state s during learning, we conduct a one-
step lookahead search using the current estimated value 
function j to evaluate the states resulting from apply­
ing each possible operator We then select the action 
that maximizes the predicted value of the resulting state 
;•' After applying this action and receiving the reward 
we update our estimate o f / to reflect the difference be­
tween the value of and the more informed value 

(We actually employ a slightly more com 
plex procedure described below ) This means that the 
policy is continually changing during the learning pro­
cess Fortunately, wi l l sti l l converge under these 
conditions [Sutton, 1988] 

There are five further modifications that we made to 
this algorithm based on preliminary experiments First 
for any reinforcement learning algorithm it is critical to 
perform some kind of exploration to discover new and 
better ways of getting from the start 6tate to the goal 
We employed the following simple exploration strategy 
At each state, w i th probability we choose a random 
action instead of the action recommended by the current 
value function and policy Init ial ly, is set to 1 After 
each action, is decreased by an amount . unti l il 
reaches a final value of 0 05 (The values used for 
are given below ) 

Second, we do not perform weight updates m the neu­
ral network after each action Instead, we remember the 
sequence of states visited along the path from the start 
ing state to the final conflict-free schedule Then we up­
date the network starting with the final action and work­
ing backward to the start of the action sequence Exper­
imentally, this works better than simple online training, 
because the values being backed up are more up-to-date 
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Thi rd , we employ Lin's experience replay method 
During learning, the best sequence of moves from start 
to goal is remembered, and after every four training se­
quences, we update the network using this best training 
sequence This improved learning and performance sig­
nificantly 

Fourth we do not emplo> a full one-step lookahcad 
starch to select, actions, because the branching factor in 
this problem space is typically 20 and it is costly to 
compute the value of each of these 20 successor stites 
Instead, we employ random sample greedy search which 
generates a random 6ubse1 of the possible operators and 
evaluates their resulting states The best of these oper-
ators is then chosen The size of the random sample is 
determined incrementally An initial sample of four ac­
tions is chosen Based on the resulting computed values 
and a permitted amount of error t and desired confidence 

we can compute the probability that the value of 
( IK best sampled action is within e of the best possible 
action We continue sampling possible actions until this 
probabihtv 'e xceeds 
Random sample greedy search is employed during both 
training and execution 

The final change in the learning algorithm is that we 
tlo not use the actual stales of the scheduling process as 
input to the neural network The neural network can 
accept only a fixed vector of feature values describing 
each state (i e each current schedule) Schedules on the 
other hand are variable length objects Hence it was 
necessary to define a set of useful features that extract 
important aspects of the current schedule that the neural 
network can use to predict Ihe value of the stale We 
defined the following features (based on a v< ry modest 
amount of experimentation) 

M e a n and s tanda rd d e v i a t i o n o f the f ree poo l 
capac i ty f o r bo t t l eneck pools Simple experiments 
showed that only the technician logistics electrical en 
gineer, mechanical engineer, and quality control officer 
resource types became major bottleneck resources For 
each bottleneck pool, the number of unallocated units 
(the free capacitv ) is measured over the whole sched­
ule period and the mean and standard deviation of this 
quantity provide two features for each pool 

M e a n and s t a n d a r d d e v i a t i o n o f slaeks The 
slack time between a task and one of its temporal prereq­
uisites is the difference between the end time of the pre­
requisite task and the scheduled start time of the task 
We measure the minimum slack for each task (and all 
of its temporal prerequisites) and the average slack for 
each task The mean and standard deviation of these 
two quantities taken over all tasks provide four features 

M o d i f i e d R D F We used a slightly modified version 
of the resource dilation factor of the current schedule 
The numerator of the modified RDF is computed using 
the capacity and allocation of individual resource-pools 
rather than of resource types 

Ove r -a l l oca t i on i n d e x This is the total number of 
units of over-allocated resources in the current schedule 
divided by the total number of units of over-allocated 
resources in the starting schedule 

Percentage of w indows in v i o l a t i on A window 

is defined to be a maximal period of time during which 
the set of currently scheduled tasks does not change A 
schedule can be segmented into a sequence of windows 
We compute the percentage of windows that contain a 
constraint violation We also find the earliest window 
lhat contains a constraint violation and compute the per 
centage of the following 9 windows that have violations 

Percentage o f w indows in v i o l a t i on t ha t can be 
resolved by poo l reassignment This is the fraction 
of those windows having constraint violations where the 
total amount of resources assigned is actually less than 
the total capacity, so that—if the resources were not sub­
divided into pools—the resource requirements could be 
met 

Percentage of t i m e un i t s in v i o l a t i o n This is 
measured over the whole schedule pterod 

F i r s t v i o l a ted w i n d o w index (no rma l i zed ) Let 
wa be the index of the earliest window that has a viola­
tion Let w be the total number of windows Then this 
feature is As violations arc repaired, this 
value decreases to zero If no window has a violation, we 

Fach of these features was developed by studying small 
scheduling problems to find quantities that had some 
ability to predict RDT However we believe that these 
features can be improved substantially and this is a goal 
of our ongoing research 

A consequence of using these features instead of the 
full state is that the learned policy may enter infinite 
loops We have taken two steps to detect and prevent 
these loops First the randomness introduced by the 
random sample greedy procedure and by the random 
exploration process tends to avoid loops because even 
when the same statf is revisited, the same action may 
not be chosen Second, all states visited while solving 
a particular problem are recorded and checked to detect 
loops When a loop is detected we apply the learned 
value function to compute the second best action and 
choose it If a loop is detected again at the same state, 
we backtrack to the preceeding state and again take the 
second best action If this were to create a loop also, we 
would continue backtracking to earlier states 

4 M e t h o d s 

We briefly describe the methods applied to generate the 
training and lest problems, the network architecture 
and tht parameters employed in the learning algorithm 

4 1 P r o b l e m Sets 

We constructed two problem sets an artificial prob-
lem set and a problem set based on specifications for 
the NASA SSPP problem The artificial problems were 
generated as follows First we generated a pool of 20 
jobs From these, we constructed scheduling problems 
by choosing random subsets of these jobs This was in 
tended to model the NASA setting where there are only 
a l imited number of possible shuttle cargo-bay configura 
tions (l e , jobs), but where each scheduling problem is a 
unique combination of such shuttle missions More gen­
erally, this models a job shop where each new scheduling 
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interval requires scheduling a unique mix of more-or less 
standard jobs 

To generate a synthetic job we choose the number 
of tasks randomly in the range 6 to 10 A set of tem­
poral constraints among these tasks is then randomly 
generated such that approximately 60% of all possible 
pairwise precedence constraints are asserted 

Next, resource requirements are determined for each 
task There are two types of resources Each resource 
has two pools—one pool has a capacity of 6 units and 
the other has a rapacity of 8 units Resource require-
ments are randomlv assigned to each task uniformly in 
the range from 0 to 6 units for each resource tvpe 

Once the pool of 20 jobs is generated in this way, 50 
training problems and 50 test problems are constructed 
To generate a problem, we first choose the number of 
jobs in the problem to be either 3 or 4 (wi th equal prob 
abil ity) The desired number of jobs is selected ran­
domly with replacement from the 20-job pool Each job 
is assigned a completion deadline with the deadlines ran­
domly separated by between 8 and 15 time units 

Sixteen input features are computed to represent 
schedules for these problems H pool capacity features 
for the 4 pools 4 slack features and features describ-
ing the modified RDF percentage of windows and time 
units in violation, and percentage of violated windows 
in which the violation can be resolved by pool reassign­
ment 

During training 15 of the 50 training problems were 
held out as a validation set to determine when to halt 
training The remaining 35 problems were repeatedly 
processed to train the value function networks 

In addition to the 50 test problems, we generated a 
second test set of 20 larger problems to evaluate the abil­
i ty of the learned value functions to scale up to larger 
scheduling problems Each of these larger problems was 
generated in the same way as the smaller problems ex­
cept that the number of jobs was chosen uniformly be­
tween 15 and 20 

For the space shuttle pay load processing task, a prob 
lem consists of a set of shuttle missions with launch dates 
one to three months apart Lach mission can have one 
or two pavloads We considered three kinds of pay loads 
long module (LM) , mission peculiar equipment support 
structure (MPESS), and pallet and igloo (PALLET & 
IGLOO) These have 65 32, and 82 tasks, respectively 
There are 35 types of resources of which only five are 
major bottleneck resources 

We randomly generated a training set of 20 problems 
and a test set of 20 problems The training problems 
each contained between two and four shuttle missions 
Of the 20 training problems., 5 were held out for valida­
tion to determine when to stop training The test prob-
lems each contained 3 to 6 shuttle missions The test 
problems thus assess the ability of the learned policy to 
scale up to larger problems 

For the shuttle problems, 20 input features are used 
10 features for pool capacity, 4 slack features, modified 
RDF 2 features describing windows in violation, per­
centage of time units in violation, index of firat violated 
window and the overallocation index 

4 2 N e t w o r k A r c h i t e c t u r e and T ra i n i ng 
Procedure 

To represent the value function, we trained feed-forward 
networks having 40 sigmoidal hidden units and 8 sig-
moidaloutput unite The 8 output units encode the pre­
dicted RDF using the technique of overlapping gaussian 
ranges [Pomerleau, 1991] as follows Each output unit 
represents one assigned RDF value, 
For the artificial problems, these RDF values are 

For the SSPP problems, the 
RDF values are v\ < During 
training, the target output activation for each output 
unit is set to be 
where is the standard normal probability den-
si ty function with mean and standard deviation a 
During testinR the predicted RDF value is computed as 

where aci3 is tht actual output 
activation for output unit j 

For each problem we Lrained eight different net­
works, using all combinations of the following parame-
ters learning rate exploration schedule 

and (Prelimi­
nary experiments showed that did not perform 
as well ) The training set problems are processed in 
round-robin fashion Each problem is solved using one 
of the networks to obtain a sequence of states and ac­
tions That network is then updated (via barkpropaga. 
tion with by processing t he st at e sequence work­
ing backward from the final state After every 50 passes 
through the training set a cross-validation test is con­
ducted to compute the average RDF of the final sched­
ules produced over all cross-validation problems The 
best network found during cross-validation (for each of 
the eight parameter sets) is retained For each network 
training continues until the cross-validated RDF of that 
network is worse than the previous nine m< asured values 
for cross-validated RDF 

Six networks are chosen for testing as follows The 
three best networks found during cross validation are re­
tained along with their corresponding final networks We 
retain the final networks to compensate for variance m 
the cross-validation measurements 

For the simulated annealing component of tht iterative 
repair method, we set the starting temperature to 100 for 
the synthetic scheduling task and to 200 for the SSPP 
task After every 10 accepted repairs to the schedule 
the temperature is reduced according to 

5 R e s u l t s 
Figure 1 shows the average cross-validation RDF for the 
four value function networks trained wi th The 
horizontal axis gives the number of training sequences 
processed This figure shows that the performance of 
the trained networks is improving on the cross-validation 
problems Figure 2 plots the number of repair actions 
for these same networks This shows that there is some 
reduction in the number of actions required to convert 
the starting schedule into a conflict-free final schedule 

Figures 3 compares the performance of temporal dif 
ference (TD) scheduling wi th the iterative repair (IR) 
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Figure 2 Average Number of Repairs over 15 
( \ Problems Figure 4 Performance Comparison of TD toIR 

on 20 Medium scale Problems 

method of Zweben The vert ical axis is the R D F of the 
best conf l ict- f ree schedule found so far The horizontal 
axis is a machine- independent proxy for the amount of 
C P U Game consumed by each me thod For IR the hor i ­
zontal axis gives the number of restarts of the s i m u l a t i d 
anneal ing procedure and the ver t ica l axis records the 
H D t of the best conf l ict- free schedule found so far THE 
longer IR is r u n , the better i ts performance 

For the TD scheduler the hor izonta l axis represents 
the number of neural ne twork evaluat ion funct ion;s em­
ployed W h e n k networks are used to SOIVE a schedul­
ing p rob lem, the p rob lem is sohed k t imes once w i t h 
cach network and the schedule hav ing the best R D F is 
returned as the answer The beet k networks, as deter 
mined by cross-vahdat ion are used The curves stop at 
k = 6, because only six networks were used (once each) 

Some care mus t be taken in in te rp re t ing the hor izonta l 
axis as a measure of C P U t ime Fach step of Lht TD 
scheduler requires more C P U t ime than a step of the IR 
scheduler, because the TD scheduler must per form the. 
random sample lookahead search and check for loops On 
the average, TD spends 2 2 t imes as much C PU t ime per 
step as IR On the other hand TD requires fewer steps 
to f ind a conf l ict- f ree schedule T h e average sequence 
length for an i t e ra t ion of TD is 82% as long as an average 
IR sequence T h e net effect is tha t one i te ra t ion of TD 
is equivalent to app rox ima te l y 1 8 i terat ions of IR 

Bear ing th is in m i n d , the key po in t to not ice is tha t the 
curve for the TD scheduler alwav s lies below the curve for 
i terat ive repair T h i s means that given the same amount 
of C P U t ime , TD always f inds a bet ter schedule ( l e , 
w i t h lower R D F ) For example , w i t h 6 networks TD ob 
tains an R D F of 1 320 compared to IR s R D F of 1 371 
(at 1 8 6 = 1 1 i te ra t ions) T h i s is a 3 9% improvement , 
wh ich in a schedule last ing a year is a savings of 14 days 

(and thousands of dol lars) The curve also shows that 
i terat ive repair a lwa js requires much more t ime (29 lter 
ations vs 11) to find a schedule whose quahtv matches 
the R D F found by TD 

F igure 4 shows a s imi lar comparison for TD and IR on 
the 20 larger test problems Here the difference between 
the a lgor i thms is even more pronounced Tempo ra l d l f 
ference scheduling scales bel ter lo larger problems even 
though it has onlv been tra ined on smaller problems 

Figure r) shows analogous results for t empora l differ 
ence and i terat ive repair on the 20 test-set SSPP prob­
lems Here t in hor izonta l axis is log C P U l ime We see 
that ID ma in ta ins a constant factor advantage over i ter­
ative repair Tempora l difference schedul ing f inds bet ter 
schedules faster than i terat ive repair 

Note however that this f igure j us t gives the average 
RDP over the whole test set Because of the random 
components of both a lgor i thms, th is hides considerable 
var ia t ion Figure 6 reveals th is var ia t ion Let us say 
that TD wins" on a par t icu lar p rob lem i f the R D F of 
i ts best schedule computed so Tar is be l ter than the RDF 
of the best IR schedule computed w i t h the same amount 
o f C P U t ime The two a lgor i thms w i l l be said to " t i e ' i f 
they f ind schedules w i t h ident ical RD I - values I igurc f i 
plots the f ract ion o f TD wins" and TD "w ins + ties 
as a func t ion cf log C P U t ime We see that at low C P U 
costs, TD wins on almost every p rob lem Eventua l ly , as 
C P U t ime becomes larger, TD s t i l l wins or ties s l ight ly 
more than 50% of the t ime 

6 Discussion and Conclud ing Remarks 
These results show that tempora l difference ( T D ) m e t h ­
ods ou tpe r fo rm the best previous a l g o r i t h m for schedul­
ing space shuLtle payload processing jobs f u r t h e r m o r e , 
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there are clearly many ways that the TD methods can be 
improved For example, the current set of features needs 
to be improved so that the learning procedure can cap­
ture more domain specific knowledge There is also some 
evidence to suggest that the training procedure could be 
improved 

Several authors [Bradtke, 1993, Thrun and Schwartz, 
1993, Boyan and Moore 1995, Schraudolph et al, 1994] 
have shown that there are pitfalls associated with us­
ing neural networks (and other function approximation 
schemes) to represent value functions in reinforcement 
learning However, the results of this paper and the no­
table success of Tesauro's [1992] TD backgammon sys­
tem show that in some situations, these pitfalls are nol 
encountered An important open question is to under­
stand why works in this and other applications 

We suspect that the success of TD methods in this 
domain results from two factors First, there are prob­
ably many good solutions to each scheduling problem 
Certainly there are many good solution paths because 
the search space is highly redundant Second, TD is es­
sentially a technique for smoothing adjacent estimates of 
the final RDF This smoothing can remove local minima 
even if it does a poor job of predicting the final RDF 
These two pToperties may permit a simple greedy algo­
r i thm to find good schedules 

These same two properties may explain why the iter­
ative repair method with simulated annealing also suc­
ceeds in this domain Simulated annealing IB a stochastic 
method for locally smoothing an objective function As 
applied in this domain, simulated annealing is not run 
long enough to find a global opt imum, but it may be able 
to escape local minima and find an acceptable solution 

in spite of this 
Industrial scheduling problems abound and general 

purpose solutions to these problems probably do not ex­
ist This research has shown that reinforcement learn­
ing methods have the potential for quickly finding high-
quality solutions to these scheduling problems The goal 
of future research must be to improve these learning 
methods BO that they can be applied with a minimum 
of domain-specific engineering to produce a new, cost 
effective scheduling technology 

Acknowledgements 
I he authors thank Rich Sutton and Monte Zweben for 
several helpful discussions The authors gratefully ac­
knowledge the support of NASA grant NAG 2-630 from 
NASA Ames Research Center Addit ional support was 
provided by NSF grants CDA-9216172 and 1R1-9204129 

References 
[Boyan and Moore, 1995] J A Boyan and A W Moore 

Generalization in reinforcement learning safely ap­
proximating the value function In Advances in Neu­
ral Information Processing Systems 7, San Mateov CA 
1995 Morgan Kaufmann 

[Bradtke 1993] S J Bradtke Reinforc ement learning 
applied to linear quadratic regulation In Advancees in 
Neural Information Processing Systems 5, pages 295-
302, San Mateo CA 1993 Morgan Kaufmann 

[Deale et al 1994] M Deale, M Yvanovich, D Schnitz-
IUS D Kautz, M Carpenter, M Zweben, G Davis 
and B Daun The space shuttle ground processing 
scheduling system In M Zweben and M S Fox, ed­
itors Intelligent Scheduling, chapter 15 pages 423 
449 Morgan Kaufmann, San Francisco CA 1994 

[Pomerleau, 1991] D A Pomerleau Efficient training of 
artificial neural networks for autonomous navigation 
Neural Computation, 3(1) 88-97, 1991 

[Schraudolph et al 1994] N Schraudolph P Dayan 
and T Sejnowski Using to learn an evalu 
ation function for the game of go In Advances in 
Neural Information Processing Systems 6, San Mateo 
CA, 1994 Morgan Kaufmann 

[Sutton 1988] R S Sutton Learning to predict by the 
methods of temporal differences Machine Learning 
3(1) 9-44, August 1988 

[Tesauro, 1992] G Tesauro Practical issues in tempo­
ral difference learning Machine Learning, 8 257-278, 
1992 

[Thrun and Schwartz, 1993] S Thrun and A Schwartz 
Issues in using approximation for reinforcement learn­
ing In Proceedings of the Fourth Connectonist Mod 
els Summer School, Hillsdale, NJ, 1993 Lawrence Erl 
baum Publisher 

[Zweben el al, 1994] M Zweben, B Daun 
and M Deale Scheduling and rescheduling with it­
erative repair In M Zweben and M S Fox, editors 
Intelligent Scheduling, chapter 8, pages 241-255 Mor­
gan Kaufmann, San Francisco, CA, 1994 

1120 LEARNING 


