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Abstract

In this work, we provide novel methods which ben-
efit from obtained probability bounds for assessing
the ability of teams of agents to accomplish coali-
tional tasks. To this end, our first method is based
on an improvement of the Paley-Zygmund inequal-
ity, while the second and the third ones are devised
based on manipulations of the two-sided Cheby-
shev’s inequality and the Hoeffding’s inequality,
respectively. Agents have no knowledge of the
amount of resources others possess; and hold pri-
vate Bayesian beliefs regarding the potential re-
source investment of every other agent. Our meth-
ods allow agents to demand that certain confidence
levels are reached, regarding the resource contribu-
tions of the various coalitions. In order to tackle
real-world scenarios, we allow agents to form over-
lapping coalitions, so that one can simultaneously
be part of a number of coalitions. We thus present
a protocol for iterated overlapping coalition for-
mation (OCF), through which agents can complete
tasks that grant them utility. Agents lie on a social
network and their distance affects their likelihood
of cooperation towards the completion of a task.
We confirm our methods’ effectiveness by testing
them on both a random graph of 300 nodes and a
real-world social network of 4039 nodes.

1 Introduction
Cooperative transferable utility (TU) games [Chalkiadakis et
al., 2011] have been widely studied as they provide a rich
framework for cooperation and coordination among rational
agents. In such games, agents make binding agreements for
jointly tackling tasks that result to some utility (coalitional
value) awarded to the team (coalition). The importance of
their study arises from the fact that in many real-world set-
tings it may be impossible for agents to achieve their goals
on their own, or that it is simply more profitable for them
to form coalitions. Moreover, interconnected electronic soci-
eties and social networks offer a natural environment for the
completion of goals of individuals, most of the times by com-
pleting tasks through common actions. In this setting, the

formation of a coalition is feasible only if its members are
interconnected [Myerson, 1977].

Even though the vast majority of the literature assumes that
coalitions have to be disjoint—i.e., an agent can belong in
only one coalition at a time—this assumption does not hold
in many realistic scenarios. In our work, agents can decide
to join a number of overlapping coalitions, also referred to as
partial coalitions [Chalkiadakis et al., 2010].

Moreover, in realistic settings it is natural that agents con-
tribute some amount of their (divisible) resource in order to
complete the coalitional task. It is conceivable that an agent is
certain only of the quantity of her own resource, while she has
private beliefs about others’ potential contribution. Thus, act-
ing under incomplete information, she can only probabilisti-
cally reason about the success of a potential coalition [Chalki-
adakis et al., 2007; Kraus et al., 2003]. Against this back-
ground, we provide three novel methods that allow agents
to establish probability bounds on the corresponding uncer-
tainty. The bounds are derived given private agent beliefs
about others’ potential resource investment. These beliefs
correspond to Beta and Dirichlet distributions which can be
easily manipulated and updated in a principled manner. Our
first method exploits an improvement of the Paley-Zygmund
inequality [Paley and Zygmund, 1932], while the second and
the third proceed by appropriately handling the two-sided
Chebyshev’s inequality [Mitzenmacher and Upfal, 2005] and
the Hoeffding’s inequality [Hoeffding, 1963], respectively.
Agents using any of them can demand an arbitrary confidence
level for the resource contribution of a coalition.

In order for agents to complete tasks by forming overlap-
ping coalitions, an appropriate protocol is required. Thus, we
provide a generic protocol for iterated overlapping coalition
formation. Under this protocol, in each iteration (round) a
number of tasks arrives, and a proposer gets assigned to each
task, who is responsible for forming a coalition so that the
task gets completed; naturally, the underlying graph structure
influences the plausibility of emergence of the coalitions.

To the best of our knowledge, this is the first paper to com-
pute probability bounds for coalition formation under uncer-
tainty. Moreover, this is the first work to tackle overlapping
coalition formation (OCF) under uncertainty. We evaluate our
methods by conducting experiments over both a 300 nodes
Erdős-Renyi random graph and a real social network which is
a 4039 nodes snapshot from Facebook [Leskovec and Krevl,
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2014]. Our results show that our methods consistently out-
perform, in terms of effectiveness in task completion, a base-
line method that selects coalitions based only on expected re-
source quantity. Moreover, they are also time-efficient, and
their behaviour is robust against increases in demanded con-
fidence level. As such, we can conclude that they are indeed
suitable for probabilistic reasoning in order to decide which
coalitions to form in real-world networks.

2 Background and Related Work
The study of domains with overlapping coalitions was initi-
ated by [Shehory and Kraus, 1998], who provided an approx-
imate solution to the corresponding optimal coalition struc-
ture generation (CSG) problem [Chalkiadakis et al., 2011].
The subsequent work of [Dang et al., 2006] presented two
domain-oriented algorithms for (overlapping) CSG in sen-
sor networks. The formal definition of cooperative games
with overlapping coalitions, however, was not until [Chalki-
adakis et al., 2010]. In that model, an agent can participate
in more than one coalition, by contributing to each a portion
of her resources; thus, a partial coalition is given by a vector
rC = (r1C , . . . , r

n
C), where riC ∈ [0, 1] denotes the resource

fraction which agent i contributes to coalition C, so riC = 0
means that agent i is not part of coalition C. In this way an
overlapping coalition formation game is given by (i) a set of
players N = {1, . . . , n} and (ii) a function v : [0, 1]n 7→ R.

In [Chalkiadakis et al., 2010], an expressive class of
OCF games, threshold task games (TTGs) is also put for-
ward. A threshold task game G = (N ;w; t) is given
by (i) a set of agents N = {1, . . . , n}, (ii) a vector
w = (w1, . . . , wn) ∈ R+ denoting the quantity of resources
the agents possess and (iii) a list t = (t1, . . . , tl) of task types
where each th is described by a threshold value Th ≥ 0 and
a utility vh ≥ 0, so a task type is denoted as th = (Th, vh).
In TTGs, agents form coalitions to complete tasks, in order to
gain utility vh by fulfilling the requirement Th for th.

Coalition formation (focusing on coalitional stability) un-
der uncertainty was studied in [Chalkiadakis and Boutilier,
2004; Ieong and Shoham, 2008; Suijs et al., 1999],
while [Kraus et al., 2003] dealt with forming coalitions via
auctions. Finally, cooperative games on graphs have been
widely studied, both in non-overlapping and in overlapping
settings (see, e.g., [Myerson, 1977; Deng and Papadimitriou,
1994; Chalkiadakis et al., 2012; Zick et al., 2012]). However,
no previous work has explicitly dealt with the decision prob-
lem agents face in uncertain overlapping coalitional settings.

3 Modeling Uncertainty
In [Ueda et al., 2011] a concise representation scheme based
on the idea of agent types is proposed, where agents i, j ∈ N
are recognizably equivalent if for any coalition C, i, j /∈ C
: v(C ∪ i) = v(C ∪ j). Such a representation cannot apply
as a scheme for conciseness in threshold task games, as a
task is characterized by a scalar, which is the sum of the re-
sources required for its completion, and not by type vectors
(as in [Ueda et al., 2011]). However, we achieve represen-
tational conciseness by restricting the quantities of the agent

resources and the threshold values of the task types to be inte-
ger values. Without these restrictions, the number of possible
partial coalitions would be infinite. We assume that resources
are integers, and qmax ∈ N+ is such that an agent i ∈ N
possesses a resource amount wi ∈ {1, . . . , qmax}.

Agent beliefs. Each agent i knows only the quantity of
her own resource, while she has a private belief Xi

j about the
resource investment of any other agent j. Belief Xi

j is com-
posed of random variables Di

j and Bij , distributed as follows:

• Di
j ∼ Multinomial

(
pij = (pij1 , . . . , p

ij
qmax

)
)
, where

pijr is the probability that j offers quantity r of her re-
source in a coalition.

• pij ∼ Dirichlet(αij), αij = (αij1 , . . . , α
ij
qmax

)

• Bij ∼ Binomial(qij), where qij is the probability that
j accepts an offer by i for participation in a coalition.

• qij ∼ Beta(aij , bij), where aij (bij) corresponds to the
number of i’s proposals that j has accepted (declined).

Note that αij , aij and bij above are hyperparameters cor-
responding to easily updated counters. We estimate pijr as
αijr /

∑
αij , and qij as aij/(aij + bij). Thus, E[Xi

j ] =

qij
∑qmax

r=1 pijr ·r. Therefore, the expected, according to i’s be-
liefs, quantity of the sum of resource contribution of a group
of agents Xi

C =
∑
j∈C X

i
j , C ⊆ N \ i, can be computed in

O(n · qmax) time, through linearity of expectations. We as-
sume that Xi

1, . . . , X
i
i−1, X

i
i+1, . . . X

i
n are independent. Due

to independence, the variance of Xi
C is the sum of the vari-

ances of each Xi
j , j ∈ C, and thus it can be computed in

O(n · qmax) time as well.

4 Obtaining and Exploiting Bounds
In real-world TTG settings, agents act under uncertainty re-
garding the amount of resources that others may contribute to
a coalition. They can thus obtain probability bounds over the
resource contribution of a group, and exploit them to select
with confidence groups that can carry out their tasks (Alg.1).

We henceforth refer to Xi
C as X , for fixed i ∈ N and

C ⊆ N \ i, when this causes no confusion. The threshold
value T of a task must be exceeded, so that utility u is granted
to the members of the successful coalition, and thus agent
i is interested in computing P (X ≥ T ). Since the cost of
this computation can be extremely high,1 the agents resort to
computing bounds over this quantity.

4.1 The IPZY Method
Our first method builds on an improvement of the Paley-
Zygmund inequality (IPZY). Firstly, we present the Paley-
Zygmund inequality [Paley and Zygmund, 1932]:

1The distribution of the sum of independent integer-valued ran-
dom variables can be computed via the Convolution Theorem, which
exploits Fast Fourier Transform [Proakis and Manolakis, 1996], in
O(n2 · qmax · log(n · qmax)) time. However, for large n, this com-
putation time can be prohibitive. By contrast, we obtain probability
bounds in O(n · qmax) time, since the inequalities we utilize de-
pend, at worst, on the expected value and variance of X .
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Theorem 1 (Paley-Zygmund inequality). Let a random
variable X ≥ 0 with finite variance and 0 ≤ θ ≤ 1. It holds:

P (X > θE[X]) ≥ (1− θ)2E[X]2

E[X2]

The Paley-Zygmund inequality can be written as:

P (X > θE[X]) ≥ (1− θ)2E[X]2

V ar[X] + E[X]2
(1)

We now state the following inequality:
Theorem 2. Let a random variable X ≥ 0 with finite vari-
ance, and 0 ≤ θ ≤ 1. It holds that:

P (X > θE[X]) ≥ (1− θ)2E[X]2

V ar[X] + (1− θ)2E[X]2
(2)

Proof. Our proof is based on the one-sided Chebyshev’s in-
equality. We do not present it due to space restrictions.2

Clearly, Eq. (2) provides a better bound than Eq. (1), since
for lower bounds greater values are preferred, and the denom-
inator of Eq. (2) is smaller than the one of Eq. (1). Hence,
lower probability bounds can be obtained using Eq. (2).

Agent i wants to assess the ability of a group of agents
C to complete task t = (T, u). Thus, a lower bound for
P (X > T ) can be obtained using Eq. (2), by setting:

θ = T/E[X] (3)

Notice that it must hold that E[X] > T , or else θ ≥ 1.
Furthermore, let i demand a certain confidence level c,

0 < c < 1, so that the bound obtained for a group, using
Eq. (2), with θ set as in Eq. (3), is at least c. To select a
group of agents, either to directly join or invite its members
to join forces together, i would select the group that has the
smallest size among those that offer her confidence level of at
least c (cf. Alg. 1). In this way, i would have her confidence
requirement satisfied; and by selecting an appropriate group
with the smallest possible size, a greater portion of u could
be distributed to each individual of the coalition.

4.2 The CH2S Method
Our second method builds on a manipulation of the two-sided
Chebyshev’s inequality, and it is thus termed CH2S.
Theorem 3 (Two-sided Chebyshev’s inequality). Let a ran-
dom variable X with finite variance, for any k > 0:

P (|X − E[X]| ≥ k) ≤ V ar[X]

k2
(4)

Now, we can manipulate Eq. (4), in order to obtain a lower
probability bound, in the following way:

P (|X − E[X]| < k) ≥ 1− V ar[X]

k2
(5)

The probability bound obtained by Eq. (5) can be exploited
in a similar way as in the IPZY method, so we adopt the same
notation as before. Here again, agent i wants to assess the

2Note also that an alternative proof appears in Wikipedia.

ability of a group C to complete task t = (T, u), and the
lower bound of Eq. (5) can be obtained, by setting:

k = E[X]− T (6)

Thus, i can obtain a lower bound, equal to 1−V ar[X]/k2,
for the probability of the event thatX ∈ (T,E[X]+k). Agent
i can select a group of agents, out of potentially many, as
follows. She chooses the one that has the smallest size among
those which provide her with a bound, computed by Eq. (5),
and with k as in Eq. (6), that exceeds her required confidence
level c, 0 < c < 1.

4.3 The HF Method
The third method (HF) is based on Hoeffding’s inequality.
Theorem 4 (Hoeffding’s inequality). Let X1, . . . , Xn be in-
dependent random variables, where all Xi are bounded so
that Xi ∈ [li, ui], and let X =

∑n
i=1Xi. Then it holds that:

P (|X − E[X]| ≥ k) ≤ 2exp

(
− 2k2∑n

i=1(ui − li)2

)
(7)

Hoeffding’s inequality can be applied since random vari-
ables Xi

j are independent and Xi
j takes integer values in

[0, qmax]. HF exploits Eq. (7) identically to the manner that
CH2S exploits Eq.(4), since both Eq.(4) and Eq.(7) provide
upper bounds on both tails, and thus their difference is only
on the value of the obtained bound.

Algorithm 1: Selecting a coalition that meets an agent’s
required confidence level

Data: Agent’s confidence level c ∈ (0, 1)
Input: A set of coalitions C = {C1, C2, . . .};

Task Threshold T
Output: Coalition Best ∈ C

1 min← +∞, Best← ∅, bound← 0
2 foreach C ∈ C do
3 if method = IPZY then
4 θ ← T/E[X]

5 bound← (1−θ)2E[X]2

V ar[X]+(1−θ)2E[X]2

6 else
7 k ← E[X]− T
8 if method = CH2S then
9 bound← 1− V ar[X]

k2

10 else // method = HF
11 bound← 1− 2exp(−2k2/(|C|q2max))
12 if bound > c ∧ |C| < min then

13 Best← C
14 min← |Best|
15 return Best

4.4 Discussion
The power of our methods lies in the fact that they do not
need to compute the exact distribution of X , since they ob-
tain probability bounds. We have assumed variable inde-
pendence, and thus an agent’s beliefs can be represented by
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easy-to-maintain conjugate priors (Betas and Dirichlets) over
these variables [Grimmett and Stirzaker, 2001]. However, our
methods do not depend in any way on the exact priors used.

Note also that IPZY and CH2S do apply if dependence
among the variables holds, as well. Computing the distri-
bution of X would then require the computation of the joint
probability distribution of the dependent variables, leading to
the following computation for P (Xi

C ≥ T ) and |C| = m:

P (Xi
C ≥ T ) =

m·qmax∑
κ=T

P (Xi
C = κ) =

m·qmax∑
κ=T

P
( m∑
j=1

Xi
j = κ

)
where the first equality holds since the events are mutu-
ally exclusive. The number of solutions to the equation
Xi

1+. . .+X
i
m = κ, where everyXi

j is a non-negative integer,
is known [Komatsu, 2003] to be

(
κ+m−1
m−1

)
= O((κ +m)m).

Therefore, the computation of P (X ≥ T ) is exponential in
the number of the agents when Xi

j , j ∈ C, are dependent.
However, IPZY and CH2S would still work though requiring
more time, since computing the variance of X would now
take O((n · qmax)2), due to the computation of the covari-
ance of each pair of variables. Moreover, a different modeling
of beliefs as Dirichlets over the Cartesian product of all vari-
ables, or as Dirichlet mixture models, would also be required.
Experimentation with dependent variables is future work.

5 An OCF Protocol
We now propose a generic protocol for iterated overlapping
coalition formation. It models real-world situations where
S tasks per iteration arrive, over a period of I iterations (or
rounds), and the resources of the agents are replenished at the
end of each round (as such, there is no need for long-term
strategic planning on the part of the agents). Note that the
protocol can be applied whether there exists an underlying
graph in the environment or not. The agents of a coalition
C must be connected by some path, however not all agents
connected by a given path have to be members of C. The
protocol, summarized in Alg. 2, is kept simple, so that it does
not interfere with the agents’ deliberation over bounds. To
the best of our knowledge, this is the first protocol for decen-
tralized overlapping coalition formation under uncertainty.

At each round, tasks are exogenously created and a dis-
tinct proposer is exogenously associated with each task. The
assignment of proposers to tasks takes place uniformly at ran-
dom. Following that, the proposers are concurrently asked to
form proposals. Thus, each proposer has to select a group of
agents, offering a portion of u (the utility granted by the com-
pletion of task t = (T, u)) to each of its members, and asking
in return for a resource quantity so that the threshold T is met.
A proposer can receive proposals from other proposers.

Group selection. The number of possible groups of agents
is O(2n), and thus taking all of them under consideration
would be inefficient for a proposer. Instead, we let a proposer
i sample K groups of agents, where each agent j ∈ N \ i is
included in a group with probability 2−D(i,j), where D(i, j)
is the geodesic distance (shortest path) between nodes i and j.
Such a distance between every pair of nodes can be computed
in an offline step. Hence, the closer i is to j, with respect to

their distance in the (undirected) graph, the more likely it is
that j will be included in a group sampled by i, while if i and
j are not connected, that is D(i, j) = ∞, then they cannot
cooperate. In this way, the position of an agent in the social
network affects the likelihood of making a proposal to an-
other agent, for cooperation towards completing a common
task. Thereafter, the proposer uses one of our methods in or-
der to select one of the K groups, and then submits individ-
ual 〈q, π〉 proposals to its members. The requested quantity
q ∈ N+ is the rounded average of samples taken from αij

multiplied by qij (the belief that j accepts a proposal), and
agent payoff π ∈ R+ is proportional to q, and is distributed
to j upon the completion of the task.

Only the proposer and the proposed-to agent have knowl-
edge of the proposal submitted. Furthermore, all proposals to
an agent are revealed to her simultaneously.

Response to proposals. Each agent, who has received at
least one proposal, responds by either accepting or rejecting
each of the proposals. Therefore, agent j has to select which
of the, at most S, proposals of the form 〈q, π〉 to accept, where
q ∈ N+ and π ∈ R+, in order to maximize her gained utility
(at the completion of the tasks), given her resource quantity
wj ∈ N+. Thus, the optimal response of an agent is the one
that maximizes

∑
τ xτ · πτ , subject to

∑
τ xτ · qτ ≤ wj ,

where x is a binary vector of size equal to the number of
the proposals that agent j has received. Proposition 1 below
follows from a straightforward reduction from KNAPSACK.

Proposition 1. The optimal response of an agent is NP-Hard.

Notice that a responder has no knowledge of the other
members that a proposer has proposed to, and hence she can-
not infer the probability of task completion. Since an agent’s
response does not depend on the responses of others, the inde-
pendence assumption regarding agents’ beliefs is reasonable.

Beliefs update. If the response of j to proposal 〈q, π〉,
submitted by proposer i, is positive then i increases both aij
(Beta update) and αijq (Dirichlet update) by 1. If the response
is negative then bij (only Beta update) is increased by 1. Fur-
thermore, if coalition C succeeds in completing a task, then
every member of C gets to learn the contribution of every
other member, and has her Dirichlet distribution updated in
an identical way to that of the proposer.

Notice this allows the modeling of agent behaviour and
preferences, e.g. an agent could observe that another agent
accepts proposals from the rest of the agents but not from her.
We aim to study such phenomena in future work. Finally, af-
ter receiving the responses, if the proposer’s task has not been
accomplished, she covers its remaining needs (if possible).

6 Experimental Evaluation
In this section we provide results on the effectiveness of our
methods. We conducted experiments on both an Erdős-Renyi
random graph [Bollobás, 2001] of 300 nodes-agents and a
real social network—a snapshot of a part of Facebook with
4039 agents [Leskovec and Krevl, 2014]. Our methods are
tested for different values of confidence level c demanded by
the agents. We compare our methods to a baseline method,
in which the group that an agent chooses to make proposals
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Algorithm 2: Overlapping coalition formation protocol
1 I ← number of rounds
2 S ← number of tasks per round
3 for i = 1 to I do
4 tasks← createTasks(S)
5 proposers← createProposers(tasks)
6 proposers form proposals concurrently, each by

sampling K groups and selecting one using {IPZY,
CH2S, or HF} and Algorithm 1

7 inform proposed members
8 agents accept or reject the proposals they received
9 inform proposers about responses

10 foreach uncompleted t ∈ tasks do
11 Let proposer of t complete it if she can
12 foreach completed t ∈ tasks do
13 inform members about the participation of the

rest and distribute utility
14 replenish agents’ resources and update beliefs

to is the smallest among those whose expected value E[X]
exceeds the task threshold value T .3 Thus, we refer to this
method as EV. Selecting EV as the baseline is natural: EV es-
sentially describes the simplest course of action that an agent
acting under uncertainty could take. Moreover, there is no
pool of alternative decision-making methods we can use as a
baseline in such a setting.4

Game parameters. In the experiments on both graphs,
qmax was set to 30 and the resource weight wi of each
agent was a (rounded to integer) sample from N (15, 52).
The hyperparameters of each agent’s Beta were initialized
to aij = 1 and bij = 1; and the αijr of the Dirichlets to
αijr = wj/(D(i, j) · (|r − wj |+ 1)). In this way αij is bell-
shaped, with its mode being at wj , the actual (maximum
offerable) resource quantity of j. Furthermore, the smaller
D(i, j) is, the more sharply peaked the prior is, so the be-
lief updates on αij have greater impact. The value of K, the
number of groups that a proposer i samples, was set to 30.
The number of samples taken from αij , for defining the re-
quested quantity q of i’s proposal 〈q, π〉 to j, was set to 20.
The number of rounds I and the number of tasks per round
S were set to 200 and 16, respectively,5 for each run on both
graphs. Before making proposals, a proposer invests 75% of
her resource to a task.

All results are average values across 30 runs for each ex-
perimental setting. The same set of proposers and tasks were
generated at the xth round of the yth run in each setting

(
x ∈

{1, . . . , I = 200} and y ∈ {1, . . . , 30}
)
. We report on the to-

3The smaller the group, the greater the portion of utility u its
members receive upon task completion.

4The computation of a centralized solution is intractable, and
thus it cannot be used as a means of comparison. Even the posi-
tive results in [Zick et al., 2012] hold for very restricted cases.

5In our experiments we used the standard pseudopolynomial
dynamic programming algorithm for KNAPSACK [Kellerer et al.,
2004], which, due to the limited number of tasks (and hence propos-
als), performed in a fraction of time (< 1 ms), as expected (despite
Proposition 1); so, agent responses were in fact optimal.

tal number of completed tasks by the agents, where for each
setting the used method and the value of c were the same for
all agents. We tested values of c ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.
(In the case of EV there is no c.) We also present the (aver-
age) size of the group that the proposers, using each method,
choose as the best one to make proposals to. Furthermore,
since there is no guarantee that the agents will have their de-
mand for confidence level c fulfilled, we report the confidence
fails, the number of times that a proposer failed to achieve
that c. In those cases, we let the proposer make proposals
to the group which provided the confidence level closest to
c. Henceforth, we denote the best group size by bgs, and the
confidence fails by cf. The total number of tasks in a run was
I · S = 200 · 16 = 3200 (thus cf has a max value of 3200).
The implementation was in Python 3 and experiments were
run on a PC with an i3 3.3GHz processor and 4GB of RAM.

6.1 Erdős-Renyi Graph Model

In this random graph model, edge {i, j} is added on the
(undirected) graph with probability p. In our setting, we set
n = 300 and p = 0.03 (average node distance = 2.83). The
threshold values T of the generated tasks were sampled from
N (200, 102), and the utility u of each task was 10 · T .

As shown in Table 1, our methods consistently outperform
EV. Even for IPZY with c = 0.5, the number of completed
tasks is much larger compared to that of EV, with a very small
increase in bgs. The standard deviation of the number of com-
pleted tasks is small for every method. Furthermore, when
c ≤ 0.8, proposers using IPZY or CH2S have their required
confidence satisfied almost always. For c = 0.9 however, the
number of cf increases steeply: for instance, for CH2S with
c = 0.8, only 1.33% = 42.7/3200 of the proposals did not
meet that requirement, while for CH2S with c = 0.9 that per-
centage increased to 33.33% = 1066.8/3200. Now, lack of
confidence, caused by uncertainty, is a major source of down-
turns in economic environments [Caldara et al., 2016]. Ide-
ally, we would like to have a metric defining the quality of
a method, depending on the number of completed tasks and
cofidence fails, but it is not obvious which one that should
be. Thus, HF can be deemed unsuitable for this setting, since
the number of cf for every value of c is at least 1022.4, and
so are IPZY and CH2S for c = 0.9—notwithstanding that
for c = 0.9 more tasks were completed, since their comple-
tion came with an abrupt increase in cf. On the other hand,
both IPZY and CH2S achieve a confidence level of c = 0.8
while maintaining a reasonably low cf number. Then, for
IPZY and CH2S, results presented in Table 3 suggest that the
more demanding the agents are (with respect to their confi-
dence level), the better the ratio of the number of completed
tasks to best group size is. Overall, Tables 1 and 3 suggest
that CH2S performs slightly better than IPZY.

Finally, we report that the average time for an entire round
to be completed, including coalitional evaluations for all 16
tasks and belief updates for all agents—for some multiple
times, since they can participate in multiple tasks—was 2.7
sec for IPZY, 2.9 sec for CH2S and 1.8 sec for HF.
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Table 1: Results for the Erdős-Renyi graph with 300 agents.

#completed tasks (%) {std} bgs cf
EV 637.46 (19.92) {22.78} 35.16 -

IPZY, c = 0.5 876.70 (27.39) {18.50} 36.27 0.1
IPZY, c = 0.6 990.76 (30.96) {24.97} 36.87 0.2
IPZY, c = 0.7 1202.16 (37.56) {24.83} 38.13 1.6
IPZY, c = 0.8 1615.30 (50.47) {22.64} 41.30 14.9
IPZY, c = 0.9 2352.51 (73.52) {18.43} 52.95 692.9
CH2S, c = 0.5 1115.33 (34.85) {17.29} 37.60 1.1
CH2S, c = 0.6 1235.26 (38.60) {22.46} 38.40 2.6
CH2S, c = 0.7 1451.73 (45.36) {19.82} 39.94 6.9
CH2S, c = 0.8 1843.96 (57.62) {15.46} 43.52 42.7
CH2S, c = 0.9 2396.81 (74.91) {16.23} 54.85 1066.8

HF, c = 0.5 2316.83 (72.40) {21.63} 52.86 1022.4
HF, c = 0.6 2356.80 (73.65) {18.42} 54.95 1616.1
HF, c = 0.7 2368.80 (74.02) {11.66} 56.48 2213.9
HF, c = 0.8 2370.86 (74.09) {17.45} 57.46 2727.7
HF, c = 0.9 2372.03 (74.13) {18.29} 57.88 3095.6

Table 2: Results for the Facebook graph with 4039 agents.

#completed tasks (%) {std} bgs cf
EV 462.26 (14.45) {31.16} 396.12 -

IPZY, c = 0.5 562.76 (17.58) {29.62} 398.68 241.1
IPZY, c = 0.6 608.31 (19.01) {28.16} 399.97 295.7
IPZY, c = 0.7 676.30 (21.13) {25.99} 401.68 397.5
IPZY, c = 0.8 803.50 (25.11) {26.95} 404.45 525.4
IPZY, c = 0.9 1080.33 (33.76) {24.07} 412.39 742.5
CH2S, c = 0.5 648.60 (20.26) {26.29} 400.48 356.8
CH2S, c = 0.6 684.61 (21.40) {28.92} 401.27 411.8
CH2S, c = 0.7 747.10 (23.35) {27.92} 402.61 482.8
CH2S, c = 0.8 860.93 (26.90) {25.56} 405.19 565.4
CH2S, c = 0.9 1108.21 (34.63) {24.57} 412.69 799.1

HF, c = 0.5 1147.66 (35.86) {11.71} 408.35 772.4
HF, c = 0.6 1171.20 (36.60) {15.72} 410.17 852.4
HF, c = 0.7 1201.93 (37.56) {16.42} 412.46 946.1
HF, c = 0.8 1242.40 (38.82) {12.31} 415.42 1071.1
HF, c = 0.9 1285.46 (40.17) {11.92} 420.02 1272.0

6.2 Facebook Snapshot Graph
The graph of the snapshot of Facebook we experimented
on consists of 4039 connected nodes (agents). The thresh-
old values T of the generated tasks were sampled from
N (2250, 402), and the utility u of each task was 10 · T .

As observed in Table 2, task completion was more chal-
lenging in this sparser network (with an average node distance
of 3.69). However, the ordering of the methods, for IPZY and
CH2S, based on the ratio of the number of completed tasks
to bgs, was virtually the same with that of the Erdős-Renyi
graph, as observed in Table 3. Moreover, we observe that
proposers using HF completed more tasks compared to the
other two methods, for every value of c, with the value of cf
not being tremendously larger. The values in Table 3 corre-
sponding to HF were greater compared to those of IPZY and
CH2S for any value of c, and monotonically increase with c,
even exceeding 3 for c = 0.9. Thus, our methods outperform
the baseline in this environment as well; and HF is a winner.

The difficulty in achieving the completion of tasks can be
attested by the fact that even when proposers used the EV

Table 3: # of completed tasks to best group size ratio.

Erdős-Renyi graph Facebook graph
EV 18.13 1.17

IPZY, c = 0.5 24.17 1.41
IPZY, c = 0.6 26.87 1.52
IPZY, c = 0.7 31.52 1.68
IPZY, c = 0.8 39.11 1.99
IPZY, c = 0.9 44.42 2.62
CH2S, c = 0.5 29.66 1.62
CH2S, c = 0.6 32.16 1.71
CH2S, c = 0.7 36.34 1.84
CH2S, c = 0.8 42.37 2.12
CH2S, c = 0.9 43.69 2.69

HF, c = 0.5 43.82 2.81
HF, c = 0.6 42.89 2.85
HF, c = 0.7 41.94 2.91
HF, c = 0.8 41.26 2.99
HF, c = 0.9 40.98 3.06

method, about 6.5% = 207.2/3200 of them could not find
a (sampled) group whose expected value exceeded the task
threshold value. In that case they selected the one with the
highest expected value. Thus, it is not surprising that for all
our three methods, and for every value of confidence level c,
proposers frequently could not fulfill their requirement for ex-
ceeding c. The fact that cf increases smoothly with c, as seen
in Table 2, combined with the significant increase of the ratio
of completed tasks to best group size for c = 0.9, observed
in Table 3, lets us conclude that the best value of c in this set-
ting would be 0.9. The average time for the completion of an
entire round was 26.5 sec for IPZY, 27.7 sec for CH2S, and
21.3 sec for HF.

7 Conclusions and Future Work
We presented, for the first time in the literature, three methods
that derive probability bounds for effective overlapping coali-
tion formation, where the agents have incomplete information
of the value of the resources that the other agents can invest.
This setting extends straightforwardly to environments with
multiple (rather than one) resource types. All three of them al-
low agents to demand confidence levels; and significantly out-
performed the baseline (which picked coalitions based solely
on their expected resource quantity) in terms of the number
of tasks completed, and the ratio of this quantity to the size of
the group the proposers selected.

Future work includes testing our methods using alternative
formation protocols. Moreover, we intend to experiment with
settings that allow resources to be depleted over time. This
would necessitate long-term strategic planning, which would
naturally influence the agents’ attempts to derive bounds.
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