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Abstract

The Maximum Vertex Weight Clique (MVWC)
problem is NP-hard and also important in real-
world applications. In this paper we propose to use
the restart and the random walk strategies to im-
prove local search for MVWC. If a solution is re-
visited in some particular situation, the search will
restart. In addition, when the local search has no
other options except dropping vertices, it will use
random walk. Experimental results show that our
solver outperforms state-of-the-art solvers in DI-
MACS and finds a new best-known solution. More-
over it is the unique solver which is comparable
with state-of-the-art methods on both BHOSLIB
and large crafted graphs. Also it achieves 100%
success rates over all the winner determination
graphs within 500s. Furthermore we evaluated our
solver in clustering aggregation. Experimental re-
sults on a number of real data sets demonstrate that
our solver outperforms the state-of-the-art for solv-
ing the derived MVWC problem and helps improve
the final clustering results.

1 Introduction
We deal with a simple undirected graph G = (V,E,w)
where V is the vertex set, an edge e ∈ E is a 2-element
subset of V , and w : V 7→ R≥0 is a weighting function
on V . A clique C is a subset of V such that each pair of
vertices in C is mutually adjacent. The Maximum Vertex
Weight Clique (MVWC) problem is to find a clique with the
greatest total vertex weight. This problem exists in many
real-world applications like [Brendel and Todorovic, 2010;
Brendel et al., 2011]. In this paper we are concerned in find-
ing a clique whose total vertex weight is as great as possible.

However, the MVWC problem is difficult to approximate
[Feige, 2005]. Up to now, there are two types of algo-
rithms: complete algorithms [Östergård, 2001; Östergård,
2002; Kumlander, 2004; Yamaguchi and Masuda, 2008;
Shimizu et al., 2012; Jiang et al., 2017] and incomplete ones
[Pullan, 2008; Wu et al., 2012]. Furthermore, algorithms for
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the maximum weight independent set and minimum weight
vertex cover problems can also work e.g., [Xu et al., 2016].

1.1 Local Search for MVWC
Local search often suffers from the cycling problem, i.e., the
search may spend too much time visiting a small area, thus
various tabu strategies have been proposed to deal with this
problem. Such examples can be found in two recent MVWC
solvers MN/TS [Wu et al., 2012] and LSCC [Wang et al.,
2016]. The former adopted a randomized tabu strategy to es-
cape from local optima, while the latter utilized the strong
configuration checking strategy to do so. Nevertheless, such
tabu strategies still fail to prevent the local search from mov-
ing in cycles, thus both MN/TS and LSCC need to restart
periodically. More specifically they both adopted a parame-
ter L to control how often the local search restarts. However,
this parameter needs to be trained before the solver is being
run. Furthermore it is unreasonable to use a fixed value for L
during the search, since some parts of the search space can be
more restrictive while some other parts can be less restrictive.
Also it is difficult to understand why a particular value for L
is suitable. Hence, we will propose a novel heuristic to restart
at a good time point. It might be the first time to address this
fundamental problem in local search for MVWC.

LSCC consists in two phases: (1) randomly generating a
maximal clique C and then (2) improving C in a determin-
istic way. In each local move, LSCC selects the neighboring
clique with the greatest weight according to the strong con-
figuration checking criterion. However, using a deterministic
heuristic to select a neighboring solution may be problematic,
since a sequence of steps would be simply repeated without
improving the best C found so far. Hence, we will adopt ran-
dom walk to guide the search to move in different directions.

1.2 Our Contributions
We develop a solver named RRWL1 (Restart and Random
Walk in Local Search) based on the restart and the random
walk strategies. Roughly if a solution is revisited in some
particular situation, the search will restart. Also, when the
search has no other options except dropping vertices, it will
use random walk.

1https://github.com/Fan-Yi/Restart-and-Random-Walk-in-
Local-Search-for-MVWC
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For showing the effectiveness, we compared RRWL with
LSCC2, FastWClq [Cai and Lin, 2016] and WLMC [Jiang et
al., 2017] on DIMACS [Johnson and Trick, 1996], BHOSLIB
[Xu et al., 2005] and large sparse graphs3, as well as
some graphs derived from the Winner Determination Problem
(WDP) [Wu and Hao, 2015; Fang et al., 2016]. Experimental
results show that

1. on DIMACS, RRWL outperforms LSCC and FastWClq
in terms of the average solution quality as well as the
best solution quality; moreover, it finds a new best-
known solution on MANN a81.clq.

2. on BHOSLIB, RRWL generally outperforms LSCC and
greatly outperforms FastWClq.

3. on large sparse graphs, RRWL is comparable with Fast-
WClq and greatly outperforms LSCC.

4. on the WDP graphs, the solution returned by RRWL in
any run was proved to be optimal by WLMC; moreover,
it locates the optimal solutions in a shorter time in many
cases.

Since these graphs vary greatly in the sizes as well as the
densities, our solver is much more robust than previous ones.

We also evaluate our solver on a number of real data sets
in the application of clustering aggregation. Clustering is the
task to partition a set of data objects into groups such that
objects in the same group are similar, while objects in differ-
ent groups are dissimilar. It is one of the most fundamental
problems in data mining. Clustering aggregation, also known
as ensemble clustering or consensus clustering, aims to com-
bine multiple base clusterings into a probably better one. For-
mally, given a set of n data objects O = {o1, o2, ..., on}, a
base clustering Ci on O is obtained by applying an exclu-
sive clustering algorithm with a specific set of input parame-
ters. Ci consists of k disjoint clusters ci1, ci2, ..., cik. These
clusters form a partitioning of O, i.e.,

⋃k
j=1 cij = O and

cip ∩ ciq = ∅ for all p 6= q. Hence a clustering is a parti-
tioning of the set O, and a cluster is a subset of O. Multiple
base clusterings can be generated by different clustering algo-
rithms with different parameters. Their qualities are generally
very different. The goal of clustering aggregation is to pur-
sue a better final clustering based on the information revealed
from these base clusterings.

We follow the idea of [Li and Latecki, 2012] to formulate
clustering aggregation as an MVWC problem, and evaluate
our solver in this scenario. Experimental results on a number
of real data sets demonstrate that our solver outperforms the
other state-of-the-art for solving the derived MVWC problem
and helps improve the final clustering results.

2 Preliminaries
Given an edge e = {u, v}, we say that u and v are neighbors,
and u and v are adjacent to each other. Also we use N(v) =

2In [Wang et al., 2016], there are LSCC and LSCC+BMS. LSCC
is better on DIMACS and BHOSLIB. LSCC+BMS is better on large
sparse graphs. For simplicity, we write both versions as LSCC if it
is understood from the context or there are no confusions.

3http://networkrepository.com/networks.php

{u|u and v are neighbors.} to denote the set of v’s neighbors.
A maximal clique is a clique which is not a subset of any other
clique. Given a weighting functionw : V 7→ R≥0, the weight
of a clique C, denoted by w(C), is defined to be

∑
v∈C w(v).

We use age(v) to denote the number of steps since last time
v changed its state (inside or outside the candidate clique).

2.1 The Benchmark
The DIMACS, BHOSLIB and large graphs were originally
unweighted. To obtain the corresponding MVWC instances,
researchers use the method in [Pullan, 2008]. For the i-th
vertex vi, w(vi) = (i mod 200) + 1. Also we compare
state-of-the-art MVWC solvers in winner determination and
clustering aggregation.

2.2 Multi-neighborhood Search
Usually for finding a good weighted clique, the local search
moves from one clique to another until the cutoff arrives,
then it returns the best clique that has been found. There are
three operators: add, swap and drop, which guide the local
search to move in the clique space. In [Fan et al., 2016], two
sets Sadd and Sswap were defined as below which ensures
that the clique property is preserved.

Sadd =

{
{v|v 6∈ C, v ∈ N(u) for all u ∈ C} if |C| > 0;
∅ if |C| = 0.

Sswap =

{ {(u, v)|u ∈ C, v 6∈ C, {u, v} 6∈ E,
v ∈ N(w) for all w ∈ C\{u}} if |C| > 1;
∅ if |C| ≤ 1.

We use ∆add, ∆swap and ∆drop to denote the increase of
w(C) for the operation add, swap and drop respectively.
Obviously, we have (1) for a vertex v ∈ Sadd, ∆add(v) =
w(v); (2) for a vertex u ∈ C, ∆drop(u) = −w(u); (3) for a
vertex pair (u, v) ∈ Sswap, ∆swap(u, v) = w(v)− w(u).

2.3 The Strong Configuration Checking Strategy
Recently, [Cai et al., 2011] proposed the configuration check-
ing (CC) strategy to reduce cycling. The CC strategy works
as follows. If a vertex is removed out of the candidate set, it
is forbidden to be added back into the candidate set until its
configuration has been changed. Typically, the configuration
of a vertex refers to the state of its neighboring vertices.

The CC strategy is usually implemented with a Boolean ar-
ray named confChange , where confChange(v) = 1 means
that v’s configuration has changed since last time it was re-
moved, and confChange(v) = 0 otherwise.

Later [Wang et al., 2016] modified CC into a more restric-
tive version, which is called strong configuration checking
(SCC), to deal with the MVWC problem. The main idea of
the SCC strategy is as follows: after a vertex v is dropped
from or swapped from C, it can be added or swapped back
into C only if one of its neighbors is added into C.

In details, the SCC strategy works as follows. (1) Initially
confChange(v) is set to 1 for each vertex v; (2) When v is
added, confChange(n) is set to 1 for all n ∈ N(v); (3) When
v is dropped, confChange(v) is set to 0; (4) When (u, v) ∈
Sswap are swapped, confChange(u) is set to 0.

Lastly, whether a vertex is allowed to be added or swapped
into the candidate clique is also referred to as its tabu status.
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3 A Revisiting based Restart Strategy
We first discuss the drawback of local search for MVWC, and
propose a novel condition in which the search will restart.

3.1 Drawback in Local Search for MVWC
Usually in local search for propositional satisfiability, vertex
cover, etc., the search will periodically pick a random unsat-
isfied constraint, and then selects a local move to satisfy this
constraint. Thus the search is able to traverse the search space
by such steps. In contrast, in the case of MVWC, the hard
constraints are always satisfied, and each local move tries to
maximize the clique weight. Hence, for MVWC the number
of neighboring solutions is relatively small, i.e., there are rela-
tively few possible local moves for the next step. Considering
the definitions of Sadd and Sswap, the search is not extensive.
It may be restricted in a cycle even though we have intelli-
gent tabu strategies, so restart is needed to improve extensive
search in local search for MVWC.

Now the problem is how to determine whether the search
is restricted in a cycle. Since local search method does not
allow us to memorize the whole search history, we have to
develop various heuristics to estimate this condition.

3.2 First Growing Step
Usually in local search there is an objective function value
which needs to be maximized. This function value will be
increased and decreased periodically during the search. In
current state-of-the-art MVWC solvers, the objective func-
tion value refers to the clique weight.

In each period, after the first step which increases the
clique weight, we detect revisiting (Line 27 in Algorithm 2).

Revisiting is not a sufficient condition for restart
One may think that the search should restart once a solution
is revisited, yet this is not the case. The local search some-
times revisits a solution due to the drop operations, and such
revisiting does not mean that the search is restricted in a cy-
cle. Hence, when a solution is revisited, we should consider
whether the clique is being extended or shrunk.

Even though a solution is revisited, we have little sense
whether the local search will choose to repeat a previous step.
If a candidate solution is revisited, with the tabu status of the
vertices nearby the same as before, then the selected local
move would simply repeat a previous step, i.e., the search is
probably restricted in a cycle, so restart is needed. Otherwise,
if a solution is revisited, with the tabu status of the vertices
nearby different from that before, the search can get rid of the
cycle easily, so restart is unreasonable.

Extending and shrinking periods
In our algorithm, we employ a predicate lastStepImproved
such that lastStepImproved = true iff the clique weight was
increased in the last step. Then we use this predicate to check
whether the clique is being extended or shrunk. Obviously
when a vertex is added, the search is in the extending period;
when a vertex is dropped, the search is in the shrinking pe-
riod. However, when a pair of vertices, namely (u, v), are
swapped, the clique may be extending or shrinking. More

specifically, if w(u) < w(v), the clique is extending; other-
wise the clique is shrinking.

If a solution is revisited together with the same
lastStepImproved value as before, then the search is quite
probably restricted in a cycle. In other words if we con-
sider revisiting only when lastStepImproved = true (or
lastStepImproved = false), the restart strategy may become
more reasonable.

Why only consider extending periods
Some intuitive analyses suggest that considering revisiting in
the extending period is more reasonable.

In the shrinking period, vertices are probably being
dropped. In both MN/TS and LSCC, when a vertex is se-
lected to be dropped, no tabu status is considered. So even
though a solution is revisited in this period, we are not cer-
tain whether the tabu status of the vertices nearby is close to
that before, therefore we are unsure whether the search is re-
stricted in a cycle.

In the extending period, vertices are being added or
swapped. In both MN/TS and LSCC, when a vertex is se-
lected to be added or swapped into the candidate clique, it
has to satisfy the tabu requirements. In this sense if a solution
is revisited in this period, it seems that the tabu requirements
fail to prevent the search from being restricted, so restart is
reasonable.

Why choose the first growing step
Suppose that a solution is visited in the first growing step and
later it is revisited in the second growing step. Obviously
these two situations have different recent histories, therefore
the tabu status of the latter situation may be different from
the that of the previous situation. So we are unsure whether
the search is restricted in a cycle. However, if both situations
occur in the first growing step, we are quite confident that the
search is restricted in a cycle.

Readers may think that our restart strategy may be too cau-
tious, i.e., the search may spend too much time in a non-
promising area. Yet experiments still show that our solver
restarts more frequently than previous solvers.

3.3 Implementations of Detecting Revisiting
We use a hash table to approximately detect revisiting. Since
the collisions, i.e., different solutions may share the same
hash entry, are rare in our settings, we do not resolve them.

Definition 1 Given a clique C and a prime number p, we de-
fine the hash value ofC, denoted by hash(C), as (

∑
vi∈C 2i)

mod p, which maps a clique C to its hash entry hash(C).

At the beginning, we calculate (2i mod p) iteratively with
different values of i, based on the proposition below.

Proposition 1 2i mod p = 2(2i−1 mod p) mod p.

Our solver will save these values in an array for later ref-
erences. Hence, in Theorem 2 below, the subformulas (2i

mod p) can be computed in constant complexity. So the hash
value of the current clique can be updated inO(1) complexity
as well.

Theorem 2 Let C be the current clique, then we have
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1. hash(C ∪ {vi}) = [hash(C) + (2i mod p)] mod p;
2. hash(C\{vi})=[hash(C) + p− (2i mod p)] mod p.
Throughout this paper, we set p = 109 + 7. If we use a

larger prime number, the chance of collision will decrease.
Thus, we set this parameter simply based on the memory ca-
pacity of our machines. With this prime number p, our hash
table consumes around 1 GB memory. While in our exper-
iments, our solver performs less than 3 × 108 steps in any
run. Therefore, given the 109 + 7 hash entries, the number of
collisions is negligible.

4 Random Walk for Dropping Vertices
In MN/TS and LSCC, when a vertex is selected to be added
or swapped into the candidate clique, it has to satisfy the tabu
requirements. Thus the tabu requirements guide the search to
move in different paths. However, when a vertex is selected
to be dropped, no tabu requirements exist and the one with
the smallest weight is chosen. Thus if a local optimum is
revisited, the candidate clique will probably be shrunk in the
same way as before, and thus it may probably repeat previous
steps.

In the case of adding and swapping, the clique weight may
increase and lead to a new best-found clique, so best-picking
is necessary. However, in the case of dropping, it is unclear
why greedy search is reasonable. In local search for proposi-
tional satisfiability, vertex cover etc., it is desired to break as
few hard constraints as we can. However, in local search for
MVWC, the clique weight constraint is soft, so the minimum
break heuristic may not be reasonable here.

In RRWL, when there are no options for the next step ex-
cept dropping vertices, we randomly drop one vertex from the
clique (See Line 22 in Algorithm 2). With random walk, even
though a local optimum is revisited, different sub-cliques will
be generated in different times, and later different add or
swap operations will be applied. The search will switch
to different cliques nearby and hence the local area will be
searched more thoroughly.

5 The RRWL Algorithm
The top level algorithm is shown in Algorithm 1, where the
localMove() procedure is shown in Algorithm 2.

Algorithm 1: RRWL
input : A graph G = (V,E,w) and the cutoff
output: The best clique that was found

1 C∗ ← C ← ∅; lastStepImproved ← true;
2 step← 1; confChange(v)← 1 for all v ∈ V ;
3 while elapsed time < cutoff do localMove() ;
4 return C∗;

In Algorithm 2, the vertices of the operations are explicit
from the context and thus omitted. All ties are broken in favor
of the oldest one just like LSCC. Notice that when the condi-
tions in Lines 9 or 18 hold, the clique weight was decreased
in the last step and is increased in this step, so this is the first
growing step.

Algorithm 2: localMove
1 if C = ∅ then
2 add a random vertex into C;
3 while Sadd 6= ∅ do add a random vertex from Sadd ;
4 lastStepImproved ← true;
5 firstGrowingStep ← false;
6 v ← a vertex in Sadd such that confChange(v) = 1 with

the biggest ∆add; otherwise v ← NL;
7 (u, u′)← a pair in the Sswap such that

confChange(u′) = 1 with the biggest ∆swap;
otherwise (u, u′)← (NL, NL);

8 if v 6= NL then
9 if lastStepImproved = false then

10 firstGrowingStep ← true;
11 if (u, u′) = (NL, NL) or ∆add > ∆swap then

C ← C ∪ {v}; else C ← C\{u} ∪ {u′};
12 lastStepImproved ← true;
13 else
14 if (u, u′) = (NL, NL) or ∆swap < 0 then
15 if w(C) > w(C∗) then C∗ ← C;
16 lastStepImproved ← false;
17 else
18 if lastStepImproved = false then
19 firstGrowingStep ← true;
20 lastStepImproved ← true;
21 x← a vertex in C with the biggest ∆drop;
22 if (u, u′) = (NL, NL) then drop a random vertex ;
23 else
24 if ∆drop > ∆swap then C ← C\{x};
25 else C ← C\{u} ∪ {u′};

26 apply SCC rules; step← step+ 1;
27 if firstGrowingStep = true then
28 mark hash(C);
29 if hash(C) remarked then drop all vertices ;

6 Evaluations on Hand-crafted Graphs
To evaluate individual impacts, we disable the random walk
strategy in RRWL and develop another solver named RSL.

6.1 Experimental Setup
For LSCC, the search depthLwas set to 4,000. When solving
large crafted graphs, LSCC employs the BMS heuristic, and
the parameter k was set to 100, as in [Wang et al., 2016].
For FastWClq, the parameters k0 and kmax for the dynamic
BMS heuristic were set to 4 and 64 respectively, as in [Cai
and Lin, 2016]. WLMC was compiled by gcc 4.4.7 and all
other solvers were compiled by g++ 4.7.3. The experiments
on DIMACS, BHOSLIB and WDP graphs were conducted
on a cluster equipped with Intel(R) Xeon(R) CPUs X5650
@2.67GHz with 16GB RAM, running Red Hat Santiago OS.
The experiments on the large crafted graphs were conducted
on a cluster equipped with Intel Xeon E5-2670 v3 2.3GHz
with 32GB RAM, running CentOS6.
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Each solver was executed on each instance with seeds from
1 to 100 on DIMACS and BHOSLIB, from 1 to 10 on the
large crafted graphs and from 1 to 10 on WDP graphs, as in
[Wang et al., 2016], [Cai and Lin, 2016] and [Jiang et al.,
2017] respectively. Since WLMC is an exact solver, it was
executed only once on each WDP instance. The cutoff was
set to 500s for RSL and RRWL on the WDP graphs, while the
cutoff was set to 1,000s for all solvers on all other instances.
For each algorithm (except WLMC) on each instance in DI-
MACS, BHOSLIB and large crafted graphs, we report the
maximum weight (“wmax”) and averaged weight (“wavg”)
of the cliques found by the algorithm. To make the compar-
isons clearer, we also report the difference (“δmax”) between
the maximum weight of the cliques found by RRWL and that
found by LSCC or FastWClq. Similarly δavg represents the
difference between the averaged weights. A positive differ-
ence indicates that RRWL performed better, while a negative
value indicates the opposite. For RRWL, RSL and WLMC on
each WDP instance, since they returned the same quality so-
lutions in all runs, we report the average time needed to locate
the best-found solutions in each group.

6.2 DIMACS and BHOSLIB
These graphs are dense. Experimental results show that

1. on each instance in DIMACS, RRWL performs at least
as well as LSCC,

2. on several instances in DIMACS, RRWL substantially
outperforms both LSCC and FastWClq;

3. in BHOSLIB, RRWL performs generally better than
LSCC and greatly outperforms FastWClq.

Further experiments show that LSCC performs worse than
RSL and RSL performs worse than RRWL, so both the restart
and the random walk strategies have their own contributions.
For the sake of space, we only list all the graphs on which
RRWL and LSCC found different wmax or wavg in Table 1.
Notice that on MANN a81.clq, we found wmax = 111,341.
So far as we know, this is a new best-known solution.

Now we analyze the performances. (1) When local search
is done on dense graphs, Sadd and Sswap are big, so there are
many options for the next step. In this situation revisiting in
the first growing step is not so frequent. (2) In these graphs,
the vertex degrees are usually bigger than 400 and close to
each other, and the vertex weights are in uniform distribution.
Therefore, even though revisiting in the first growing step oc-
curs, it is relatively easy to get rid of the cycles. (3) Since DI-
MACS and BHOSLIB graphs were originally derived from
hard combinatorial models, they present complicated struc-
tures. Therefore better intensive search is needed and thus
random walk improves the performances. (4) Since the ver-
tex degrees are close, the bounds in FastWClq are loose, so
graph reduction is ineffective.

6.3 Large Crafted Graphs
We used the benchmark in [Cai and Lin, 2016]. Some graphs
have millions of vertices and dozens of millions of edges.
Also they are very sparse. The average degree is usually
around 10∼50. There is a recent solver named LMY-GRS

Table 1: Results on BHOSLIB and DIMACS

Graph FastWClq LSCC RRWL δmax

wmax(wavg) wmax(wavg) wmax(wavg) (δavg)
frb35-17-2.clq 3645 (3622.49) 3738 (3737.13) 3738 (3737.71) 0 (0.58)
frb35-17-4.clq 3567 (3541.59) 3683 (3676.28) 3683 (3683.00) 0 (6.72)
frb40-19-1.clq 3885 (3885.00) 4063 (4061.12) 4063 (4062.30) 0 (1.18)
frb40-19-2.clq 4007 (4007.00) 4112 (4108.36) 4112 (4109.95) 0 (1.59)
frb40-19-3.clq 3984 (3984.00) 4115 (4109.81) 4115 (4113.20) 0 (3.39)
frb40-19-4.clq 3963 (3963.00) 4136 (4133.92) 4136 (4134.68) 0 (0.76)
frb40-19-5.clq 3914 (3914.00) 4118 (4116.72) 4118 (4117.80) 0 (1.08)
frb45-21-1.clq 4531 (4531.00) 4760 (4736.03) 4760 (4749.42) 0 (13.39)
frb45-21-2.clq 4447 (4447.00) 4784 (4775.62) 4784 (4772.40) 0 (-3.22)
frb45-21-3.clq 4382 (4379.60) 4765 (4751.61) 4765 (4755.70) 0 (4.09)
frb45-21-4.clq 4357 (4339.14) 4799 (4753.47) 4799 (4779.28) 0 (25.81)
frb45-21-5.clq 4463 (4463.00) 4779 (4778.53) 4779 (4778.24) 0 (-0.29)
frb50-23-1.clq 5136 (5134.05) 5494 (5468.15) 5494 (5467.60) 0 (-0.55)
frb50-23-2.clq 4955 (4955.00) 5451 (5420.88) 5462 (5430.10) 11 (9.22)
frb50-23-3.clq 5077 (5077.00) 5486 (5468.34) 5486 (5470.17) 0 (1.83)
frb50-23-4.clq 5041 (5041.00) 5454 (5443.05) 5453 (5440.46) -1 (-2.59)
frb50-23-5.clq 5003 (5003.00) 5498 (5481.30) 5498 (5480.93) 0 (-0.37)
frb53-24-1.clq 5207 (5176.92) 5670 (5632.23) 5670 (5636.02) 0 (3.79)
frb53-24-2.clq 5240 (5220.40) 5688 (5661.47) 5707 (5661.61) 19 (0.14)
frb53-24-3.clq 5086 (5073.96) 5655 (5590.43) 5640 (5600.06) -15 (9.63)
frb53-24-4.clq 5232 (5230.32) 5706 (5639.48) 5706 (5641.36) 0 (1.88)
frb53-24-5.clq 5166 (5166.00) 5659 (5618.29) 5658 (5624.20) -1 (5.91)
frb56-25-1.clq 5385 (5385.00) 5886 (5819.00) 5916 (5826.95) 30 (7.95)
frb56-25-2.clq 5328 (5311.68) 5886 (5810.44) 5873 (5816.35) -13 (5.91)
frb56-25-3.clq 5404 (5358.92) 5815 (5771.20) 5842 (5782.24) 27 (11.04)
frb56-25-4.clq 5442 (5442.00) 5866 (5815.06) 5875 (5819.15) 9 (4.09)
frb56-25-5.clq 5352 (5338.28) 5792 (5746.22) 5810 (5764.20) 18 (17.98)
frb59-26-1.clq 5753 (5753.00) 6575 (6532.31) 6591 (6529.23) 16 (-3.08)
frb59-26-2.clq 5904 (5859.12) 6645 (6541.34) 6595 (6542.01) -50 (0.67)
frb59-26-3.clq 5800 (5749.98) 6571 (6496.67) 6568 (6515.71) -3 (19.04)
frb59-26-4.clq 5757 (5757.00) 6592 (6478.70) 6592 (6490.09) 0 (11.39)
frb59-26-5.clq 5864 (5798.22) 6581 (6508.24) 6559 (6509.69) -22 (1.45)
brock800 4.clq 2970 (2970.00) 2971 (2970.15) 2971 (2971.00) 0 (0.85)
C1000.9.clq 8419 (8419.00) 9254 (9245.81) 9254 (9254.00) 0 (8.19)
C2000.9.clq 9557 (9557.00) 10999 (10908.03) 10999 (10931.91) 0 (23.88)
keller6.clq 5749 (5749.00) 7972 (7759.98) 7972 (7829.68) 0 (69.7)
MANN a27.clq 12258 (12253.57) 12283 (12282.97) 12283 (12282.99) 0 (0.02)
MANN a45.clq 34105 (34104.26) 34254 (34240.78) 34260 (34254.11) 6 (13.33)
MANN a81.clq 110540 (110528) 111113 (111082) 111341 (111279) 228 (197)
p hat1500-3.clq 9857 (9857.00) 10321 (10320.48) 10321 (10321.00) 0 (0.52)

[Fan et al., 2016], and we adopt its data structures. Since it
falls behind RRWL4, so we omit it in this section.

Experimental results show that RRWL and FastWClq re-
turned the same wmax and wavg on all instances except 5 in-
stances (See Table 2). Moreover, both of them outperform
LSCC+BMS greatly. Further experiments show that RSL
and RRWL returned the same values on all instances except
ca-hollywood-2009. On this instance, RSL and Fast-
WClq returned the same values. For the sake of space, in Ta-
ble 2, we simply list some largest graphs in this benchmark.

Thanks to the power-distribution law, graph reduction is
powerful. Therefore, FastWClq finds good solutions, and
is able to confirm the optimality of the returned solution on
many graphs. In contrast, the local search in LSCC+BMS is
seriously restricted, because both Sadd and Sswap are very
small. Hence, LSCC+BMS falls behind FastWClq.

RRWL is a pure local search solver, so it must be able
to traverse the search space quite comprehensively. Here,
the restart strategy guides the search to different parts of the
search space. Since the graph structures are relatively simple
in this benchmark, so better intensive search is not needed
and thus the contribution of random walk is not observed.

4https://github.com/Fan-Yi/Restart-and-Random-Walk-in-
Local-Search-for-MVWC-in-Large-Sparse-Graphs
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Table 2: Results on Large Crafted Graphs

Graph LSCC+BMS FastWClq RRWL δmax

wmax(wavg) wmax(wavg) wmax(wavg) (δavg)

ca-hollywood-2009 222720 (213219) 222720 (222720) 222720 (139441) 0 (-83278)
inf-roadNet-CA 668 (632.90) 752 (752.00) 752 (752.00) 0 (0)
inf-roadNet-PA 599 (599.00) 669 (669.00) 669 (669.00) 0 (0)
inf-road-usa 598 (596.00) 766 (766.00) 766 (766.00) 0 (0)
soc-BlogCatalog 4803 (4803.00) 4803 (4795.80) 4803 (4803.00) 0 (7.2)
soc-flickr 7083 (7083.00) 7083 (6986.80) 7083 (7083.00) 0 (96.2)
soc-FourSquare 3064 (3051.60) 3064 (3064.00) 3064 (3051.00) 0 (-13)
soc-livejournal 15599 (3806.80) 21368 (21368.00) 21368 (21368.00) 0 (0)
soc-orkut 5452 (3424.10) 5452 (5452.00) 5452 (5088.30) 0 (-363.7)
soc-pokec 2341 (2145.10) 3191 (3191.00) 3191 (3191.00) 0 (0)
socfb-A-anon 2602 (2310.90) 2872 (2872.00) 2872 (2872.00) 0 (0)
socfb-B-anon 2513 (2032.40) 2662 (2662.00) 2662 (2662.00) 0 (0)
socfb-uci-uni 838 (699.80) 1045 (1045.00) 1045 (1045.00) 0 (0)
sc-ldoor 4060 (3987.20) 4081 (4081.00) 4081 (4081.00) 0 (0)
tech-as-skitter 5703 (5487.90) 5703 (5703.00) 5703 (5703.00) 0 (0)
web-wikipedia2009 3455 (2146.80) 3891 (3891.00) 3891 (3891.00) 0 (0)

6.4 Winner Determination Problem Graphs
An important application of MVWC is to solve the winner
determination problem (WDP), because WDP can naturally
be formulated as MVWC.

We compared RRWL and RSL with WLMC on the WDP
benchmark5 provided in [Lau and Goh, 2002], which has
been used to test MVWC algorithms. The benchmark con-
tains 499 instances with up to 1,500 items and 1,500 bids,
and can be divided into 5 groups by the item number and
the bid number. Each group is labeled as REL-m-n, where
m is the number of items and n is the number of bids. The
REL-1000-1500 group contains 99 instances, while all other
groups contain 100 instances. Thus with 10 seeds, both RSL
and RRWL performed a total of 4,990 runs in this benchmark.

When formulated as MVWC, the graphs contain up to
1,500 vertices with density from 0.06 to 0.33. Therefore the
average density of WDP graphs is significantly smaller than
that of the DIMACS and BHOSLIB graphs, and bigger than
that of the large crafted graphs.

Experimental results show that the solutions returned by
RSL and RRWL were all proved to be optimal by WLMC,
i.e., both solvers found the optimal solutions in all runs. In
Table 3, we present the averaged time (seconds) needed to
locate the respective solutions for each solver in each group
(“LocateTime”). Since WLMC is able to confirm the optimal-
ity of the returned solution, we also report the time needed to
find and prove the optimal solution (“RunTime”). From this
table, we can find that our solvers often locate the optimal
solutions in a shorter time. Also it may be the first time that
incomplete solvers achieve state-of-the-art in this benchmark.

Since the density of these graphs lie between those graphs
in the previous benchmarks, the local search is moderately
restricted, so the restart strategy guides the search away from
cycling and thus avoids a significant amount of useless steps.
Also because of the relatively low density, the bounds in
WLMC are tight and the branching technique is able to an-
alyze the graph structures effectively, so WLMC performs
well. Although the WDP graphs have practical backgrounds,
they involve randomness. Therefore they still serve as hand-

5All the vertex weights are rounded down to an integer just like
[Jiang et al., 2017].

Table 3: Experimental results on WDP graphs.

Graph WLMC RRWL RSL
LocateTime RunTime LocateTime LocateTime

REL-500-1000 63.88 82.98 13.60 12.13
REL-1000-1000 1.44 1.98 1.02 1.09
REL-1000-500 0.033 0.049 0.055 0.056
REL-1000-1500 1.14 1.61 1.37 1.36
REL-1500-1500 1.76 2.38 1.29 1.25

crafted graphs. The real-world impacts of finding an MVWC
on them are not clear.

6.5 Restart Frequencies
Further experiments show that sparse graphs lead to high
restart frequencies. For example on frb59-26-5.clq
whose density is 0.89, our solver restarts every 1,300 steps on
average; on in143.wclq whose density is 0.31, it restarts
every 150 steps; and on soc-livejournal whose density
is 3.4× 10−7, it restarts every 60 steps.

7 Evaluations in Clustering Aggregation
We follow the essential idea of [Li and Latecki, 2012] to
formulate clustering aggregation as an MVWC problem. In
the first experiment, we compare RRWL with state-of-the-
art MVWC solvers on those graphs derived from clustering
aggregation on real data sets. Experimental results show
that our solver RRWL outperforms all other solvers6. In
the second experiment, we embed our solver into the algo-
rithm framework of [Li and Latecki, 2012] (CA+RRWL7) to
evaluate the overall performance, and compare it to other re-
cent clustering aggregation methods. Experiments show that
CA+RRWL is competitive.

7.1 Recent Clustering Aggregation Algorithms
The COMUSA algorithm proposed in [Mimaroglu and Erdil,
2011] first constructs a similarity graph based on the co-
association matrix. Then it identifies new clusters by itera-
tively selecting a pivot data object and expanding the clus-
ter with its immediate free neighbors which are most similar
to the pivot. [Huang et al., 2015] proposed two algorithms
termed weighted evidence accumulation clustering (WEAC)
and graph partitioning with multi-granularity link analysis
(GP-MGLA). WEAC integrates the reliability of each base
clustering into the co-association matrix and uses agglom-
erative algorithms to obtain the final clustering. GP-MGLA
models the three levels of granularity in clustering aggrega-
tion, i.e., data objects, clusters and base clusterings, in a sin-
gle bipartite graph, and partitions it to divide data objects into
the final clusters. [Huang et al., 2016a] proposed to spar-
sify the co-association matrix of “microcluster” with the k-
nearest neighbors strategy and learn new similarities based

6Since WLMC only deals with integer weights, we do not in-
clude it in this section.

7https://github.com/Fan-Yi/Restart-and-Random-Walk-in-
Local-Search-for-MVWC-in-Clustering-Aggregation
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Table 4: Data Sets for Experimental Evaluation

Data set #Instance #Attribute #Class
Iris 150 4 3
Zoo 101 16 7
Semeion 1593 256 10
PD 10992 16 10
Vowel 990 10 11
ISOLET 7797 617 26
Letter 20000 16 26

Table 5: Base Clusterings and Graph Information

Data set k #Clustering #Cluster |V | |E| davg
Iris 2:1:10 18 108 108 4355.5 80.7
Zoo 3:1:11 18 126 126 6084 96.6
Semeion 6:1:14 18 180 180 10643 118.3
PD 6:1:14 18 180 180 11707 130.1
Vowel 7:1:15 18 198 198 14869.1 150.2
ISOLET 22:1:30 18 468 468 89005 380.4
Letter 22:1:30 18 468 468 86418.7 369.3

on random walks. Two algorithms, probability trajectory ac-
cumulation (PTA) and probability trajectory based graph par-
titioning (PTGP) were proposed to obtain the final clustering
with the learned similarities. PTA is based on agglomerative
algorithms, while PTGP is based on the graph partitioning
technique. [Huang et al., 2016b] formulated clustering aggre-
gation as a binary linear programming problem and proposed
a solver based on max-product belief propagation on a factor
graph.

7.2 Experimental Setup
We now introduce the data sets and the MVWC formulation.

The Data Sets
The evaluations are performed on 7 real data sets from the
UCI machine learning repository [Lichman, 2013], including
Iris, Zoo, Semeion Handwritten Digit (Semeion), Pen Digits
(PD), Vowel, ISOLET and Letter Image Recognition (Letter).

The detailed information of these data sets are given in Ta-
ble 4. For instance, Iris has 150 data objects; each of them
has 4 attributes; and the data objects are from 3 classes.

The MVWC Formulation
To generate multiple base clusterings for each data set, we
use two classic clustering algorithms, k-means and complete-
linkage, and vary the desired cluster number k in the range
shown in Table 5. For instance, on Iris data set, we vary
k from 2 to 10 with a step size of 1 for both k-means and
complete-linkage algorithms. As a result, we obtain 18 base
clusterings with a total of 108 clusters.

Then a simple undirected and vertex-weighted graph is
constructed. Each vertex represents a cluster. If two clus-
ters ci and cj , which are from two different clusterings, con-
tain some common data objects, we say that they are overlap-
ping. For any two non-overlapping clusters, there is an edge
connecting the vertices representing them. For robustness in
our experiments, we tolerate slight overlap between clusters.
That is, for the adjacency matrix A = (aij)n×n, aij = 1 if
|ci∩cj |

min(|ci|,|cj |) < 0.05, and aij = 0 otherwise. The basic statis-
tics of the derived graph of each data set are given in Table
5. Note that since k-means may return different clusterings

Table 6: Average Performance in Terms of MVWC Weight

Method Iris Zoo Semeion PD Vowel ISOLET Letter
MWBC 127.5 64.9 192 5265.7 319.5 1353.4 5014.8
SAMC 132.9 73.1 205.2 5518.5 347.9 1497.6 5322.7
FastWClq 132.9 73.1 205.8 5532.7 347.7 1422.4 5184.4
LSCC 132.9 73.1 205.8 5535.2 348.1 1498 5364.2
LSCC+BMS 132.9 73.1 205.8 5535.2 348.1 1497.2 5364.5
RRWL 132.9 73.1 205.8 5535.2 348.1 1500.1 5364.5

for the same data set and the same k due to its randomness in
initialization, we construct 100 graphs for each data set and
report the average edge number and average vertex degree
davg. Obviously, the derived graphs are all very dense.

The weight of each vertex is defined as the sum of the sil-
houette coefficients of the data objects belonging to the cor-
responding cluster. Specifically, in a certain clustering, the
silhouette coefficient for the tth data object, St, is defined as
St = bt−at

max(at,bt)
where at is the average distance from the

tth data object to the other data objects in the same cluster
as t, and bt is the minimum average distance from the tth
data object to data objects in a different cluster, minimized
over clusters. The weight wi on vertex i, which represents
the cluster ci is defined as: wi =

∑
t∈ci St.

8

7.3 Comparisons of Different MVWC Solvers
In the first experiment, we compare RRWL with state-of-the-
art MVWC solvers on the derived graphs. In consideration of
the randomness of k-means, we generate 10 graphs for each
data set and report the average performance.

The algorithms for comparison include FastWClq, LSCC,
LSCC+BMS, simulated annealing based on maximal clique
(SAMC) [Li and Latecki, 2012], and MWBC, which serves
as the baseline, just returns the set of vertices belonging to
the same base clustering and having the maximum sum of
weights. For SAMC, we use the same parameters as in [Li
and Latecki, 2012], i.e., q = 0.3, β = 0.999, and iteration
number n = 100. The parameters of FastWClq, LSCC and
LSCC+BMS are the same as before.

FastWClq, LSCC, LSCC+BMS and our solver are imple-
mented in C++ and invoked from MATLAB on a PC with
Intel(R) Core(TM) i7 processor up to 3.4 GHz and 16 GB
RAM. We set the cut off to be 10 minutes and used one seed.
Results Table 6 shows that RRWL is the unique solver which
finds best cliques in all data sets, which shows the robustness
and superiority of our solver. Comparing Tables 5 and 6 we
find that the bigger the graph is, the more difficult it is to find
an MVWC. For example, most solvers work well on Iris and
Zoo while very few solvers work well on ISOLET and Let-
ter. This also shows that our algorithm is more scalable. We
also evaluate RSL in this scenario, but find no difference from
RRWL. In fact the clustering aggregation graphs are simple,
so random walk for better intensive search is not needed.

7.4 Comparisons of Final Clustering Results
In the second experiment, we replace the SAMC solver
with ours in the algorithm framework of [Li and Latecki,

8Sometimes wi may be a negative number. In this situation, we
assign 0 to wi and remove all the edges incident to i.
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Table 7: Average Performance in Terms of Time (milliseconds) Con-
sumed to Find the Best Solution

Method Iris Zoo Semeion PD Vowel ISOLET Letter
FastWClq 147204 220264 13794 157859 135126 331697 286414
LSCC 80 228 165 136 118 152388 94115
LSCC+BMS 79 1248 273 101 312 101126 22374
RRWL 352 290 238 225 250 124931 59087

Table 8: Average Performance of Clustering Aggregation in Terms
of NMI

Method Iris Zoo Semeion PD Vowel ISOLET Letter
COMUSA 0.346 0.577 0.395 0.509 0.409 0.534 0.360
WEAC+SL 0.688 0.687 0.419 0.496 0.404 0.575 0.274
WEAC+CL 0.700 0.688 0.434 0.516 0.412 0.588 0.280
WEAC+AL 0.700 0.696 0.434 0.534 0.411 0.596 0.281
GP-MGLA 0.706 0.692 0.445 0.548 0.411 0.602 0.291
ECFG 0.533 0.698 0.487 0.575 0.409 0.652 0.282
PTA+SL 0.345 0.668 0.431 0.463 0.375 0.563 0.249
PTA+CL 0.331 0.644 0.475 0.556 0.402 0.640 0.301
PTA+AL 0.348 0.660 0.473 0.541 0.399 0.639 0.301
PTGP 0.754 0.687 0.469 0.554 0.403 0.616 0.274
CA+SAMC 0.700 0.712 0.552 0.676 0.427 0.698 0.359
CA+RRWL 0.700 0.716 0.553 0.685 0.429 0.702 0.366

2012] to evaluate its performance for clustering aggrega-
tion (CA+RRWL). The cut off time is set to be 5 min-
utes. The comparison clustering aggregation algorithms in-
clude COMUSA [Mimaroglu and Erdil, 2011], WEAC+SL
[Huang et al., 2015], WEAC+CL [Huang et al., 2015],
WEAC+AL [Huang et al., 2015], GP-MGLA [Huang et al.,
2015], ECFG [Huang et al., 2016b], PTA+SL [Huang et al.,
2016a], PTA+CL [Huang et al., 2016a], PTA+AL [Huang
et al., 2016a], PTGP [Huang et al., 2016a] and CA+SAMC
[Li and Latecki, 2012]. For these algorithms, we follow the
author-recommended or default settings and parameters.

Note that COMUSA, ECFG, CA+SAMC and our
CA+RRWL can automatically determine the cluster number
in the aggregated clustering, while the rest algorithms need
it as an input parameter. For fair comparisons, we follow
the experimental protocol in [Huang et al., 2016b] and spec-
ify the cluster number for those “non-automatic” algorithms
to be the one automatically estimated by CA+SAMC. For
CA+SAMC and our CA+RRWL, there may be a couple of
data objects which are not covered by the aggregated cluster-
ing or are covered by more than one cluster due to the slight
overlap. In that case, we perform the post-processing [Li and
Latecki, 2012] to assign such data objects to their nearest
clusters.

The quality of the final aggregated clustering is measured
in terms of the normalized mutual information (NMI) [Strehl
and Ghosh, 2002]. A higher NMI indicates that the aggre-
gated clustering matches the ground-truth class memberships
better. In consideration of the randomness of k-means, we
run experiment on each data set 100 times with one seed and
report the average NMI.
Results As shown in Table 8, CA+RRWL consistently im-
proves CA+SAMC which shows the contributions of our
solver. Also CA+RRWL is very competitive in clustering ag-
gregation compared with other state-of-the-art techniques.

8 Conclusions and Future Work
In this paper, we developed a local search MVWC solver.
Experimental results show that RRWL outperforms state-of-
the-art solvers on DIMACS and reports a new best-known
solution. It is the unique solver which achieves state-of-the-
art performances in both standard and large crafted graphs,
as well as the graphs derived from the winner determination
problem. Also it helps improve the final clustering results on
real data sets.

The main contributions include: (1) a restart strategy to
improve extensive search; (2) a random walk strategy to im-
prove intensive search; (3) a fast approximate hash table to
detect revisiting.

As for future works we will study variants of the restart
strategy in the context of MVWC. Also, we will apply these
methods to solve other problems.
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