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Abstract
Crowdfunding is an emerging Internet application
for creators designing campaigns (projects) to col-
lect funds from public investors. Usually, the lim-
ited budget of the creator is manually divided into
several perks (reward options), that should fit var-
ious market demand and further bring different
monetary contributions for the campaign. There-
fore, it is very challenging for each creator to de-
sign an effective campaign. To this end, in this pa-
per, we aim to enhance the funding performance of
the newly proposed campaigns, with a focus on op-
timizing the product supply of perks. Specifically,
given the expected budget and the perks of a cam-
paign, we propose a novel solution to automatically
recommend the optimal product supply to every
perk for balancing the expected return of this cam-
paign against the risk. Along this line, we define it
as a constrained portfolio selection problem, where
the risk of each campaign is measured by a multi-
task learning method. Finally, experimental results
on the real-world crowdfunding data clearly prove
that the optimized product supply can help improve
the campaign performance significantly, and mean-
while, our multi-task learning method could more
precisely estimate the risk of each campaign.

1 Introduction
With the rapid development of the Internet, crowdfunding,
which provides a revolutionary way to support ideas and cam-
paigns across a wide range of domains (e.g. technology, film,
art), has rapidly risen in popularity [Gerber and Hui, 2013].
It was estimated that the global crowdfunding industry has
raised more than US$34 billion for millions of campaigns in
2015, and this market share may have surpassed venture cap-
ital in the year of 2016 [Barnett, 2015].

When launching a campaign (project) on crowdfunding
platforms, like Kickstarter and Indiegogo, the creators (in-
dividuals or startups) want to solicit as many funds as pos-
sible or expand their awareness from investors (i.e., backers,
contributors, buyers) by carefully showing their stories, goals
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Figure 1: An example of the campaign (Indiegogo.com).

(funding amount), reward options (often vowing future prod-
ucts) and so on. Even though, statistics show that only around
40% of the campaigns succeed in reaching their pledged goals
[Li et al., 2016]. Therefore, predicting the success rate of a
campaign and inferring the impacts of specific factors on in-
vestor decision (e.g., the campaign descriptions, the social
networks of creators) have become research hotspots.

Since the investors in crowdfunding are sufficiently het-
erogeneous in product valuations, a campaign usually offers
a variety of rewards in the form of perks [Hu et al., 2015] for
soliciting more funds. For instance, as shown in Figure 1, the
creator of this campaign divided her budget and offered a line
of perks with different levels of prices (e.g. $129), product
rewards (e.g. one headphone) and the claimed product sup-
ply (e.g. 500 for Perk 1) to maximize the expected funding
or awareness. However, the problem of how to automatically
help creators optimally divide their budgets according to the
market states, i.e. by optimizing the product supply of each
perk, remains pretty much open. Indeed, it is very challeng-
ing to recommend an appropriate product supply to each perk
in a campaign. First, the choice of the product supply for
each perk is limited due to the entire budget of one campaign.
Second, it is difficult to estimate the return and risk before the
campaign is finished, since the investments are potentially af-
fected by many static and temporal factors, such as the perk
or campaign descriptions and the funding dynamics.

To address these challenges, in this paper, we propose a
novel solution to automatically recommend the optimal prod-
uct supply to each pre-defined perk (including the prices and
the reward products are given) so as to maximize the ex-
pected return and minimize the risk of the campaign, simul-
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taneously. Along this line, inspired by the modern portfolio
theory [Markowitz, 1952; Wang and Zhu, 2009], we first de-
fine it as a constrained portfolio optimization problem, where
the constraint is the budget of the campaign. Then, consid-
ering the relevance and heterogeneity among the perks when
attracting investments, we propose a trace-norm multi-task
learning method to estimate the future return for each cam-
paign. In this way, the risk on the settings of product supply to
the perks/campaigns could also be estimated. Next, by solv-
ing the optimization problem with Alternating Optimization
Method, the optimal product supply can be recommended to
each perk in a new campaign. Finally, we conduct exten-
sive experiments on the real-world crowdfunding data that
was crawled from Indiegogo.com. The results clearly prove
that the optimized product supply can help improve the future
performance of campaigns significantly, and meanwhile, our
multi-task learning method could more precisely estimate the
investment (risk) of each campaign setting. To the best of our
knowledge, this is the first comprehensive attempt at assisting
creators to enhance the performance of newly proposed cam-
paigns, with a focus on optimizing the product supply from a
data-driven way, and this idea can also be applied on optimiz-
ing other features of the campaign.

2 Related Work
The related studies can be grouped into three categories:
Crowdfunding, Portfolio Selection and Multi-task Learning.

Crowdfunding. Since the vast majority of crowdfund-
ing platforms follow the “all or nothing” rule, most of the
studies in this category focus on predicting the funding re-
sults, i.e., whether a campaign will succeed or not [Li et
al., 2016], what factors influence the result [Lu et al., 2014;
Mitra and Gilbert, 2014], and the contribution behaviors
[Zhao et al., 2017]. For instance, [Li et al., 2016] formu-
lated the campaign success prediction as a survival analy-
sis problem and applied the censored regression-based solu-
tion. To explore the influenced features, [Mitra and Gilbert,
2014] found that the description language used in the cam-
paign also has surprising predictive power, and even account-
ing for 58.56% of the variance around successful funding.
Recently, [Zhao et al., 2017] used a sequential approach to
model market state of funding projects (e.g., hot and cold),
and further predicted the bidding behaviors. With the suc-
cess of crowdfunded campaigns, it is important to understand
what drives people to either create or fund these campaigns.
For instance, the desire to raise funds and expand awareness
of the products are two of the major motivations of creators,
according to the interviews given by [Gerber and Hui, 2013].
In [Hu et al., 2015] , the authors also claimed that the in-
vestors are sufficiently heterogeneous in their product valu-
ations, and the creator should offer a line of products in the
campaign. These studies all contribute some novel insights
on campaign/perk design. Though it is also possible for the
creators to get help from the manual instructions1, to the best
of our knowledge, the problem of how to automatically help
creators design more attractive campaigns according to cur-

1https://www.indiegogo.com/partners

Table 1: Several important mathematical notations.

Notations Type Description

M number the number of campaigns in the market
ni number the number of perks in campaign i
L number the number of learning tasks
Pi vector pik is the price of the k-th perk in campaign i
Si vector sik is the given product supply of the perk
Ei vector eik is the reward of the k-th perk in campaign i
Ci vector cik is the number of investments under the setting sik
hi vector hik is 1 or the price of the k-th perk in campaign i
Ct vector each entry is the label (e.g. cik) of one perk
Xt matrix each row stores the feature vector of one perk

C′
i vector c′ik is the number of investments under the setting s′ik

C′
t vector the estimated number of investments (e.g. c′ik) of one perk

S′
i vector s′ik is the optimized product supply

Wt matrix L rows matrix, contains the importance of each feature to every task

rent market status, e.g., by optimizing the product supply of
each perk, remains pretty much open.

Portfolio Selection. Modern portfolio theory is a mathe-
matical framework for assembling a portfolio of assets such
that the expected return is maximized for a given risk, and
it is built upon the seminal work of Markowitz [Markowitz,
1952]. Indeed, researchers are very much interested in in-
vestigating new methods from diverse perspectives (e.g. de-
veloping novel approaches for quickly selecting portfolios) to
extend/improve this theory [Shen et al., 2015], and the port-
folio analysis has become an important method in finance and
economics. For instance, [Luo et al., 2011] viewed each in-
vestee as a portfolio of investors, and evaluated the risk of an
investee based on risk preferences of investors. Similar ideas
inspired by portfolio selection have also been adopted in other
domains, e.g., solving hard computational problems [Silver-
thorn and Miikkulainen, 2010], information retrieval [Wang
and Zhu, 2009] and loan recommendation [Zhao et al., 2016].

Multi-task Learning. Multi-task learning (MTL) per-
forms well in classification and regression by considering the
related tasks simultaneously and utilizing the cross-task in-
formation [Caruana, 1998; Xu et al., 2015]. Among existing
MTL methods, the regularization-based multi-task learning is
one of the main research directions. These methods share the
similar framework but choose different regularization terms
(e.g. L1-norm) according to the task relationships [Zhou et
al., 2011]. Since MTL usually results in improved learning
efficiency and prediction accuracy, it has been used in var-
ious fields, i.e., stock selection [Ghosn and Bengio, 1997],
dynamic trajectory regression [Huang et al., 2014], real estate
prediction [Zhu et al., 2016], and natural language processing
[Collobert and Weston, 2008].

3 Product Supply Optimization
In this section, we first detail the problem of product sup-
ply optimization in crowdfunding, and then show the way of
solving this problem by a constrained portfolio selection and
multi-task learning. For better illustration, Table 1 lists some
mathematical notations, the transverse line distinguishes the
input and output variables, where the variables in upper part
are given (input variables), and the rest variables need to be
learnt (output variables).

In crowdfunding, what the creators are concerned most is
the success of their campaigns. In this paper, we aim to assist
these creators to enhance the performance of their newly pro-
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posed campaigns by optimizing the product supply of each
perk. Specifically, the problem can be defined as:

Problem Formulation. Given the entire budget Bi from
the creator to campaign i, the perk settings (including the
class number of perks ni in this campaign, the prices
Pi = {pi1, pi2, ..., pini

}, the manually set/claimed product
numbers Si = {si1, si2, ..., sini

} and the rewards Ei =
{ei1, ei2, ..., eini

} of the perks), and some other features (like
campaign descriptions), our goal is to get the optimal prod-
uct supply S′

i = {s′i1, s′i2, ..., s′ini
} of the perks, which can

bring the maximum expected return with minimum risk for
the target campaign.

max
S′
i

ρiReturni −Riski, s.t. B′
i ≤ Bi, (1)

where ρi is a heuristic parameter, B′
i is the cost of cam-

paign i under the product supply S′
i, and it can be measured

by B′
i ≈ ∑ni

j=1 s
′
ijeij . Similarly, the claimed budget Bi is

Bi ≈ ∑ni

j=1 sijeij . The constraint condition is the cost B′
i

after optimizing could not exceed the expect cost of the cre-
ator. In this paper, pij in Pi is the price for the investors to
contribute on one product in perk j (e.g. pi1 and pi2 for the
two perks in Figure 1 are $129 and $6450, respectively), and
eij in Ei is the reward/payback that the creator should pro-
vide to the investors (e.g. ei1 and ei2 for the two perks in
Figure 1 are 1x Vinci and 50x Vinci, respectively) after the
campaign success. For simplicity, we assume that the creator
has enough number of rewards eij for each product supply
s′ij , as long as the budget constraint is satisfied.

Now let us use an example for depicting the research prob-
lem intuitively. We suppose the campaign in Figure 1 con-
tains only 2 (ni) perks whose price Pi = {$129, $6450} and
the product numbers preset by the creator are Si = {500, 20},
respectively. We hope to recommend a more suitable product
number setting S′ (e.g. {400, 30}) to replace this Si for mak-
ing the campaign even more successful.

Computation of Returni. According to the findings in
previous studies, the motivations/goals for creators launch-
ing campaigns are mainly classified into two categories: rais-
ing enough money and expanding awareness of the products
(boosting their brands) [Brown et al., 2016; Gerber and Hui,
2013]. Thus, the expected return of campaign i can be mea-
sured by:

Returni =

ni∑

j=1

c′ijhij , hij ∈ {pij , 1}, (2)

where c′ij in C ′
i (C ′

i = {c′i1, c′i2, ..., c′ini
}) is the number of in-

vestments of j-th perk in campaign i under the product supply
setting S′

i. hij measures the motivation of the campaign, i.e.,
hij = 1 if the creator mainly try to influence more people and
hij = pij if she aims to collect more money. We should also
note that, there may be more sophisticated choices of hij , e.g.
by balancing between pij and 1. However, this is not the ma-
jor focus of this paper, and we will leave it for future study.

Computation of Riski. Besides the budgets from cre-
ators, the product supply of each perk is also constrained
by the number of potential investors in the market. For in-
stance, if the number of investments cij is much smaller than
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Figure 2: The flowchart of product supply optimization.

the estimation c′ij , the product rewards are overstocked by
the creator, and vice versa. Indeed, since the number of in-
vestors can not be perfectly estimated, the future return of a
new campaign is actually unknown and Eq. (2) is computed
with uncertainty/risk. In finance, risk is usually measured
by (co)variance of the investments (e.g. stocks) [Markowitz,
1952; Wang and Zhu, 2009]. Correspondingly, in crowdfund-
ing, the risk of setting product supply as Si for campaign i can
be estimated by the variance of the returns:

Riski ≈
ni∑

j=1

(c′ijhij − cijhij)
2. (3)

Therefore, summarizing Eq. (1) for all the campaigns:

max
S

′
i

M∑

i=1

ρiReturni −
M∑

i=1

Riski,

s.t. B′
i ≤ Bi, ∀i ∈ [1,M ],

(4)

where M is the number of campaigns. Obviously, as a port-
folio of investment choices in the platform, every campaign
(perk) is related to others (e.g. the competitors will have an
influence on the final investment volume). Thus, instead of
computing independently, the risk in Eq. (4) should be mea-
sured more precisely by exploiting this kind of relevance.

Multi-task Learning. In this paper, considering the num-
ber of investments of a perk is related to other perks even
other campaigns, we propose such a measurement by the
trace-norm multi-task learning method. Specifically, instead
of a formal definition on the correlation/relevance among dif-
ferent campaigns, we automatically learn the risk of the port-
folio from a data-driven way:

M∑

i=1

Riski =

L∑

t=1

||(XtW
�
t − Ct)× ht||2F + λ||W ||∗, (5)

where × denotes the cross product of two vectors. All perks
in the campaigns are now clustered into L learning tasks
based on their characteristics. For the t-th task, the input
comprises (Xt, Ct, ht), where Xt ∈ R

mt×d is the input ma-
trix for the t-th task with mt perks and d features, i.e. Xij

is the feature vector of the j-th perk in campaign i. While
label Ct ∈ R

mt×1 is the corresponding target vector (i.e.
entries from C, under the product supply setting S), and
similarly, vector ht contains the motivations of these perks.
W = [W1,W2, ...,WL] is a d× L weight matrix, containing
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the importance/coefficient of each feature to one task. Obvi-
ously, the estimated value in t-th task is C ′

t = XtW
�
t , and the

estimated number of investments in j-th perk of campaign i is
c′ij = XijW

�
tij . Different choices of regularization terms may

reflect different task relationships [Zhu et al., 2016]. Without
loss of generality, in this study, we formulate our model by
trace norm, which is given by the sum of the singular values:
||W ||∗ =

∑
t(σt(W )), for capturing the task relationship by

constraining the parameter vectors of different tasks to share
a low dimensional subspace.

We can rewrite the Returni in Eq. (4) in this multi-task
learning way. Thus, the optimization problem becomes:

max
W,S′

M∑

i=1

ni∑

j=1

ρij [s
′
ijw

s′
tij +X−s′

ij (W−s′
tij )�]hij

− (

L∑

t=1

||(XtW
�
t − Ct)× ht||2F + λ||W ||∗),

s.t. s′ij ≥ 0 and B′
i ≤ Bi, ∀i ∈ [1,M ].

(6)

Here, Xij is represented by Xij=< s′ij , X−s′
ij >, where

s′ij is the optimized product supply and X−s′
ij stores other

features of this perk except s′ij . Similarly, matrix Wt is also

split two parts, W s′
t and W−s′

t . Note that index tij indicates
the j-th perk in campaign i belongs to the t-th task.

Product Supply Optimization. In summary, given the
campaigns/perks and their features X , for solving the prod-
uct supply optimization problem, we first put these perks into
different learning tasks, and then learn the W and S′ based on
the training ones by solving Eq. (6). Thus, the optimal S′

i for
each testing campaign can be computed by only maximizing
the expected return.

max
S′
i

ni∑

j=1

ρij [s
′
ijw

s′
tij +X−s′

ij (W−s′
tij )�]hij ,

s.t. s′ij ≥ 0, B′
i ≤ Bi.

(7)

Please note the difference between Eq. (6) and (7), i.e. for
the new campaign in test, the risk is unknown without any
investment records. Finally, S′

i (i.e. the output of Eq. (7)) is
recommended to the creator when she is publishing this cam-
paign. The entire flowchart of the framework is illustrated in
Figure 2. Now, we show the way of solving Eq. (6).

Optimization Algorithm. Before solving Eq. (6), we
should first put the perks into L different learning tasks. In-
deed, there are a number of methods for task partition ac-
cording to the features X of perks. The details of the task
partition and the features of perks will be shown in the exper-
iments. Here, we propose to solve Eq. (6) by the Alternating
Optimization Method, which is similar to the Block Coordi-
nate Descent method [Wright and Nocedal, 1999], the vari-
able is optimized alternatively with the other variables fixed.
Because Eq. (6) is continuous and separately convex, the al-
ternating optimization algorithm is convergent. Please refer
to Algorithm 1 for the holistic method, and the detailed gra-

dients of W and S′ are shown as (Here, we simply fix hij = 1
for better illustration):

�f(Wt) = (WtX
�
t Xt − 2C�

t Xt)−
M∑

i=1

ni∑

j=1

ρijXij , (8)

�g(s′ij) = 2W s′
tijs

′
ijW

s′
tij + 2(X−s′

ij W−s′
tij − Cij)W

s′
tij

− ρijW
s′
tij .

(9)

In Algorithm 1, B is each campaign’s budget and S is
the product supply claimed by creators. Since each s′ij is a
part (an entry) of the feature matrix X , X should be updated
whenever s′ij changes. We should also note that we update W
for each task, and update S′ for each perk. In each iteration
step, we adopt Accelerated Gradient (AG) method to update
W and S′ for achieving the optimal rate of convergence by
specifying the stepsize policy, and we use projection method
to satisfy the constrains.

During the implement, we first update W for each task.
For task t which contains nt campaigns, each campaign has
D dimensional features, so the computational complexity is
O(n2

tD
2). Then we update S′ and X , and the computational

complexity can be regard as O(1) compared to the complex-
ity in updating W , so the overall computational complexity
is O(n2

kD
2N), where k is the index of the task that has the

biggest n2
k. That is, the algorithm should be stopped when

the changing of W or S′ is less than a threshold (i.e. tolW
or tolS′ ) or the iteration reaches a maximum number N . In
practice, we set tolW (tolS′ ) as 1.0e−5, and set N as 1.0e5,
which we think is of high-quality enough.

Algorithm 1 Alternating Optimization Method

Input: X , C, S, B, N , tolW , tolS′
Output: W , S′

1: set S′ = S,W0 = 0
2: for k = 1 to N do
3: Update W based on Eq. (8),
4: Update S′ based on Eq. (9),
5: Update X by replacing S′.
6: if stopping criteria is satisfied then
7: Break
8: end if
9: end for

10: return W , S′

4 Experiments
In this section, we provide empirical validation on a real-
world dataset that we crawled from one famous crowdfunding
platform in America, i.e. Indiegogo.com.

Dataset Description. Our experimental data includes the
campaign information, perk information, and some mutual
records of creators and investors2. For instance, it contains
14,143 launched campaigns for more than 18 billion funds
(including 98,923 perks, on average 7 perks in one cam-
paign) and their funding information from July 2011 to May
2016 with 217,156 investors, 1,862,097 investment records.

2This data will be publicly available after the paper acceptance.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

698



Table 2: The information of features.

Feature
Level

Feature
Type

Feature
Source Feature Description

Perk
Feature

Numerical

Perk
Profile

Price Unit price of the perk
Featured Whether the perk is recommended by the creator
Shipping Whether the perk is need to be shipping

Delivery Term How long will the investor get the reward
Preset Num Preset number of the product supply quantity

Perk
Summary

Perk Option Num Number of perk options
Avg Perk Price Average of all perks’ price of the campaign
Var Perk Price Variance of all perks’ price of the campaign

Textual Perk Profile Description Detailed description of the perk

Campaign
Feature

Numerical

Campaign
Profile

Duration Declared funding days of the campaign
Goal Declared funding amount of the campaign

Currency The currency for paying the perks, such as USD
Created time Created time of the campaign
Funding type The type of campaign, i.e. the funding amount is flexible or fixed
Owner type Purpose of the campaign, such as business, individual, non-profit

Category Category of the campaign, such as Technology, Art
Team Members Num Number of team members

Location Such as city, country of the creator

Social
Media

Display Form Whether the campaign use some form (such as video, image except text) to display
Social Exposure Whether the campaign use some social form (such as Facebook, Twitter) to exposure

Verification Whether the creator was verified in Facebook
Avg Verified Num Average number of team members verified in Facebook

Facebook Friends Num The Facebook friends number of the creator
Avg Facebook Friends Num Average Facebooks friends number of the team members

Mutual
Record

Created Num Number of the campaigns created by the creator before
Avg Goal Average claimed funding amount of the created campaigns by the creator

Avg Funded Amount Average funded amount of the created campaign by the creator
Baked Campaign Num Number of campaigns the creator/team members invested

Avg Comment Num Average number of campaigns the creator/team members commented
Avg Reply Num Average number of campaigns the creator replied

Textual
Campaign

Profile
Title Title of the campaign

Description Detailed description of the campaign in text

Here, we remove the unfinished campaigns because their in-
vestment volume still changes. To observe how each algo-
rithm behaves at different sparsity levels, we construct differ-
ent sizes of training sets from 50% to 80% of the campaigns
with the increasing step at 10%, and we name the four pairs
of training and testing sets as D#1, D#2, D#3 and D#4.

Feature Extraction. We extract 23 features from the cam-
paign level and 9 features from the perk level, and the details
of them are illustrated in Table 2. We can see the features
are very heterogeneous, including numerical ones (e.g., perk
price, goal), categorical ones (e.g., category, location) and
text (e.g., campaign description, perk description). For data
preprocessing and constructing the feature matrix X , we first
transform categorical data into N binary-valued features (nu-
merical ones) using one-hot encoding (i.e. dummy feature).
Meanwhile, the doc2vec method [Le and Mikolov, 2014] is
adopted to convert textual data into numerical vectors, e.g.,
the perk description is represented by a 10 dimension vec-
tor, and the campaign title and the campaign description are
turned into 5 and 100 dimension vectors separately. To ex-
plore how these features affect the investment volume predic-
tion, we group them into four integrations:

• NP: Mainly contains numerical perk features.
• NTP: Besides features in NP , textual features of perks are

also included.
• NPC: Besides features in NP , there are also the numerical

campaign features.
• NTPC: Besides features in NPC, campaign textual fea-

tures and perk textual features are also included.

Therefore, the relationship among the feature integrations

is NP ⊆ NTP ⊆ NTPC, NP ⊆ NPC ⊆ NTPC, and
generally, the feature matrix X of the following experiments
is constructed based on all of the features, i.e. NTPC. We
should also note that the proposed product supply optimiza-
tion approach is a general framework and it is open to some
other features.

Task Partition. In MTL, we should put perks into dif-
ferent tasks. Considering that, products with near prices
are more related than distant ones, we propose to split
perks into different tasks according their prices, i.e. the
perks with the similar prices will be put into the same
task. Without loss of generality, we generate 7 tasks (L =
7) whose price ranges (in $) (from task T1 to task T7)
are (0, 10], (10, 20], (20, 30], (30, 40], (40, 50], (50, 200], and
(200,+∞), respectively. Actually, our solution is a gen-
eral framework which is open to different task partition
methods[Liu et al., 2011].

Parameter Setting. Firstly, we show the way of comput-
ing budgets B′

i and Bi. As we can see from Figure 1, the
reward eij in crowdfunding is usually the product or some
other stuff of the project, therefore, it is very hard to directly
compute B′

i and Bi based on eij (Please refer to Section 3 for
detailed information). Luckily, in the marketing literature, it
is usually assumed that the price positively influences the per-
ception of product (reward) quality, that is eij ∝ pij [Dodds
and Monroe, 1985], and the unit cost of the product with a
quality eij is e2ij/2 [Guo and Zhang, 2012; Hu et al., 2015]

which can be further represented as θp2ij/2, where θ is a pa-
rameter. Therefore, in the following experiments we define
B′

i =
1
2θ

∑ni

j=1 s
′
ijp

2
ij and Bi =

1
2θ

∑ni

j=1 sijp
2
ij .
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Parameter ρij represents the risk preferences of creators,
here we simply define ρij as a uniform value since it is hard
to quantify risk preference for each creator with limited data
records. Parameter λ is learned through cross validation.

Evaluations on Multi-task Learning. Before proving the
effectiveness of the entire framework of product supply op-
timization, we first show the performance of MTL on mea-
suring the risk (predicting the future investment volume) of
each campaign (Eq. (5)). We adopt RMSE and nMSE as the
metrics as they are widely used in MTL [Xu et al., 2015;
Zhu et al., 2016]. For the RMSE and nMSE, the smaller the
value, the better the performance. We also choose several
state-of-the-art regressions for comparison [Zhu et al., 2016]:

• Linear Regression (LR): training a linear regression
model for predicting the investment volume.

• Ridge: LR with L2-norm regularizer.
• Lasso: LR with L1-norm regularizer.
• Support Vector Regression (SVR): training a Support

Vector Regression model.
• SVR with sigmoid kernel (SigmoidSVR): Support Vector

Regression with sigmoid kernel.

The experimental results of our MTL method and the base-
lines on four data splits are shown in Figure 3. Due to space
limitation, we only show the results with hij = 1. We can see
that MTL method consistently performs the best on all splits
in terms of two evaluation metrics, which clearly validates
the effectiveness of our multi-task learning method. Also, the
SigmoidSVR is the worst which proves that investment vol-
ume prediction is more likely a linear regression instead of a
nonlinear regression. We also show the performance of each
method in terms of different feature integrations, and the re-
sults are given in Figure 4. We can have the following obser-
vations. First, the more features contains, the better perfor-
mance of trace-norm MTL is, but this kind of phenomenon is
not obvious in other methods (baselines). We think the rea-
son is that trace-norm MTL method constrains the learning
model from different tasks to share a low-dimension subspace
to capture the task/campaign relevance. The more features are
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Figure 5: Correlation between tasks.
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Figure 6: An illustration of several important features.

applied, the better the shared subspace can be learnt, and then
the more clear the task relevance is. Second, the performance
improvement is significant from NTP to NPC, and to NTPC
on MTL method, which indicates the campaign features are
very effective in improving the prediction accuracy on invest-
ment volume, and carefully describing the campaign is really
crucial for the success of creator [Mitra and Gilbert, 2014].

Task Correlations and Feature Study. To intuitively il-
lustrate the utilities of MTL, we compute the Jaccard simi-
larity3 among the rows (tasks) in W . The results are shown
in Figure 5, where we can see that the tasks with the similar
price ranges are usually more similar, and task T1 and task
T7 are the most distinctive ones. One step further, Figure 6
gives several important features in W , where feature impor-
tance is measured based on the summary of the absolute value
of each feature at all the tasks. Since we use vectors to ex-
press the textual features, there are multiple dimensions be-
long to one feature. Indeed, the features about campaign/perk
description are generally more important than others for pre-
dicting the investment volume of the campaign, as shown in
Figure 6.

Evaluations on Product Supply Optimization. Indeed,
there are no related studies on the task of product sup-
ply optimization in crowdfunding, and we treat the invest-
ment volumes of the campaigns (e.g.

∑ni

j=1 cijhij) un-

der the manually claimed numbers S as a baseline. Since
the aim of our framework is using S′ to improve these in-
vestment volumes (e.g.

∑ni

j=1 c
′
ijhij), the difference be-

tween these two different kinds of investment volumes can
be adopted as metrics. For instance, we define the metric

3The similarity is computed by summarizing the number of fea-
tures, whose absolute value in two rows of W are both larger than
the mean value.
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Table 3: Product supply results (ρ=0.05).

Metrics Growth Num Growth Rate

Num of Money
$208.09 2.79%
(229370) (0.36)

Num of Investors
6.05 4.43%

(107.50) (0.11)

Figure 7: Return vs risk.

“Growth Num” as
∑M

i=1(
∑ni

j=1 c
′
ijhij − ∑ni

j=1 cijhij)/M ,

and define “Growth Rate” as the average of (
∑ni

j=1 c
′
ijhij −∑ni

j=1 cijhij)/(
∑ni

j=1 cijhij).

Without loss of generality, we only report the results on
the 60%-40% data split (D#2), and our optimization algo-
rithm converges quickly by only 26 iterations (on average).
The final experimental results with ρij = 0.05 are shown in
Table 3, where we take both the two motivations/goals of the
creators into consideration. The “Num of Money” motiva-
tion measures the amount of raised money when hij = pij
and the “Num of Investors” motivation stands for the num-
ber of investors when hij = 1. From this table we can see
that the optimization of the product supply structure does
improve the return of the campaigns, given so many other
features fixed. For instance, after optimization, each cam-
paign is expected to attract an average of extra $208 (or 6
investors), which accounts for 2.79% (4.43%) of its current
return. The number in each bracket (.) in Table 3 is the vari-
ance. After investigating the data carefully, we found that
(
∑ni

j=1 c
′
ijhij −

∑ni

j=1 cijhij) > 0 for more than 87.1% of

the campaigns, which means most of the product supply of
the campaigns should be optimized.

Actually, the expected return for each creator can be even
more impressive if we simply change the setting of ρij (in
Eq. (6)) when selecting portfolios. However, high return al-
ways associates with high risk. As shown in Figure 7, when
ρij becomes larger, not only the expected return rate but
also the risk of the optimized product supply will go higher.
In practice, the creators can select this parameter manually
based on their risk preferences, or we can automatically make
a recommendation based on historical records.

Case Study. In Table 4, we present a case study of the
product supply optimization results on two real campaigns,

Table 4: Case study on two campaigns.

Campaign
Title

Pon-The Punctureless
Push Pin

The Wipy: IoT
of the future

Price(in $) 9 11 13 35 47 85 22 35
S 100 100 100 100 100 100 1500 500
S′ 78 85 85 207 78 69 1556 446

Pon4 and The Wipy5. Specifically, Price(in $) is the price
of each perk, S is the claimed/given product supply number
and S′ is the optimized/recommended number (Without loss
of generality, we set hij = 1 for outputting S′). Let’s take
campaign Pon as an exmaple. From this table we can see
that the creator of Pon simply sets the same supply number
(i.e. 100) to each perk. In contrast, our optimization method
can detect the variance of investors (e.g. more investors will
be interested in the perk with price $35 and there are few
of investors interest in the highest price $85) and make the
product supply more reasonable. Note that the number of
investors can be found in the webpage of these campaigns.

5 Conclusion

In this paper, we presented a focused study on enhancing the
funding performance of newly proposed campaigns in crowd-
funding by optimizing the product supply of perks. Inspired
by the modern portfolio theory, we first defined it as a con-
strained portfolio optimization problem. Under this defini-
tion, we then proposed a multi-task learning way of estimat-
ing the future return for each campaign and measuring the
risk of the product supply settings, considering the relevance
among the perks when attracting investments. Finally, the so-
lutions for the optimization problem were recommended to
creators as the optimal product supply setting. The experi-
mental results on a real-world dataset showed that the opti-
mized product supply can help the campaign get more invest-
ments. We hope this study could lead to more future work
on optimizing other important features for campaign design
in crowdfunding.
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