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Abstract
Learnt clauses in CDCL SAT solvers often con-
tain redundant literals. This may have a negative
impact on performance because redundant literals
may deteriorate both the effectiveness of Boolean
constraint propagation and the quality of subse-
quent learnt clauses. To overcome this drawback,
we define a new inprocessing SAT approach which
eliminates redundant literals from learnt clauses by
applying Boolean constraint propagation. Learnt
clause minimization is activated before the SAT
solver triggers some selected restarts, and affects
only some learnt clauses during the search pro-
cess. Moreover, we conducted an empirical eval-
uation on instances coming from the hard combi-
natorial and application categories of recent SAT
competitions. The results show that a remark-
able number of additional instances are solved
when the approach is incorporated into five of
the best performing CDCL SAT solvers (Glucose,
TC Glucose, COMiniSatPS, MapleCOMSPS and
MapleCOMSPS LRB).

1 Introduction
Modern Conflict-Driven Clause Learning (CDCL) SAT
solvers are routinely used as core solving engines in many
real-world applications. Their ability to solve challenging
problems comes from the combination of different ingredi-
ents: variable selection heuristics, Boolean constraint propa-
gation, clause learning, restarts, clause database management,
data structures, preprocessing and inprocessing.

Formula simplification techniques applied during prepro-
cessing have proven useful in enabling efficient SAT solving
for real-world application domains (e.g. [Bacchus and Win-
ter, 2003; Eén and Biere, 2005; Piette et al., 2008]). The
most successful preprocessing techniques include variants of
bounded variable elimination, addition or elimination of re-
dundant clauses, detection of subsumed clauses and suitable
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combinations of them. They aim mostly at reducing the num-
ber of clauses, literals and variables in the input formula.

More recently, some solvers have significantly boosted
their performance by interleaving formula simplification
techniques with CDCL search. Among such inprocessing
techniques [Järvisalo et al., 2012], we mention local and re-
cursive clause minimization [Beame et al., 2004; Sörensson
and Biere, 2009], which remove redundant literals from learnt
clauses immediately after their creation; clause distillation in
a concurrent context [Wieringa and Heljanko, 2013]; and on-
the-fly clause subsumption [Han and Somenzi, 2009; Hamadi
et al., 2009], which efficiently removes clauses subsumed
by the resolvents derived during clause learning. Neverthe-
less, there is a common belief that clause simplification tech-
niques that bring substantial gains in preprocessing do not
increase significantly the performance of solvers when they
are applied to learnt clauses during the search [Biere, 2011;
Wotzlaw et al., 2013].

Given the impact of clause learning on the resolution of
practical instances, the objective of this paper is to devise
and implement a new inprocessing learnt clause minimiza-
tion approach able to remove redundant literals from learnt
clauses for CDCL solvers. Our approach is based on Boolean
constraint propagation, or more precisely unit (clause) prop-
agation, which is notably time-consuming on large instances.
Hence, in what follows, we must carefully decide how to deal
with the following issues: (1) when should the clause min-
imization procedure be activated? (2) which learnt clauses
should be minimized? and (3) how should unit propagation
be applied?. By adequately answering these three questions,
the proposed approach reaches a good trade-off between ef-
fectiveness and efficiency. Observe that such an approach was
missing in the literature, explaining the fact that the winners
of the 2016 SAT competition did not use unit propagation to
minimize learnt clauses.

We evaluated our approach on five of the best perform-
ing CDCL SAT solvers: Glucose [Audemard and Simon,
2009], COMiniSatPS [Oh, 2016], MapleCOMSPS [Liang et
al., 2016c], MapleCOMSPS LRB [Liang et al., 2016b] and
TC Glucose [Moon and Mary, 2016]. The experimental re-
sults show that the proposed approach allows them to solve a
remarkable number of additional instances coming from the
hard combinatorial and application categories of the 2014 and
2016 SAT competitions.
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We quote a statement of two leading SAT solver develop-
ers [Audemard and Simon, 2012] to better appreciate the sig-
nificance of our contributions:

“We must also say, as a preliminary, that improving SAT
solvers is often a cruel world. To give an idea, improving a
solver by solving at least ten more instances (on a fixed set
of benchmarks of a competition) is generally showing a crit-
ical new feature. In general, the winner of a competition is
decided based on a couple of additional solved benchmarks.”

The previous statement was also quoted in [Liang et al.,
2016a] to appreciate the advance brought about by the CHB
branching heuristic in CDCL solvers.

The paper is organized as follows: Section 2 gives some ba-
sic concepts about SAT and CDCL solvers. Section 3 presents
some related works on inprocessing and preprocessing clause
minimization. Section 4 describes the new learnt clause min-
imization approach, as well as how it is implemented in dif-
ferent CDCL solvers. Section 5 reports on the experimental
investigation. Section 6 contains the concluding remarks.

2 Preliminaries
Let V = {x1, . . . , xn} be a set of propositional variables. A
literal is a propositional variable x or its negation x. A clause
is a disjunction of literals. The size of a clause refers to the
number of literals it contains. A unit clause contains exactly
one literal. A Conjunctive Normal Form (CNF) formula is a
conjunction of clauses. A CNF formula is also represented by
the set of its clauses, and a clause by the set of its literals. A
clause C ′ subsumes a clause C iff C ′ ⊂ C.

Let ρ : V → {0, 1} be a truth assignment. The assign-
ment ρ satisfies a literal x (x) iff ρ(x) = 1 (ρ(x) = 0), sat-
isfies a clause iff it satisfies any of its literals, and satisfies
a CNF formula iff it satisfies all its clauses. A CNF formula
F is satisfiable iff there is at least one satisfying assignment.
The empty clause (�) is always unsatisfiable, and represents a
conflict or a failure. SAT is the problem of deciding whether a
given CNF formula is satisfiable. Two formulas are logically
equivalent iff they are satisfied by the same assignments. A
literal l is redundant in a clause C of a formula F if removing
l from C results in a formula logically equivalent to F .

Given a CNF formula F and a literal l, we define F |l to
be the CNF formula resulting from F after removing the
clauses containing an occurrence of l and all the occurrences
of l. We recursively define Boolean constraint propagation,
or more precisely Unit Propagation (UP), using the following
two rules: (R1) UP (F ) = F if F does not contain any unit
clause; and (R2) UP (F ) = UP (F |l) if there is a unit clause
{l} in F . In the latter case, we say that the literal l is asserted
by UP, and it must hold that ρ(l) = 1. The literal l is deduced
or asserted by UP (F ) if the unit clause {l} is obtained by
applying R2. When UP (F ∪ {l}) is computed, we say that l
is propagated in F .

In the sequel, we use UP (F ) to denote the CNF formula
obtained from F after repeatedly applying R2 until there is
no unit clause or the empty clause is derived. Concretely,
UP (F ) = � if repeatedly applying R2 derives the empty
clause. Otherwise,UP (F ) denotes the CNF formula in which
all unit clauses have been propagated using R2.

A CDCL solver [Marques-Silva and Sakallah, 1999;
Moskewicz et al., 2001] performs a non-chronological back-
track search in the space of partial truth assignments. Con-
cretely, the solver repeatedly picks a decision literal li and
applies unit propagation in F ∪{l1, l2, . . . , li} (i.e., computes
UP (F∪{l1, l2, . . . , li}) until the empty formula or the empty
clause are derived. If the empty clause is derived, the reasons
are analyzed and a clause (nogood) is learnt using a particu-
lar method, usually the First UIP (Unique Implication Point)
scheme [Zhang et al., 2001]. The learnt clause is then added
to the clause database.

Let F be a CNF formula, let li be the ith decision lit-
eral picked by a CDCL solver, and let Fi = UP (F ∪
{l1, l2, . . . , li}). We say that li and all the literals asserted
when computing UP (Fi−1 ∪ {li}) belong to level i. Literals
asserted in UP (F ) do not depend on any decision literal and
form level 0. When UP deduces the empty clause and a learnt
clause is extracted from the conflict analysis, the solver can-
cels the literal assertions in the reverse order until the level
where the learnt clause contains one non-asserted literal, and
continues the search from that level after propagating the non-
asserted literal. Under certain conditions, the solver cancels
the literal assertions until level 0 and restarts the search from
level 0. Since too many learnt clauses slow down the solver
and may overflow the available memory, the solver period-
ically removes a subset of learnt clauses using a particular
clause deletion strategy.

The literals of a learnt clause C are partitioned w.r.t. their
assertion level. The number of sets in the partition is called
the Literal Block Distance (LBD) of C. As Audemard and
Simon (2009) showed, LBD measures the quality of learnt
clauses. Clauses with small LBD values are considered to be
more relevant. The best performing CDCL solvers of the re-
cent SAT competitions use LBD as a measure of the quality
of learnt clauses to decide which clauses must be removed or
retained. Moreover, solvers like Glucose and its derivatives
use the LBD of recent learnt clauses to decide when a restart
must be triggered.

3 Related Work on Clause Minimization
Clause minimization (see e.g. [Eén and Biere, 2005; Han
and Somenzi, 2007; Piette et al., 2008; Sörensson and Biere,
2009; Wotzlaw et al., 2013; Marques-Silva, 2000; Han and
Somenzi, 2009; Hamadi et al., 2009; Wieringa and Heljanko,
2013]) both before and during the search is crucial for the per-
formance of CDCL SAT solvers for two reasons: (i) shorter
clauses need less memory and, more importantly, (ii) shorter
clauses are easier to become unit, and thus increase the power
of unit propagation.

The most effective approach to remove redundant liter-
als in learnt clauses probably is recursive clause minimiza-
tion [Sörensson and Biere, 2009], which can be specified us-
ing the notion of involved literal. Let C = l1 ∨ l2 ∨ · · · ∨ lk
be a newly created learnt clause. Then, (i) all literals in C
are involved; and (ii) for any other literal l, if there is a clause
C ′ = l′1∨ l′2∨ . . .∨ l′k′ ∨ l such that l′1, l′2, . . ., l′k′ are involved,
then l is involved. Recursive clause minimization tests each
literal li of C. If there is a clause C ′ = l′1 ∨ l′2 ∨ . . . ∨ l′k′ ∨ li
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such that l′1, l′2, . . ., l′k′ are involved, then li is removed from
C. MiniSAT 1.13 implements recursive clause minimization
in a very ingenious way and applies it to each new learnt
clause. This approach is now part of many SAT solvers, and
frequently removes more than 30% of literals.

Another effective inprocessing clause minimization ap-
proach is based on binary implication graphs [Heule et al.,
2011]. Given a CNF formula F , the algorithm first performs a
depth-first search over the binary implication graph to assign
a time stamp to each literal in the graph. It then uses these
time stamps to discover and remove various kinds of redun-
dancy, including redundant literals in learnt clauses. The al-
gorithm is linear in the total number of literals in F and is re-
alized in a function named Stamp in Lingeling [Biere, 2010]
and MapleCOMSPS LRB. As an inprocessing, the function
is executed upon some restarts to minimize learnt clauses.

In solvers such as Glucose and MapleCOMSPS, a restric-
tion of the resolution rule is applied to minimize a newly cre-
ated learnt clause C = l1 ∨ l2 ∨ · · · ∨ lk whose LBD or size is
smaller than a prefixed limit. The first literal l1 of C is called
the asserting literal. For any i > 1, if l1 ∨ li is a clause in F ,
then Glucose and MapleCOMSPS remove li from C.

Conflict analysis consists in performing successive resolu-
tion steps from a conflicting clause. At each step, a new re-
solvent is derived from two clauses C ′ and C ′′, where C ′ is
the conflicting clause or a previous resolvent, and C ′′ is an
existing clause. If C ′′ = l ∨ C and C ′ = l ∨D, where l is a
literal, and C and D are disjunction of literals with D ⊆ C,
the resolvent of C ′ and C ′′ is C and subsumes C ′′, meaning
that l is redundant in C ′′ and can be removed from C ′′. This
approach allows to minimize both original clauses and learnt
clauses during the search and was proposed independently in
[Han and Somenzi, 2009] and [Hamadi et al., 2009]. It was
implemented in CryptoMinisat 2.5.0 [Soos, 2010] for on-the-
fly clause improvement.

Preprocessing clause minimization can devote more time
to each clause and still improve the performance of solvers.
Piette et al. (2008) applied the following rules in a vivification
procedure after sorting the literals of a clause C = l1 ∨ l2 ∨
· · ·∨lk of the input formula F using a MOMS-style [Jeroslow
and Wang, 1990] ordering:

1. If for some i ∈ {1, 2, . . . , k − 1} and some j > i,
UP ((F \ {C})∪ {l1, l2, . . . , li}) deduces lj , then F ←
(F \ {C}) ∪ {l1 ∨ l2 ∨ . . . ∨ li ∨ lj}.

2. If for some i ∈ {1, 2, . . . , k − 1} and some j > i,
UP ((F \ {C})∪ {l1, l2, . . . , li}) deduces lj , then F ←
(F \{C})∪{l1∨l2∨. . .∨li∨· · ·∨lj−1∨lj+1∨· · ·∨lk}.

3. If for some i ∈ {1, 2, . . . , k − 1}, UP ((F \ {C}) ∪
{l1, l2, . . . , li}) = �, then extract a nogood Cl from
the conflict using the First UIP scheme. If Cl ⊂ C or
|Cl| < |C| then F ← (F \ {C}) ∪ Cl, otherwise F ←
(F \ {C}) ∪ {l1 ∨ l2 ∨ . . . ∨ li}.

Independently, Han and Somenzi (2007) proposed a simi-
lar approach called distillation.

Vivification and distillation are usually applied during pre-
processing, because they need many time-consuming unit

propagations. One exception is CryptoMinisat, which imple-
ments a limited distillation as inprocessing. In the context of
parallel solvers, Wieringa and Heljanko (2013) use a concur-
rent thread to repeatedly select and minimize the best learnt
clause (according to some criteria such as clause size or LBD)
among the newest 1000 learnt clauses using unit propagation.

Nevertheless, to the best of our knowledge, none of the
awarded CDCL solvers in the 2016 SAT Competition uses
a distillation or vivification approach to minimize learnt
clauses. In particular, the solver Riss6, the silver medal win-
ner of the main track, disables a vivification based learnt
clause minimization used in Riss 5.05, because it turned out
to be ineffective for formulas of more recent years accord-
ing to [Manthey et al., 2016]. In fact, it is generally believed
that inprocessing clause minimization based on unit propaga-
tion can hardly be made effective for CDCL solvers. Wotzlaw
et al. (2013) applied distillation to minimize the 100 most
active clauses during the search, and concluded that inpro-
cessing distillation is generally not as effective as preprocess-
ing distillation, as well as that developing effective inprocess-
ing techniques is non-trivial and requires in-depth knowledge
about how different techniques can be combined and inte-
grated efficiently into the solvers.

4 Minimizing Learnt Clauses During Search
The main objective of this paper is to devise and implement
an effective and efficient inprocessing approach to minimize
learnt clauses using unit propagation. This inprocessing was
missing in the literature, as is illustrated by the fact that
the winners of the 2016 SAT competition did not use unit
propagation to minimize learnt clauses. We first describe the
general principle used to efficiently minimize learnt clauses,
and then present its implementation in Glucose, TC Glucose,
COMiniSatPS, MapleCOMSPS and MapleCOMSPS LRB.

4.1 General Principle
In order to make learnt clause minimization effective and ef-
ficient, we have to answer the following questions:

1. When should we minimize the learnt clauses? It seems
clear enough that learnt clause minimization should be
activated at level 0 to ensure that the minimization is in-
dependent of any branching decision. In other words, it
should be activated upon a restart. So, the relevant ques-
tions are: should we activate learnt clause minimization
for every restart? If not, how do we determine the restarts
upon which we activate learnt clause minimization?

2. Should we minimize each learnt clause? If not, which
learnt clauses should be minimized?

3. Clause minimization based on unit propagation clearly
depends on the ordering selected to propagate the lit-
erals. What is the best order in which the literals of a
learnt clause should be propagated during learnt clause
minimization?

The most satisfactory answers to these questions depend
on other techniques implemented in the solver. Nevertheless,
we want to argue the following general principle for guiding
the implementation of learnt clause minimization:
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Algorithm 1: minimization(F,L, nbNewLearnts, σ), a
generic learnt clause minimization algorithm

Input: F : A CNF formula; L: a set of learnt clauses such
that L ∩ F = ∅; nbNewLearnts: the number of
clauses learnt since the last execution of function
minimizeL; σ: the number of times function
minimizeL was executed so far.

Output: A set of learnt clauses.
begin1

if liveRestart(nbNewLearnts, σ) then2
L← minimizeL(F,L); /* call Algorithm 2 */3
nbNewLearnts← 0; σ + +;4

return L;5

end6

1. Clause minimization should not be activated at each
restart. In fact, the number of newly learnt clauses
per restart may not be sufficient for unit propaga-
tion to easily deduce a conflict. So, we adopt the
clause reduction strategy of Glucose to activate learnt
clause minimization. More precisely, we define function
liveRestart(nbNewLearnts, σ) to determine if learnt
clause minimization has to be activated at the beginning
of a restart. In the function, nbNewLearnts and σ are
global variables representing, respectively, the number
of clauses which were learnt since the last learnt clause
minimization, and the number of learnt clause minimiza-
tions performed so far.

2. Chanseok Oh (2016) empirically showed that learnt
clauses with high LBD values are not very useful to
solve practical SAT instances. Indeed, the LBD of a
learnt clause is correlated to the minimum number of de-
cisions needed to make the clause failed, meaning that
it is much harder to reduce the LBD of a learnt clause
than to reduce its size. Moreover, clauses with high LBD
are generally long, needing more unit propagations to
be minimized. In Section 5, we will give empirical evi-
dence showing that minimizing clauses with high LBD
is very costly and useless. So, we should minimize learnt
clauses with small LBD values. More precisely, we de-
fine a function liveClause(C) to determine if a learnt
clause C has to be minimized according to its LBD.

3. A function sort(C) is defined to sort the literals before
minimizing the learnt clause C.

Algorithm 1 realizes this general principle and is called
at the beginning of each restart. Function minimizeL(F,L)
is defined in Algorithm 2. We will precisely define function
liveRestart(nbNewLearnts, σ) later when we implement
Algorithm 1 in a solver.

Algorithm 2 works as follows:

1. Let C = l1 ∨ l2 ∨ · · · ∨ lk be a learnt clause in L such
that liveClause(C) is true. If UP(F∪{l1, l2, . . . , li}) =
�, then F ∪ {l1, l2, . . . , li} is unsatisfiable and the
clause l1 ∨ l2 ∨ · · · ∨ li is a logical consequence of F
and can be added to F to subsume C without affect-

Algorithm 2: minimizeL(F,L): minimizing a set of
learnt clauses

Input: F : A CNF formula; L: a set of learnt clauses such
that L ∩ F = ∅.

Output: A set of learnt clauses.
begin1

foreach C = l1 ∨ l2 ∨ · · · ∨ lk ∈ L do2
if !liveClause(C) then continue;3
L← L \ {C}; C ← sort(C);4
C ′ ← ∅; /* C ′ will be the minimized clause */5
for i← 1 to k do6

if (R← UP(F ∪ L ∪ C ′ ∪ {li})) = � then7

C ′ ← conflAnalysis(F,L,C
′∪{li}, R);8

break;9

else if UP(F ∪ L ∪ C ′ ∪ {li}) 6= � then10
C ′ ← C ′ ∨ li; /* add li into clause C ′ */11

L← L ∪ {C ′};12

return L;13

end14

ing satisfiability. Let C
′

= {l′1, l
′
2, . . . , l

′
i−1}. Function

conflAnalysis(F,L,C
′∪{li}, R) retraces the implica-

tion graph from the conflicting clause R derived by UP
until the literals inC

′∪{li}, in order to collect the literals
in C

′ ∪ {li} from which there is a path to the conflicting
clause R in the implication graph. The function returns
a disjunction of the negation of the collected literals.
Note that Function conflAnalysis(F,L,C

′ ∪ {li}, R)
does not use the first UIP scheme, which is different
from Rule 3 in the vivification approach in [Piette et al.,
2008]. Algorithm 2 (line 7) applies UP(F∪L∪C ′∪{li})
incrementally for efficiency reasons: li is propagated in
the formula returned by UP(F ∪ L ∪C ′) after checking
if li or li is not asserted. UP(F ∪ L ∪ C ′ ∪ {li}) is im-
plemented using the unit propagation function and the
watched literal data structures of the solver.

2. If UP(F ∪ {l1, l2, . . . , li−1, li}) = �, then C ′′ = l1 ∨
l2 ∨ · · · ∨ li−1 ∨ li is a logical consequence of F . The
resolvent of C = l1 ∨ l2 ∨ · · · ∨ lk (k ≥ i) and C ′′ does
not contain li and subsumes C. So, Algorithm 2 does
not add li to the new clause C ′ in this case. Actually,
Algorithm 2 (line 10) computes UP(F ∪ L ∪C ′ ∪ {li})
by checking if UP(F ∪ L ∪ C ′) deduces li, instead of
propagating li, for efficiency reasons.

The implementation of Algorithm 2 in a solver needs the
definition of functions liveClause(C) and sort(C), which
will be discussed later. A common constraint we impose is
that if a learnt clause C has been minimized in a previous call
of Algorithm 2, liveClause(C) returns false. In this way, a
learnt clause is minimized at most once in our approach.
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4.2 Minimizing Learnt Clauses in Glucose and
TC Glucose

Glucose is a very efficient CDCL solver developed from Min-
isat [Eén and Sörensson, 2003]. It was habitually awarded in
SAT competitions between 2009 and 2014, and is the base
solver of many other awarded solvers.

Glucose was the first solver which incorporated the LBD
measure in the clause learning mechanism and adopted an
aggressive strategy for clause database reduction. We used
Glucose 3.0, in which the reduction process is fired once
the number of clauses learnt since the last reduction reaches
first+ 2× inc×σ, where first = 2000 and inc = 300 are
parameters, and σ is the number of database reductions per-
formed so far. The learnt clauses are first sorted in decreasing
order of their LBD values, and then the first half of learnt
clauses are removed except for the binary clauses, the clauses
whose LBD value is 2, and the clauses that are reasons of the
current partial assignment. Note that the reduction process is
not necessarily fired at level 0.

Glucose 3.0 also features a fast restart mechanism which is
independent of the clause database reduction. Roughly speak-
ing, Glucose restarts the search from level 0 when the average
LBD value in recent learnt clauses is high compared with the
average LBD value of all the learnt clauses.

Solver TC Glucose is like Glucose 3.0 but it uses a
tie-breaking technique for VSIDS, and the CHB branching
heuristic [Liang et al., 2016a] instead of the VSIDS branch-
ing heuristic for small instances. It was the best solver of the
hard combinatorial category in the 2016 SAT Competition.

Learnt clause minimization in Glucose and TC Glucose is
implemented by defining the three functions in Algorithm 1
and Algorithm 2 as follows:

Function liveRestart(nbNewLearnts, σ) returns true iff
the learnt clause reduction process was fired in the preced-
ing restart. In other words, the learnt clause minimization in
Glucose and TC Glucose follows their learnt clause database
reduction, after which only the first half of learnt clauses re-
mains.

Function liveClause(C) returns true if C has not yet been
minimized and belongs to the second half of learnt clauses
after sorting the clauses in decreasing order of their LBD val-
ues.

Function sort(C) returns C without changing the order of
its literals. This order is roughly the reverse order in which
these literals are involved to deduce a literal in the conflicting
level according to the First UIP scheme.

Algorithm 1 is executed before every restart. It calls Algo-
rithm 2 if liveRestart(nbNewLearnts, σ) returns true.

4.3 Minimizing Learnt Clauses in COMiniSatPS,
MapleCOMSPS and MapleCOMSPS LRB

COMiniSatPS is a SAT solver created by applying a series
of small diff patches to MiniSAT 2.2.0. Its initial prototypes
(SWDiA5BY and MiniSat HACK xxxED) won six medals
in the 2014 SAT Competition and the 2014 Configurable SAT
Solver Challenge. MapleCOMPS and MapleCOMSPS LRB
are based on COMiniSatPS, and were the winners of the main
track and the application category in the 2016 SAT Competi-
tion, respectively.

The clause database reduction policy of COMiniSatPS,
MapleCOMSPS and MapleCOMSPS LRB is quite different
from that of Glucose. In these solvers, the learnt clauses are
divided into three subsets: (1) clauses whose LBD value is
smaller than or equal to a threshold t1 are stored in a subset
called CORE; (2) clauses whose LBD value is greater than
t1 and smaller than or equal to another threshold t2 are stored
in a subset called TIER2; and (3) the remaining clauses are
stored in a subset called LOCAL. If a clause in TIER2 is
not involved in any conflict for a long time, it is moved to
LOCAL.

Periodically, the clauses of LOCAL are sorted in increas-
ing order of their activity in recent conflicts, and the learnt
clauses in the first half are removed (except for the clauses
that are reasons of the current partial assignment).

The three solvers interleave Glucose-style restart phases
with no restart or Luby restart phases.

Learnt clause minimization in COMiniSatPS, MapleCOM-
SPS and MapleCOMSPS LRB is implemented by defining
the three functions in Algorithm 1 and Algorithm 2 as fol-
lows (recall that Algorithm 1 is executed before each restart):

Function liveRestart(nbNewLearnts, σ) returns true iff
nbNewLearnts, the number of clauses learnt since the last
learnt clause minimization, is greater than or equal to α+2×
β × σ. We empirically fixed α=1000, β=1000 for the three
solvers. Note that function liveRestart(nbNewLearnts, σ)
does not follow the clause database reduction in any of the
three solvers.

Function liveClause(C) returns true iffC has not yet been
minimized and belongs to CORE or TIER2.

Function sort(C) returns C without changing the order of
its literals.

5 Experimental Investigation
We implemented the learnt clause minimization approach de-
scribed in Section 4 in solvers Glucose 3.0, TC Glucose, CO-
MiniSatPS (COMSPS for short), MapleCOMSPS (Maple for
short) and MapleCOMSPS LRB (MapleLRB for short). The
resulting solvers1 are named Glucose+, TC Glucose+, COM-
SPS+, Maple+ and MapleLRB+, respectively. Besides, we
created the solvers MapleLRB/noSp and MapleLRB+/noSp
by disabling in MapleLBR and MapleLRB+, respectively,
the inprocessing technique of [Heule et al., 2011], based
on binary implication graphs, that implements function
Stamp (noSp means that function Stamp is removed in
MapleLRB/noSp and MapleLRB+/noSp).

The test instances include the application and hard combi-
natorial tracks of the 2014 and 2016 SAT competitions, and
the community attachment formulas proposed in [Giráldez-
Cru and Levy, 2015]. The experiments were performed on a
computer with Intel Westmere Xeon E7-8837 processors at
2.66 GHz and 10 GB of memory under Linux. The cutoff
time is 5000 seconds for each instance and each solver.

Table 1 compares the solvers Glucose, Glucose+, COM-
SPS, COMSPS+, Maple, Maple+, MapleLRB, MapleLRB+,
MapleLRB/noSp and MapleLRB+/noSp on instances of the
application category of the 2014 and 2016 SAT competitions.

1Available at http://home.mis.u-picardie.fr/˜cli/
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SAT 2014 (300 instances) SAT 2016 (300 instances)
Solver total Sat Unsat total Sat Unsat
Glucose 213 100 113 146 61 85
Glucose+ 224 105 119 152 63 89
COMSPS 221 105 116 146 65 81
COMSPS+ 236 112 124 155 66 89
Maple 235 114 121 154 72 82
Maple+ 250 117 133 161 70 91
MapleLRB 234 111 123 152 68 84
MapleLRB+ 248 114 134 167 74 93
MapleLRB/noSp 231 111 120 150 67 83
MapleLRB+/noSp 247 113 134 164 73 91

Table 1: Comparison of Glucose, Glucose+, COMSPS, COMSPS+,
Maple, Maple+, MapleLRB and MapleLRB+, MapleLRB/noSp and
MapleLRB+/noSp on application instances of the 2014 and 2016
SAT competitions.

Our learnt clause minimization consistently improves the per-
formance of all the solvers. In particular, MapleLRB was the
best solver in this category in the 2016 Competition, but it
solved only 4 instances more than the 4th and the 5th solvers
of this category. Our approach allows MapleLRB+ to solve
15 instances more than MapleLRB.

Figure 1 shows a sample of scatter plots comparing
MapleLRB+ and MapleLRB on 3 benchmark families of the
application category of the 2016 SAT competition. A family
consists of instances with similar names. A point (x, y) in the
plots corresponds to an instance, where x (y) represents the
solving time in seconds of MapleLRB+ (MapleLRB). A point
(x, y) where x = 5000 (y = 5000) means that the instance
was not solved by MapleLRB+ (MapleLRB) within a cutoff
time of 5000s.

Table 1 also compares our inprocessing approach with the
inprocessing approach of [Heule et al., 2011], by means of
four solvers: MapleLRB, MapleLRB+, MapleLRB/noSp and
MapleLRB+/noSp. The only difference of these four solvers
is specified in their names:

MapleLRB+: with our approach and with Stamp, the func-
tion implementing the inprocessing approach of [Heule
et al., 2011];

MapleLRB+/noSp: with our approach but without Stamp;

MapleLRB: without our approach but with Stamp;

MapleLRB/noSp: without our approach and without
Stamp.

The inprocessing approach of [Heule et al., 2011] imple-
mented in MapleLRB allows MapleLRB to solve 3 (2) in-
stances of 2014 (2016) more than MapleLRB/noSp, which
has disabled that inprocessing. However, our approach is
more effective, allowing MapleLRB+/noSp to solve 16 (14)
instances of 2014 (2016) more than MapleLRB/noSp, and
MapleLRB+ to solve 14 (15) instances of 2014 (2016) more
than MapleLRB.

Figure 2 shows the cactus plots of the four solvers on the
application instances of the 2014 SAT competition (top) and
of the 2016 SAT competition (bottom). The two solvers using
our approach perform clearly better than the two solvers using
the approach of [Heule et al., 2011]. Note that the inprocess-
ing approach of [Heule et.al. 2011] is also used in Lingeling
and subsumes (at least partly) many inprocessing techniques.
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Figure 1: Scatter plots comparing MapleLRB+ runtime (x-axis) and
MapleLRB runtime (y-axis) on 3 benchmark families of the appli-
cation category of the 2016 SAT competition.
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Figure 2: Cactus plots of MapleLRB+, MapleLRB,
MapleLRB+/noSP and MapleLRB/noSp on application instances of
the 2014 (top) and 2016 (bottom) SAT competitions.

SAT 2014 (300 instances) SAT 2016 (200 instances)
Solver total Sat Unsat total Sat Unsat
Maple 217 97 120 47 8 39
Maple+ 221 96 125 46 6 40
TC Glucose 172 80 92 58 3 55
TC Glucose+ 184 79 105 57 3 54
MapleLRB 206 93 113 40 8 32
MapleLRB+ 212 95 117 44 9 35
MapleLRB/noSp 206 92 114 40 8 32
MapleLRB+/noSp 214 97 117 44 9 35

Table 2: Comparison of Maple, Maple+, TC Glucose,
TC Glucose+, MapleLRB, MapleLRB+, MapleLRB/noSp
and MapleLRB+/noSp on hard combinatorial instances of the 2014
and 2016 SAT competitions.

Table 2 compares Maple, Maple+, TC Glucose,
TC Glucose+, MapleLRB, MapleLRB+, MapleLRB/noSp
and MapleLRB+/noSp on the hard combinatorial instances
of the 2014 and 2016 SAT competitions. Observe that the
instances of the 2016 SAT Competition are very special,
because the best solver for these instances (TC Glucose)
performs significantly less well than the other solvers on the
2014 instances. The performance of Maple+, TC Glucose+
and MapleLRB+ is similar to that of Maple, TC Glucose and
MapleLRB, respectively, on the 2016 instances. However,
their performance is significantly better than that of Maple,
TC Glucose and MapleLRB on the 2014 instances.

Note that all the solvers in Table 1 and Table 2 implement
the following inprocessing techniques: the clause minimiza-

tion based on binary clause resolution of Glucose and the
recursive learnt clause minimization of MiniSat. MapleLRB
and MapleLRB+ include, in addition, the inprocessing ap-
proach of [Heule et al., 2011]. The results show that our ap-
proach is compatible with all these techniques.

Table 3 compares different implementations of the learnt
clause minimization in Glucose and MapleLRB on appli-
cation instances of the 2014 SAT Competition, by varying
the liveRestart(nbNewLearnts, σ), liveClause(C) and
sort(C) functions.

Glucose+/α-β: it is like Glucose+ but does not follow the
learnt clause database reduction of Glucose any more.
Instead, liveRestart(nbNewLearnts, σ) returns true
iff nbNewLearnts ≥ α+ 2× β × σ.

Glucose+H lbd: it is like Glucose+ but liveClause(C) is
true iff C was never minimized before and is in the first
half of learnt clauses when these clauses are sorted in
decreasing order of their LBD value. In other words, the
learnt clauses with higher LBD are minimized in Glu-
cose+H lbd.

Glucose+∆: it is like Glucose+ but liveClause(C) is true
iff C was never minimized before and is in the last ∆
fraction of learnt clauses when these clauses are sorted
in decreasing order of their LBD value. Glucose+ is in
fact Glucose+1/2.

MapleLRB+/Core: it is like MapleLRB+, but it minimizes
every non-yet-minimized clause in CORE upon ev-
ery restart. It minimizes the clauses in TIER2 as in
MapleLRB+.

Low2highLevel, High2lowLevel, Low2highActivity,
High2lowActivity, Random and Reverse: all these
solvers are like MapleLRB+, except that func-
tion sort(C) is different. In solver Low2highLevel
(Low2highActivity), literals in C are ordered from
small level (activity) to high level (activity). In solver
High2lowLevel (High2lowActivity), literals in C are or-
dered from high level (activity) to small level (activity).
The level of a literal in C refers to the level of its last
assertion. In solver Random, literals in C are randomly
ordered. In solver Reverse, literals in C are reversed.

Table 3 shows the number of (Total, Sat, Unsat) instances
solved by each solver within 5000s and exhibits some statis-
tics about their runtime behavior. Column 5 (Impact) gives
the clause size minimization measured as (a− b)/a, where a
(b) is the total number of literals in the minimized clauses be-
fore (after) the minimization. Column 6 (Cost) gives the cost
of the learnt clause minimization measured as the ratio of the
total number of unit propagations performed by Algorithm 2
to the total number of other propagations performed in the
search. Column 7 (LiveC) gives the ratio of the number of
clauses minimized to the total number of learnt clauses. All
data are averaged over the solved instances among the 300
application instances of the 2014 SAT Competition.

Several observations can be made from Table 3.

• All the described implementations of learnt clause min-
imization, except for the solvers Reverse and Glu-
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Solver Total Sat Unsat Impact Cost LiveC
Glucose 213 100 113 / / /
Glucose+/103-103 216 96 120 27.04% 53.11% 11.79%
Glucose+/103-500 219 100 119 27.01% 60.73% 13.51%
Glucose+/103-300 215 100 115 26.69% 64.02% 13.98%
Glucose+H lbd 206 98 108 33.20% 132% 24.05%
Glucose+ 224 105 119 23.92% 29.90% 6.84%
Glucose+1/3 219 101 118 22.71% 19.43% 4.58%
Glucose+2/3 219 100 119 26.11% 42.45% 9.38%
MapleLRB 234 111 123 / / /
MapleLRB+/Core 238 108 130 26.73% 62.01% 22.61%
Low2highLevel 247 114 133 22.76% 57.11% 21.25%
High2lowLevel 237 105 132 24.41% 56.05% 22.59%
Low2highActivity 241 112 129 21.88% 54.45% 21.84%
High2lowActivity 237 107 130 24.28% 57.84% 21.47%
Random 241 109 132 24.07% 60.45% 21.99%
Reverse 233 106 127 18.37% 53.24% 21.24%
MapleLRB+ 248 114 134 27.63% 58.11% 21.72%

Table 3: Comparison of different implementations of the learnt
clause minimization in Glucose and MapleLRB on 300 application
instances of the 2014 SAT Competition.

cose+H lbd, improve their original solver, which pro-
vides evidence of the robustness of our approach.

• Both MapleLRB+ and MapleLRB+/Core minimize all
the clauses in CORE but at different times. The supe-
rior performance of MapleLRB+ over MapleLRB+/Core
might be explained as follows: When MapleLRB+ min-
imizes a clause in CORE, there are usually more learnt
clauses in the clause database, allowing unit propagation
to deduce more easily the empty clause.

• Propagating the literals of C in the original order is the
best option, whereas propagating the literals in the re-
verse order is the worst option. Recall that the original
order of C is roughly the reverse order in which these
literals are involved to deduce a literal in the conflicting
level according to the First UIP scheme.

• Minimizing clauses with high LBD is very costly and
useless, because Glucose+H lbd is significantly worse
than Glucose.

• The cost of the approach in Glucose+∆ is relatively
small, because the solver just removed half of the learnt
clauses when learnt clause minimization was activated,
which is not the case for other solvers.

• Glucose+ and MapleLRB+ offer the best trade-off be-
tween cost and impact, explaining their superior perfor-
mance.

It is known that industrial SAT instances exhibit commu-
nity structure [Ansótegui et al., 2012; Newsham et al., 2014]
and the LBD of a learnt clause is related to the commu-
nity structure [Ansótegui et al., 2015]. We analyze our ap-
proach using the community attachment formulas proposed in
[Giráldez-Cru and Levy, 2015]. In these instances, variables
are partitioned into communities and the community of a vari-
able can be easily determined. We generated and solved 100
instances at each point with the same parameters as in Table
1 of [Giráldez-Cru and Levy, 2015] (modularity Q = 0.9, 0.8
or 0.7, clause size k = 3, number of communities c = 40,
clause to variable ratio r′ = 4.06, 4.11 or 4.13, and number
of variables n = 5000, 2000, or 1200), using the generator

Q r′ n comm red ratio lbd red ratio size red ratio
0.9 4.06 5000 0.70% 11.45% 15.15%
0.8 4.11 2000 9.21% 10.48% 16.37%
0.7 4.13 1200 10.53% 10.08% 15.66%
SAT Competition 2014: Application Instances 16.71% 27.63%

Table 4: Impact of our approach in MapleLRB+ on the size, the LBD
and the number of communities of a learnt clause.

in [Giráldez-Cru and Levy, 2015]. Recall that formulas with
higher modularity exhibit clearer community structure.

The impact of our approach on the size, the LBD
and the number of communities of a learnt clause
is measured as ratio = (value before reduction −
value after reduction)/value before reduction, and is
averaged over the 100 instances at each point. As shown in
Table 4 with the data from the resolution of the community
attachment formulas and the application instances of the 2014
SAT competition by MapleLRB+, the impact of our approach
on the clause size (size red ratio) is significantly higher than
the impact on the LBD (lbd red ratio) and on the number of
communities (comm red ratio) of a clause. This means that
reducing the LBD and the number of communities of a clause
is harder than reducing its size. The same observation applies
to the application instances of the 2014 SAT competition.

Moreover, the impact of our approach on the number of
communities is very low for instances with high modularity.
This phenomenon might be explained as follows: to mini-
mize a learnt clause C, our approach has to deduce the empty
clause by successively propagating the negation of the liter-
als of C. In an instance with modularity 0.9, the number of
communities in C is roughly the number of decisions needed
to make C failed. So, Algorithm 2 probably has to propagate
the negation of at least one literal in each community of C to
deduce the empty clause. Consequently, the reduced clause
C ′ probably contains the same number of communities as C.

6 Conclusions
We described a new inprocessing approach to minimize learnt
clauses based on applying Boolean constraint propagation to
a reduced number of learnt clauses when a restart is trig-
gered under certain conditions, controlled using three func-
tions whose exact definition depends on other techniques in
the solver. The approach is simple and can be easily imple-
mented in a CDCL SAT solver. We implemented it in five of
the best performing state-of-the-art CDCL solvers, and con-
ducted an empirical evaluation on instances of recent SAT
competitions. The results provide evidence of the significance
and the robustness of the contributions of this paper. Ac-
cording to Audemard and Simon (2012), we are in front of
a new critical feature of SAT solvers, because the proposed
approach was able to solve up to 16 additional instance of a
same category of the SAT Competition. We believe that future
SAT solvers will incorporate our new inprocessing technique.
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[Sörensson and Biere, 2009] Niklas Sörensson and Armin
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