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Abstract
We introduce a new branch and bound algorithm
for the maximum common subgraph and maximum
common connected subgraph problems which is
based around vertex labelling and partitioning. Our
method in some ways resembles a traditional con-
straint programming approach, but uses a novel
compact domain store and supporting inference
algorithms which dramatically reduce the mem-
ory and computation requirements during search,
and allow better dual viewpoint ordering heuris-
tics to be calculated cheaply. Experiments show a
speedup of more than an order of magnitude over
the state of the art, and demonstrate that we can op-
erate on much larger graphs without running out of
memory.

1 Introduction
To determine the similarity or difference between two graphs,
we must first find what they have in common [Bunke, 1997;
Fernández and Valiente, 2001; Kriege, 2015]. The maxi-
mum common subgraph family of problems involves finding
a large graph which is isomorphic to subgraphs of two given
graphs simultaneously. Because graphs are widely used to
model real-world phenomena, maximum common subgraph
problems have arisen in molecular science (where graphs
often represent molecules) [Raymond and Willett, 2002;
Ehrlich and Rarey, 2011; Gay et al., 2014; Grindley et al.,
1993], and also in other domains including malware detec-
tion [Park et al., 2013], source code analysis [Djoko et al.,
1997], and computer vision [Cook and Holder, 1994].

Maximum common subgraph problems are NP-hard,
and remain challenging computationally. Recent practi-
cal progress has been made by using constraint program-
ming [Vismara and Valery, 2008; Ndiaye and Solnon, 2011;
McCreesh et al., 2016] and mathematical programming
[Bahiense et al., 2012], by reducing to the maximum clique
problem [Levi, 1973; McCreesh et al., 2016], and by adapting
subgraph isomorphism algorithms [Hoffmann et al., 2017].

∗This work was supported by the Engineering and Physical
Sciences Research Council [grant numbers EP/K503058/1 and
EP/M508056/1]

Some special cases also have practical polynomial time algo-
rithms [Droschinsky et al., 2016; 2017].

This paper considers the maximum common induced sub-
graph problem, in which the objective is to find a graph with
as many vertices as possible which is an induced subgraph
of each of two input graphs. (The maximum common partial
subgraph problem instead asks for a common non-induced
subgraph with as many edges as possible [Ndiaye and Solnon,
2011]; we discuss only the induced variant in this paper.) We
introduce a new branch and bound algorithm which exploits
special properties of the problem to allow a much faster ex-
ploration of the search space, whilst retaining the filtering and
bounding benefits of the constraint programming approach.
We describe the algorithm for the basic maximum common
subgraph problem, and discuss how it may be adapted to han-
dle vertex labels, edge labels, and the requirement that the
found subgraph be connected. We then present an empiri-
cal study of the algorithm, demonstrating that it improves the
state of the art by more than an order of magnitude on the un-
labelled variant of the problem, and showing that it can handle
much larger instances than earlier constraint programming or
clique approaches due to lower memory usage.

2 The MCSPLIT Algorithm
We initially assume that graphs are unlabelled, undirected and
without loops (Section 2.2 describes how these restrictions
may be relaxed). The vertex and edge sets of a graph G are
denoted V(G) and E(G). The set of vertices adjacent to ver-
tex v in graph G is called the neighbourhood of v, denoted
N(G, v). We denote by N(G, v) the inverse neighbourhood
of v, being the set of the vertices not adjacent to v (excluding
v itself). A subgraph of a graph G is a graph consisting of
some of the vertices of G, and all of the edges between these
vertices. (All subgraphs in this paper are induced subgraphs.)
A common subgraph of two graphs is a graph which is (iso-
morphic to) a subgraph of two graphs simultaneously, and a
maximum common subgraph is one with as many vertices as
possible.

Throughout, G and H will be the two input graphs to our
maximum common subgraph problem. The orders (number
of vertices) of these graphs are denoted g and h respectively.

With these definitions established, we now present MC-
SPLIT. This algorithm finds a maximum-cardinality mapping
M∗ = {(v1,w1), . . . , (vm,wm)}with ∣M∗∣ =m vertex pairs,
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Figure 1: Example graphs G andH.

where the vi are distinct vertices from V(G) and the wi are
distinct vertices from V(H), such that vi and vj are adjacent
in G if and only if wi and wj are adjacent inH. Given such a
mapping, the subgraph of G induced by {v1, . . . , vm} and the
subgraph ofH induced by {w1, . . . ,wm} are isomorphic and
correspond to a maximum common subgraph.

Walkthrough Before discussing the algorithm in detail, we
illustrate the main concepts using the graphs G andH in Fig-
ure 1. These graphs have a maximum common subgraph with
four vertices; one example is the mapping {1a,2f,3d,5b}
where vertex 1 is assigned to vertex a, 2 is assigned to f , 3 to
d and 5 to b.

The algorithm builds up a mapping M using a depth-first
search, starting with the empty mapping ∅ and adding a
(vi,wi) pair or choosing to leave a vertex in V(G) unmatched
at each level of the search tree. Select a vertex in V(G) as the
first vertex to be mapped; in our example we will arbitrar-
ily choose vertex 1. Each of the vertices in V(H) to which
vertex 1 may be mapped will be tried in turn, and finally the
possibility where vertex 1 remains unmatched will be tried.

We begin by mapping vertex 1 to vertex a, giving M =

{1a}. Now label each unmatched vertex in V(G) according
to whether it is adjacent to vertex 1, and label each unmatched
vertex in V(H) according to whether it is adjacent to vertex
a, as shown in Figure 2(a). Adjacent vertices have label 1;
non-adjacent vertices have label 0. We can extend M with a
mapping vw, with v ∈ V(G) and w ∈ V(H), if and only if v
and w have the same label. This property, that two vertices
may be mapped together if and only if they share a label, is
the algorithm’s main invariant.

Next, extend the mapping by pairing a vertex in G with a
vertex in H of the same label; we will choose to map ver-
tex 2 to vertex d, giving M = {1a,2d} (Figure 2(b)). Each
unmapped vertex v ∈ V(G) is labelled with a two-character
bit string, indicating its adjacency to each of the two mapped
vertices in V(G) (vertices 1 and 2). For example, vertex 3 is
labelled 01, indicating that it is not adjacent to vertex 1 but is
adjacent to vertex 2. Labels are given to unmapped vertices
in V(H) in a similar fashion, showing adjacency to matched
vertices a and d. Our invariant is maintained: we can extend
M by a vertex pairing if and only if the two vertices have the
same label.

The algorithm backtracks when the incumbent (the largest
mapping found so far) is at least as large as a calculated
bound given M and the current labelling. To demonstrate
how this bound is calculated, we consider the situation one
level deeper in the search tree shown in Figure 2(c).

Three vertex labels are used: 100, 101, and 111. The first
two of these only appear in one graph, and therefore there is

(a) After mapping 1 to a

Mapping

{1a}
Labelling of G

Vertex Label

2 0
3 0
4 1
5 1

Labelling ofH

Vertex Label

b 1
c 1
d 0
e 1
f 0

(b) After mapping 2 to d

Mapping

{1a,2d}
Labelling of G

Vertex Label

3 01
4 10
5 11

Labelling ofH

Vertex Label

b 11
c 11
e 10
f 01

(c) After mapping 3 to f

Mapping

{1a,2d,3f}
Labelling of G

Vertex Label

4 100
5 111

Labelling ofH

Vertex Label

b 111
c 111
e 101

Figure 2: Mapping M and vertex labels during search on example
graphs G and H from Figure 1. Labels represent adjacencies; for
example, the label 101 on vertex e in the final table signifies that e
is adjacent to the first and third mapped vertices of H (a and f ) but
not adjacent to the second mapped vertex (d).

no way to add a pair of vertices with label 100 or 101 to the
mapping. The final label, 111, appears once in G and twice in
H, and therefore at most one pair with this label can be added
to M . Thus, the upper bound on mapping size is ∣M ∣ + 1 = 4.
The general formula for the upper bound is

bound = ∣M ∣ +∑
l∈L

min (∣{v ∈ V(G) ∶ label(v) = l}∣,

∣{v ∈ V(H) ∶ label(v) = l}∣),

where L is the set of labels used in both graphs.

Label classes We require only O (g + h) space per level of
the search tree to store labelling information. This is done by
storing a label class as a pair ⟨G,H⟩ for each label l that is
used, where G is the set of vertices in V(G) labelled l, and
H is the set of vertices in V(H) labelled l. Since there are
g+h vertices in the two graphs, at most g+h label classes can
exist at once, and there are at most g +h vertices in the union
of all of the G and H sets. Furthermore, we do not actually
need to store the bits making up a label—we care only that
like-labelled vertices are kept together, and the label itself is
not used. Nor do we need to store any label class which is
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Algorithm 1: Finding a maximum common subgraph.
1 Search(future,M)
2 begin
3 if ∣M ∣ > ∣incumbent ∣ then incumbent ←M

4 bound ← ∣M ∣ +∑⟨G,H⟩∈future min(∣G∣, ∣H ∣)

5 if bound ≤ ∣incumbent ∣ then return

6 ⟨G,H⟩← SelectLabelClass(future)
7 v ← SelectVertex(G)
8 for w ∈H do
9 future ′ ← ∅

10 for ⟨G′,H ′⟩ ∈ future do
11 G′′ ← G′ ∩N(G, v) ∖ {v}
12 H ′′ ←H ′ ∩N(H,w) ∖ {w}
13 if G′′ ≠ ∅ and H ′′ ≠ ∅ then
14 future ′ ← future ′ ∪ {⟨G′′,H ′′⟩}

15 G′′ ← G′ ∩N(G, v) ∖ {v}

16 H ′′ ←H ′ ∩N(H,w) ∖ {w}
17 if G′′ ≠ ∅ and H ′′ ≠ ∅ then
18 future ′ ← future ′ ∪ {⟨G′′,H ′′⟩}

19 Search(future ′,M ∪ {(v,w)})

20 G′ ← G ∖ {v}
21 future ← future ∖ {⟨G,H⟩}
22 if G′ ≠ ∅ then future ← future ∪ {⟨G′,H⟩}
23 Search(future,M)

24 McSplit(G,H)
25 begin
26 global incumbent ← ∅
27 Search({⟨V (G), V (H)⟩},∅)
28 return incumbent

present only in one graph but not the other (or which is not
present at all). Together, these facts allow us to store all the
necessary information in three arrays. The first stores a per-
mutation of V(G) in which like-labelled vertices appear con-
secutively. The second array, similarly, stores a permutation
of V(H) with like-labelled vertices together. The third array
contains a record for each label class ⟨G,H⟩. Each record
contains start and end pointers to the portion of the first ar-
ray that contains G, and start and end pointers to the por-
tion of the second array that contains H . This representation
has similarities to data structures used in partition backtrack-
ing for graph isomorphism [López-Presa and Anta, 2009;
McKay and Piperno, 2014] and the Bron and Kerbosch
[1973] clique enumeration algorithm.

Algorithm 1 in detail The recursive procedure, Search,
has two parameters. The parameter future is a list of label
classes, each represented as a ⟨G,H⟩ pair as described above.
The parameter M is the current mapping of vertices. On each
call to Search, the invariant holds that a (v,w) pair may be
added to M if and only if v and w belong to the same label
class in future .

Line 3 stores the current mapping M if it is large enough
to unseat the incumbent. Lines 4 and 5 prune the search when
a calculated upper bound is not larger than the incumbent.

The remainder of the procedure performs the search. A la-
bel class ⟨G,H⟩ is selected from future using some heuristic
(line 6); from this label class, a vertex v is selected from G
(line 7). We now iterate over all vertices w in H , exploring
the consequences of adding (v,w) to M (lines 8 to 19). A
new set of label-classes, future ′, is created (line 9); this will
be the labelling that results from adding (v,w) to our map-
ping. Every label-class in future can now be split (lines 10
to 18) into two new classes. The first of these classes (lines 11
to 14) contains vertices in G adjacent to v and vertices in H
adjacent to w. This is added to future ′ if both sets contain at
least one vertex. This is then repeated symmetrically for non-
adjacency (lines 15 to 18). A recursive call is made (line 19),
on return from which we remove the mapping (v,w). Hav-
ing explored all possible mappings of v with vertices in H
we now consider what happens if v is not matched (lines 20
to 23).

We start our search at the function McSplit (line 24),
with graphs G and H as inputs. This function returns a map-
ping of maximum cardinality. In line 27 the initial call is
made to Search; at this point we have a single label-class
containing all vertices, and the mapping M is empty.

2.1 Heuristics
Small scale experiments (not presented here) were
performed to identify suitable heuristics for the
SelectLabelClass and SelectVertex functions.
Our SelectLabelClass function chooses a label class
with the smallest max(∣G∣, ∣H ∣), breaking ties by selecting a
class containing a vertex in G with the largest degree. From
the selected class, SelectVertex chooses a vertex in G
with maximum degree. We further discuss the effectiveness
of our SelectLabelClass function in Section 4.

2.2 Extensions
Maximum common subgraph problems come in many vari-
ants. Often vertices or edges have labels (for example, de-
noting the kind of atom or bond they represent in a molecule
[Ehrlich and Rarey, 2011]), and the induced subgraphs of the
two input graphs are required to have identical labels. Di-
rected edges are used in an application to systems of bio-
chemical reactions [Gay et al., 2014]. We now outline how to
adapt Algorithm 1 to handle these cases.

Vertex labels and loops If vertices in the input graphs have
labels (as distinct from the bit-string labels described in Sec-
tion 2), replace ⟨V (G), V (H)⟩ in line 27 with a set of label
classes, one for each label that appears on at least one ver-
tex of both G and H. If some vertices have loops, we create
two label classes for each input label: one class containing
vertices with loops, and the other containing vertices without
loops.

Directed graphs without edge labels Before running the
algorithm, we create two-dimensional arrays AG and AH rep-
resenting adjacencies in G and H respectively. These store
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Algorithm 2: Replacement for lines 11 to 18 of Algo-
rithm 1 to handle directed and edge-labelled cases.

1 for l ∈ L do
2 G′′ ← {u ∈ G′ ∶ u ≠ v ∧AG[v][u] = l}
3 H ′′ ← {u ∈H ′ ∶ u ≠ w ∧AH[w][u] = l}
4 if G′′≠ ∅ and H ′′≠ ∅ then
5 future ′ ← future ′ ∪ {⟨G′′,H ′′⟩}

the same information as the graphs’ adjacency matrices, but
allow us to determine in a single memory access which of the
two possible edges exist between a pair of vertices. We now
describe the entries of AG . For each vertex pair (t, u) in G,
AG[t][u] takes the value 0 if t and u are not adjacent, 1 if
the two vertices share a single edge in the direction t → u,
2 if they share a single edge in the direction u → t, and 3 if
there are edges in both directions. Where lines 11 to 18 of
the basic algorithm split the label class ⟨G′,H ′⟩ in two, we
now perform a four-way split where each vertex is classified
according to the label on its array entry indexed by v and w.
This is shown in Algorithm 2, where L = {0,1,2,3}.

Undirected with edge labels Each entry of AG or AH con-
tains an edge label, or a null entry 0 indicating that no edge
is present. We use Algorithm 2, by letting L be the union of
{0} with the set of all labels that appear in the input graphs.
Since there may be up to g + h distinct labels, the loop in
Algorithm 2 may execute up to g + h times, resulting in
O ((g + h)2) time complexity per search node. To achieve
O ((g + h) log(g + h)) time complexity per search node, we
can modify the algorithms to use sorting rather than explic-
itly looping over all label classes, as follows. First, run lines
17-19 of Algorithm 1 to create a new label-class of vertices
that are not adjacent to v or w, and remove these vertices from
⟨G′,H ′⟩. Next, sort G′ and H ′ in ascending order of the label
on the edge from v or w to each vertex. We can then create
the label classes corresponding to each edge label by simulta-
neously traversing G′ and H ′ from left to right, in a manner
that resembles the merging step of merge sort.

Directed with edge labels This case is similar to its undi-
rected counterpart, except that each element AG[u][v] or
AH[u][v] is a pair (l1, l2), where l1 is the label on the edge
u→ v (or 0 if no edge exists) and l2 is the label on the reverse
edge.

Maximum common connected subgraph In chemistry ap-
plications, it is sometimes desirable to require the common
subgraph be connected [Ehrlich and Rarey, 2011]. We con-
sider only undirected graphs. We may modify MCSPLIT by
permitting branching only on a vertex v that has at least one
non-zero element in its bit-string label, following the scheme
described by Vismara and Valery [2008]. We can represent
this information compactly, and without increasing time com-
plexity at each search node, by storing an extra bit with each

label class. This bit takes the value 1 if and only if the vertices
in the class are adjacent to at least one vertex in M .

3 Experimental Evaluation
Experiments were performed on machines with dual Intel
Xeon E5-2640 v2 CPUs and 64GBytes RAM. Our algorithm
was implemented1 in C++ and compiled using g++ 5.3.0.
We compare against the best constraint programming imple-
mentations of Ndiaye and Solnon [2011] and McCreesh et
al. [2016] (CP-FC in the unlabelled cases, and CP-MAC
in the labelled cases, using both branching and filtering for
connected subgraphs), the clique encodings of McCreesh et
al. [2016], and the k↓ algorithm of Hoffmann et al. [2017]
(which only supports unlabelled, undirected, unconnected in-
stances). Each of these comparator programs is an optimised,
dedicated implementation and does not use a general-purpose
constraint programming toolkit. We used the original au-
thors’ code in each case.

Our first set of experiments uses a database of randomly-
generated maximum common subgraph instances [Santo et
al., 2003; Conte et al., 2007]. For unlabelled instances, we
selected the first ten instances from each family whose mem-
bers have no more than 50 vertices, for a total of 4,100 in-
stances. For labelled instances, we selected the first ten in-
stances from every family, for a total of 8,140 instances with
up to 100 vertices; like McCreesh et al. [2016], we use the la-
belling scheme in which the number of distinct vertex labels
and the number of distinct edge labels is approximately equal
to 33 percent of the number of vertices in each graph.

Unlabelled, undirected Figure 3(a) shows a plot of cumu-
lative number of instances solved against runtime. We may
compare the speed of two algorithms using the horizontal
distance between their curves. For example, we could solve
2,000 of the 4,110 unlabelled undirected instances using the
MCSPLIT algorithm if a time limit of 0.5 seconds per instance
were imposed. Its nearest competitor, CP-FC, would require
a time limit of over 24 seconds per instance to solve the same
number of instances. For any given number of instances, MC-
SPLIT is comfortably more than an order of magnitude faster
than its nearest competitor. Moreover, MCSPLIT is the fastest
algorithm on 87% of the 3,506 instances that could be solved
by at least one of the four algorithms in less than than 1,000
seconds.

Vertex and edge labels, directed Cumulative runtimes for
this class of instances are in Figure 3(b). Again, MCSPLIT
is over an order of magnitude faster than the best existing CP
algorithm, which is CP-MAC in this case. Matching the con-
clusions of McCreesh et al. [2016], we see that the clique
encoding outperforms the other algorithms—including MC-
SPLIT—on these labelled instances, except in the very easy
region of instances that can be solved in well under 100 ms.

1Source code, instances, experimental scripts and raw results are
available at https://github.com/jamestrimble/ijcai2017-partitioning-
common-subgraph
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(a) Unlabelled, undirected, not connected
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(b) Vertex and edge labelled, directed, not connected
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(c) Unlabelled, undirected, connected
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(d) Vertex and edge labelled, undirected, connected
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Figure 3: Cumulative numbers of instances solved over time for
maximum common subgraph problems.

Unlabelled, undirected, connected This class of instances
is shown in Figure 3(c). These results are very similar to the
corresponding experiment in Figure 3(a) in which the sub-
graph is not required to be connected: MCSPLIT is the clear
winner by more than an order of magnitude.

Vertex and edge labels, undirected, connected For the la-
belled, connected case, clique slightly outperforms MCSPLIT
on harder instances (Figure 3(d)). However, the gap between
the two algorithms is very narrow, and is probably down to
minor implementation details; indeed, the cumulative curve
for MCSPLIT briefly rises above the curve for clique at a run-
time just below 100 seconds. Additionally, MCSPLIT is the
clear winner for easier instances, where the clique encoding
is relatively expensive to construct but trivial to solve.

Large subgraph isomorphism instances We also ran the
algorithms on a set of 5,725 larger instances used in recent
studies of subgraph isomorphism [Kotthoff et al., 2016] and
maximum common subgraph [Hoffmann et al., 2017]. This
benchmark set includes real-world graphs and graphs gener-
ated using random models. Pattern graphs range from 4 ver-
tices to 900 with a median of 80; target graphs range from
10 vertices to 6,671 with a median of 561. Cumulative run-
times on these instances are shown in Figure 4. This is a chal-
lenging set of instances, and more than half of the instances
cannot be solved within a timeout of 1,000 seconds by any
solver. Furthermore, the CP-FC algorithm and the clique en-
coding run out of memory on many of the instances (these are
treated as timeouts, following Hoffmann et al. [2017]).

The basic MCSPLIT is beaten by the k↓ algorithm of Hoff-
mann et al. [2017] on this dataset. However, we can modify
the MCSPLIT algorithm to use a top-down strategy similar to
that used by k↓ by calling the main McSplit method once
per goal size (g, g−1, g−2, . . . ); we backtrack (line 5 of Algo-
rithm 1) when the bound is strictly less than the goal size, and
terminate when a solution of the goal size is found. We expect
that this could do well because in many cases the maximum
common subgraph covers nearly all of the smaller graph—
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Figure 4: Cumulative numbers of instances solved over time for the
maximum common connected subgraph problem on the large sub-
graph isomorphism benchmark suite.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

716



(a) Unlabelled, undirected instances
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(b) Labelled, directed instances
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(c) Subgraph isomorphism instances
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Figure 5: Relative search space sizes for instances which were solved by both algorithms within the timeout.

indeed, Figure 4 shows that this approach is the strongest on
these instances, and MCSPLIT↓ is the best algorithm for ev-
ery choice of timeout. (By contrast, the optimal solutions for
the instances in Figure 3 typically cover a smaller proportion
of the input graphs, and MCSPLIT↓ is often more than a mag-
nitude slower than the plain MCSPLIT algorithm for these
instances; the MCSPLIT↓ results are not shown for these in-
stances.)

Overall, we find that MCSPLIT improves on the previous
state of the art by more than an order of magnitude for small,
unlabelled graphs. On a benchmark suite of larger instances,
the MCSPLIT↓ variant of the algorithm comfortably outper-
forms the state of the art. On labelled instances, the clique en-
coding remains the strongest solver, except on the most trivial
instances—particularly where there is no requirement for the
common subgraph to be connected.

4 Comparison with Existing Algorithms
Our experimental results suggest that MCSPLIT has broadly
similar performance trends to the constraint programming,
forward-checking (CP-FC) algorithm of Ndiaye and Solnon
[2011], but with much lower constant factors and memory
usage. Indeed, in Figures 5(a) and 5(b) we plot the number
of recursive calls made by our algorithm versus the number
made by CP-FC, for the unlabelled and labelled, unconnected
problem instances. (Rather than a simple scatter plot, we use
darker colours to indicate a higher density of points around
a location.) We see a close correlation: MCSPLIT typically
does slightly less work, and sometimes does more, but in-
stances with more than one order of magnitude difference in
search tree size are rare.

Why is this? We do not see a similar correlation between
our search tree size and that of the clique approach. The key
observation is that MCSPLIT may be considered to be a dif-
ferent version of the CP-FC algorithm, using an unconven-
tional domain store and more efficient filtering algorithms.
We now explore this relationship further.

In the CP-FC algorithm, each vertex v ∈ V(G) is repre-
sented by a variable, whose domain corresponds to the set of
vertices in V(H) to which v may currently be mapped, with

an additional special � value representing an unmapped ver-
tex. Given a label class ⟨G,H⟩ in MCSPLIT the vertices in
G correspond to variables in CP-FC, and the vertices in H to
domain values. The label-class representation of domains is
possible because throughout the CP-FC algorithm for max-
imum common subgraph, the domains of any two variables
are either identical or disjoint (excluding �, which is either
present in all domains or in none). To the best of our knowl-
edge, this observation has not been made previously, and it
is not exploited in other algorithms for maximum common
subgraph.

CP-FC uses a soft all-different constraint to compute a
bound, which requires running a matching algorithm on a
supporting compatibility graph. We now show that MCSPLIT
computes the same bound, but using a simple counting loop
(Algorithm 1, line 4)—this is possible because of the disjoint
nature of the domains.

To illustrate the method used by CP-FC to calculate a
bound, we consider the input graphs G and H in Figure 1.
Suppose that the variable corresponding to vertex 1 has been
matched to the value corresponding to vertex a, and that no
other assignments have been made. In the terminology of
MCSPLIT, we now have two label classes: ⟨{2,3},{d, f}⟩
and ⟨{4,5},{b, c, e}⟩. CP-FC represents this state by storing
the domain of each remaining variable: 2 and 3 each have the
domain {d, f}; 4 and 5 each have the domain {b, c, e}.

As described previously, the MCSPLIT algorithm finds the
size of the smaller set in each label class, and adds these sizes
to the size of the current mapping, giving a bound of 5. CP-
FC uses the compatibility graph B in Figure 6 to calculate an
upper bound; variables are represented by vertices on the left,
values are represented by vertices on the right, and a vari-
able may take a value if and only if the corresponding ver-
tices are adjacent. The upper bound is calculated by CP-FC
by computing a maximum matching on this bipartite graph,
and adding the size of this matching to the size of the current
mapping.

The vertices in the bipartite graph are coloured to empha-
sise how they correspond to the two label classes. Each label
class corresponds to a complete bipartite graph, and there are
no edges between the components corresponding to different
label classes. Clearly, a maximum matching in B must be
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Figure 6: A bipartite compatibility graph of the type used to calcu-
late a bound in the CP-FC algorithm.

the union of the maximum matching in each complete bipar-
tite subgraph, and each of these matchings in turn have the
same size as the smaller of the left and right sets of vertices.
It follows that the CP-FC bound is identical to the MCSPLIT
bound.

This bound is incomparable to the clique bound, which is
given by a greedy colouring of a microstructure-like graph
[McCreesh et al., 2016]. The clique bound is potentially
stronger, in that it can reason about compatibilities between
individual variable-vertex assignments. The clique bound is
also able to make use of edge label information, which CP-FC
and our equivalent bound cannot—this comes at the expense
of much higher memory requirements, and also longer calcu-
lation times for unlabelled graphs. The clique bound is also
potentially weaker: it is not even guaranteed to be less than
or equal to the number of remaining variables, in the CP-FC
sense.

A further advantage of our encoding is that it gives us effi-
cient access to a better branching heuristic. The CP-FC algo-
rithm uses smallest domain first, which in our algorithm cor-
responds to branching on a label class with smallest ∣H ∣. We
instead branch on the label class with smallest max(∣G∣, ∣H ∣).
This is empirically better, and accounts for much of the differ-
ence between the number of recursive calls made; branching
on the smallest ∣G∣∣H ∣ gives very similar results. This can
be viewed as exploiting both smallest domain first, and the
dual viewpoint [Geelen, 1992] of smallest domain first, si-
multaneously, but we do not have the overheads of having to
maintain and channel between the dual viewpoint that would
be required when using a conventional domain store.

What about our relationship to the k↓ of Hoffmann et al.
[2017]? Figure 5(c) plots the number of recursive calls made
by k↓ and MCSPLIT↓ on each of the subgraph isomorphism
instances. Although MCSPLIT↓ is the faster of the two al-
gorithms overall, it explores more search nodes than k↓ for
most instances (even taking into account that k↓ uses a unit
propagation loop, and so measures the search tree slightly dif-
ferently). This is the classic tradeoff between speed and clev-
erness. A hybrid algorithm could be beneficial here: it could
use k↓ initially, switching to MCSPLIT↓ when the extra filter-
ing is ineffective, and finally switching to a clique encoding
when fewer than some threshold number of vertices remain to
be selected. This might deliver the benefits of the clique en-
coding for labelled graphs, while avoiding the high memory
cost and colouring time of encoding the full instance.

5 Conclusion
We have introduced the MCSPLIT algorithm for maximum
common subgraph problems. This algorithm is more than an
order of magnitude faster than the previous state of the art for
unlabelled and undirected instances. We have shown how the
algorithm can be extended for graphs with labels on edges,
labels on vertices, loops, directed edges and the requirement
that the resultant graph be connected.

We believe there is more to be discovered about branching
heuristics. There is also the potential to branch on both sides,
that is instead of branching on vertices in V(G), it would be
equally valid to branch on a vertex in V(H), since our data
structure treats the two graphs symmetrically. More inter-
estingly, we could choose which graph to branch on at each
search node using some heuristic (perhaps choosing based on
whether the G or H set is smaller).

It would be interesting to see whether these techniques are
more broadly applicable—we suspect that some other prob-
lems may have a similar branching structure which would
also benefit from a partitioning domain store representation.
Most obviously, we could solve the induced subgraph isomor-
phism problem in the same way (and with nearly no changes
to the code), and our connected variant shows that certain
side constraints can also be handled. However, we cannot
solve non-induced subgraph isomorphism this way, nor can
we handle certain richer labelling schemes such as those used
in temporal subgraph isomorphism [Redmond and Cunning-
ham, 2013].
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