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Abstract

We introduce a parametrized equivalence notion for
abstract argumentation that subsumes standard and
strong equivalence as corner cases. Under this no-
tion, two argumentation frameworks are equivalent
if they deliver the same extensions under any addi-
tion of arguments and attacks that do not affect a
given set of core arguments. As we will see, this
notion of equivalence nicely captures the concept
of local simplifications. We provide exact charac-
terizations and complexity results for deciding our
new notion of equivalence.

1

Argumentation has become one of the major fields within
Al over the last two decades [Rahwan and Simari, 2009;
Bench-Capon and Dunne, 2007]. In particular, Dung’s ar-
gumentation frameworks [Dung, 1995], AFs for short, are
widely used and act as integral concepts in several advanced
argumentation formalisms. They focus entirely on conflict
resolution among arguments, treating the latter as abstract
items without logical structure. Hence, the only informa-
tion available in AFs is the so-called attack-relation that de-
termines whether an argument is in a certain conflict with
another one. As already outlined by Dung, AFs provide a
formally simple basis to capture the essence of different non-
monotonic formalisms. Therefore, several so-called seman-
tics are typically considered for AFs, see also [Baroni et al.,
2011]. A semantics delivers several sets of arguments (called
extensions) that can be jointly accepted in order to satisfy cer-
tain properties. One such property is given by admissible sets
which consist of arguments that do not attack each other and
attack each argument attacking the set itself.

Bearing the nonmonotonic nature of AFs in mind, it is evi-
dent that the standard notion of equivalence (i.e., do two AFs
possess the same sets of extensions?) is a rather weak con-
cept. In particular, it is not the case that replacing an AF by
an equivalent one is a faithful manipulation. As an exam-
ple consider the AFs F;,. = ({a,b,c}, {(a,b), (b,c),(c,a)})
and F,p, = ({a,b}, {(a,a), (a,b)}), which are equivalent for

Introduction

*This research has been supported by DFG: BR 1817/7-2 and
FWEF: 12854.

800

Wolfgang Dvorak
TU Wien, Austria
dvorak @dbai.tuwien.ac.at

Stefan Woltran
TU Wien, Austria
woltran @dbai.tuwien.ac.at

Gl

Figure 1: Replacing F,p. in G to obtain G’ = G[Fupe/ Fab)-

most semantics, including admissible sets. However, replac-
ing Fiype by Fyyp in alarger AF G might not be an equivalence-
preserving action. Suppose G expands Fyp. via an attack
from some argument d to b. Then, the mentioned replacement
would change each admissible set S U {d, ¢} into S U {d}.
On the other hand, if F,;. is embedded in G only via an
attack (d,a) — see Figure 1 — the replacement is faithful.
More formally, we then have that the admissible sets of G
and G[F,p./ Fyp) are the same (a formal definition of replace-
ments G[-/-] is given in Section 6).

Observations of this kind gave rise to more restricted no-
tions of equivalence [Oikarinen and Woltran, 2011; Bau-
mann, 2012; Baumann and Woltran, 2016]. Strong equiva-
lence (also called expansion equivalence) between two AFs
F and F’ holds (w.r.t. a semantics o) iff for all AFs H the ex-
panded AFs F'U H and F’ U H have the same o-extensions.
By definition, this notion of equivalence guarantees that F
can be replaced by a strongly equivalent (w.r.t. ¢) AF F” in
any framework G without changing the o-extensions of G.
Interestingly, the characterization results for strong equiva-
lence are surprisingly simple and can be given via so-called
kernels, syntactic modifications of the involved AFs. From
a theoretical perspective, it is thus open how this concep-
tual difference between standard and strong equivalence can
be captured via a uniform formal characterization which has
these two notions as corner cases.

From a computational point of view, strong equivalence
(and related versions) seem to be an appealing notion, since
checks for replacements, and thus also for simplifications in
AFs, would become easy. However, strong equivalence is
too restricted for practical purposes. Even obvious simplifi-
cations are not captured: an example are isolated self-loops,
which can be safely removed from AFs for many standard se-
mantics. However, AF F' = ({a}, {(a,a)}) is not strongly
equivalent to the empty AF F’ = ((, () for admissible se-



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

mantics; just take H = ({a}, (). Then, {a} is admissible for
F"UH but not for F'U H. This indicates that a suitable equiv-
alence notion for replacement needs a particular treatment for
those arguments which are directly involved in the change.

Hence, what we require is an equivalence notion that com-
pares two AFs such that

1. the relations between core arguments are fixed, while

2. the remaining arguments are allowed to interact arbitrar-
ily with possible expansions of the compared AFs.

Our proposal is to define, given a set of core arguments C'
and a semantics o, C-relativized equivalence between two
AFs F and F’ w.rt. o (in symbols, FF =Z F’) to hold, if
F U H and F’ U H have the same o extensions, for each AF
H not containing arguments from C. Observe that this notion
indeed captures strong equivalence (set C' = () and standard
equivalence (set C to be the universe of all arguments).

Coming back to our example with Fy;,. and Fj, the idea is
to set C' = {a, b, ¢} and compare the two AFs plus their inter-
action with the AF GG where Fj;. occurs in. In our case, we
compare F5, = ({a,b,c.d}, {(a,), (b,0), (c,a). (d,a)})
and FS = ({a,b,d}, {(a,a), (a,b), (d,a)}). Then, F§ _ =2,
Facé implies that G and G[F,p./ Fap) are equivalent under o,
i.e., replacing Fy;. by Fy; in G is safe for semantics o.

Our main contributions are as follows:

e We first define restrictions for the main semantics of sta-
ble, admissible, preferred, complete and grounded ex-
tensions. These identify extensions of an AF F' that are
acceptable in some expansion F'U H and are integral for
equivalence characterizations.

We give exact characterizations of C-relativized equiva-
lence for the five semantics mentioned above; in addition
we also show results for conflict-free and naive sets.

We provide a complexity analysis for deciding C-
relativized equivalence; as corollaries we also obtain in-
sight to the complexity of standard equivalence.

Finally, we give a formal notion of replacement in AFs
and illustrate how our equivalence notion can be em-
ployed for local simplifications within AFs.

Some proofs are only sketched or omitted due to space con-
straints. Full proofs are available in [Baumann et al., 2017].

2 Preliminaries

In this section, we introduce argumentation frame-
works [Dung, 1995] and recall the semantics we study
(for an overview, see [Baroni et al., 2011]). We fix U as
countably infinite domain of arguments.

Definition 2.1. An argumentation framework (AF) is a pair
F = (A, R) where A C U is a finite set of arguments and
R C A x A is the attack relation. The pair (a,b) € R means
that a attacks b. We use A(F) to refer to A and R(F') to refer
to R. We say that an AF is given over a set B if A(F) C B.

Given an AF F and S C U, we define Sj: = {x | Iy € S :
(y,z) € R(F)}, Sp ={x |y €5 : (z,y) € R(F)}, and
the range of S in F as S = (SN A(F)) U S}.
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Given F = (A, R), argument a € A is defended (in F)
by a set S C U if {a} C S}. The characteristic function
Fr 2 24 = 24 of F is defined as Fr(S) = {a € A |
a is defended by S in F'}.

Given AFs F = (A,R), F' = (A",R'), and S C U, we
denote the union of AFs as FUF' = (AU A,RUR),
and define F\ S = (A\S,RN ((A\ S) x (A\ S))) and

FNS=(ANS,RN((ANS)x (ANS))).

Semantics for argumentation frameworks are defined as
functions o which assign to each AF F aset o(F) C 24(F) of
extensions. We consider for ¢ the functions naive, grd, stb,
adm, com, and prf, which stand for naive, grounded, stable,
admissible, complete, and preferred extensions, respectively.

Definition 2.2. Let F = (A,R) be an AF. A set S C A
is conflict-free (in F), if there are no a,b € S, such that
(a,b) € R. cf (F) denotes the collection of conflict-free sets
of F. For a conflict-free set S € cf (F), it holds that

e S € nawe(F), ifthereisnoT € c¢f (F) with T D S;
o S € sth(F), if SE = A;

o Se€adm(F), if S C Fr(S);

e S € com(F), if S =Fr(S);

e S € grd(F),if S € com(F)and $TCS s.t. T€com(F);
e S cprf(F), if S € adm(F) and T DS s.t. T€adm(F).

We recall that for each AF F', the grounded semantics
yields a unique extension, which is the least fixed-point
F2°(0) of the characteristic function F.

3 Notions of Equivalence

We first review two equivalence notions for AFs from the lit-
erature, namely standard and strong equivalence.

Definition 3.1. Given a semantics o. Two AFs F and G are
(standard) equivalent w.r.t. o (F =7 G) iff o(F) = o(G).

Definition 3.2. Given a semantics o. Two AFs F and G over
U are strongly equivalent w.rt. o (FF =% G) iff FU H =°
G U H holds for each AF H over U.

In this work we introduce the new notion of C-relativized
equivalence, which is parametrized by the set C' of core ar-
guments which will not be directly touched by the possible
expansions (i.e., AFs H added to the compared AFs are not
arbitrary anymore).

Definition 3.3. Given a semantics o and C C U. Two AFs
F and G are C-relativized equivalent w.r.t. o (F' =% G) iff
F U H =° GU H holds for each AF H over U \ C.

Notice that (i) for C' = () the C-relativized equivalence co-
incides with strong equivalence and (ii) when C' = U then C-
relativized equivalence is just standard equivalence (the only
AF over U\C' =0 is (0,0) and FU(®, ))=F for all AFs F).

The following observation expresses the fact that C-
relativized equivalence survives if we extend the core C' with
further untouchable arguments. Since in general standard
equivalence (C' = U) does not imply strong equivalence
(C = () the assertion does not hold for shrinking the core.
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Observation 3.4. For any two AFs F,G, any two sets
C,D C U and any semantics o, if C C D and F =7, G,
then F =5, G.

An immediate consequence of the observation above is that
strong (standard) equivalence is more (less) demanding than
relativized equivalence, no matter which core C' is consid-
ered. This is simply due to the fact that for any core C,
() € C C U. The next proposition gives more refined condi-
tions for the coincidence between C-relativized equivalence
and strong or standard equivalence, respectively. Since we
consider finite AFs only we restrict our considerations to fi-
nite cores too.

Proposition 3.5. Let F, G be AFs, C' C U a finite core, o €

{stb, adm, com, grd, prf}, and B = CN(A(F) U A(G)).
1.IfB=0,then F =7 Giff F =
2.IfB=A(F)UA(G), then F =7, G iff F =° G.

4 Characterization Results

In what follows, we aim for giving characterizations for de-
ciding F' =7, G with finite C C U, such that an explicit
consideration of all possible expansions is avoided. In other
words, we need semantical concepts that are solely defined
on the AFs F' and G, but take the core C into account. To
this end, we start with the concept of C-restricted seman-
tics. Our main result for exactly characterizing ' =g,
then requires that the C'-restricted extensions coincide for the
compared AFs. As we will see in Section 4.2, some further
semantics-dependent conditions must be met.

4.1 C-restricted Semantics

For C-restricted semantics, we restrict the relevant properties
of the original semantics to the core arguments.

Definition 4.1. Let F be an AF, C C U and E C A(F).
o Ecstho(F)ifE € c¢f(F)and A(F)NC C ES.
e E € admc(F)ifE € ¢f(F)and E. NC C Ef.
o FE ¢ prfo(F) if E € adme(F) and for all D €
admc(F) with E\ C = D\ C, Ef \C C D} \ C,
and E;, \ Ef 2 D \ Df wehave ENC ¢ DN C.
Example 4.2. For AF F . from the introduction and C' =
{a,b,c}, we have stbc(F(l;w) = {{d,b}}, admc(FS,) =

{0, {d} {d,b}}. In this particular case, standard extensions
and restricted ones coincide. Let us thus extend FS to the

abe
AF F as depicted below

We observe that stbc = stbo(FS,) although stb(F) =
0, likewise admc(F) = admc( FS) but adm(F) = {0}.
Finally, we have prf ¢(FS,) = pri o (F) = {0, {d,b}}.

In order to define the C'-restricted complete and grounded
semantics we need the concept of the C'-restricted character-
istic function Fr,c,g(S) for AF F and E, S C A(F).

Frep(S)={a€ E|YceC: (ca)€ R(F) = cec St}
U{c € CNA(F) | V(bc) € R(F):be SHU(Sz\O)}
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Definition 4.3. Ler F' be an AF, C C U and E C A(F).
e Eccomc(F)ifE € ¢f(F)and E = Frc,pg(E).
o € grdc(F)ifE € cf(F)and E = Fgc p(0).

Notice that in case A(F) C C, C-restricted semantics as
given in Defs. 4.1 and 4.3 reduce to the original semantics,
i.e., 0c(F) = o(F) for any C with A(F) C C.

Another crucial feature of C-restricted semantics is that
oc(F) returns all the argument sets that are projections of
o-extensions in some F' U H with H defined over U \ C.

Proposition 4.4. Let F be an AF, ¢ € {stb, adm, com,
grd,prf}, and C C U. E € o¢(F) iff there exists an AF
HoverU\CandT € o(FUH) such that T N A(F) = E.

Proof Sketch (stable/admissible). =:Let B = (A(F)\ (EU
(")) and consider the AF H = ({t} U B, {(t,b) | b € B})
with t € U \ C a fresh argument (not occurring in F'). Then
H is givenover U \ C and E U {t} € o(FUH), foro €
{sth, adm}. <:Let o € {stb, adm} and suppose T’ € o (FU
H) for some H over U \ C. For E = T'N A(F), we clearly
have E € ¢f (F'). As all attacks on ¢ € C are already present
in F, for o = stb we have that A(F) N C C Ej. and thus
E € stbo(F). Likewise for o = adm, since eachc € EpNC
is already attacked by E'in F', E € admc(F). O

The proposition above establishes a close relationship with
the enforcing problem [Baumann and Brewka, 2010]. More
precisely, the C-restricted o-extensions E are exactly the sets
enforceable without touching the core arguments.

Example 4.5. Recall F from Example 4.2. For C = {a, b, c}
we had {b,d} € stbc(F) and {b,d} € admc(F). The con-
struction in the proof of Prop. 4.4 just adds an argument t at-
tacking e (note that t and e are not from C). For the resulting
AF it is easily checked that {t,b,d} is among its admissible
sets, resp. is its only stable extension. %

Next we consider properties that will appear in the C-
relativized equivalence characterizations of all semantics o €
{stb, adm, com, grd, prf}.

Lemma 4.6. If F =7 G then A(F)\ C = A(G) \ C or
Uc(F) = Uc(G) = (Z)

Proof Sketch (stable). If stbo(F) = 0, stb(F U H) =  for
all H over U \ C (by Prop. 4.4), and thus also stbc(G) = 0.
Now suppose stho(F) # @ and A(F) \ C # A(G) \ C.
W.lo.g. thereisan a € A(F)\ C and a ¢ A(G). Suppose
there is E € stbo(F) with a € E. By Prop. 4.4, we can give
an H such that thereisa T € stb(F U H) with TN A(F) =
E. Notice that H does not contain arguments from E. Thus
a ¢ A(GUH) and hence T ¢ stb(G U H), a contradiction
to I =3 G. Thus there is no E € stbo(F) witha € E.
Let E € stbo(G). By Prop. 4.4, there is an AF H such
that there is a T' € stb(G U H) with T N A(G) = E and we
can build this H witha ¢ A(H). Letnow H' = HU({a},0)
and observe that H' is still given over U\ C. Then, TU{a} €
stb(G U H') but it cannot be that T'U {a} € stb(F U H') as
this, by Prop. 4.4, would give rise to an E € stbo(F) with
a € E. But this is in contradiction to F' = G. O

Lemma 4.7. If F =7, G then oc(F) = oc(G).
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Proof. oc(F) C oc(G): By Prop. 4.4, foreach E € o¢(F')
there is an H over U \ C and T' € o(F U H), such that
T N A(F) = E. By assumption, 7' € ¢(G U H) and, by
Prop. 44, E' = TN A(G) € 0¢(G). As A(H) N C = 0,
we have that TN C = ENC = E' N C, and, by Lem. 4.6,
A(F)\C = A(G)\C and thus E\C = E'\ C. Hence, E =
E'and E € 0¢(G). oc¢(F) 2 0c(G)is by symmetry. [

4.2 Characterizations

In the following we give the characterizations for all seman-
tics under consideration. We already have that two AFs can
only be C-relativized equivalent w.rt. o if A(F) \ C
A(G)\ C (or o¢(F) = 0) and 0¢(F) = oc(G). Now
depending on the concrete semantics we have to appoint ad-
ditional conditions for the sets £/ € o¢(F) to ensure that they
appear in the same expansions of F' and G.

Stable Semantics. For stb semantics we require for each
E € stbe(F) that the range of E coincides on F' \ C and
G \ C. That is, the arguments that have to be attacked by H
to make E stable in F' U H coincide with the arguments that
have to be attacked by H to make E stable in G U H.

Theorem 4.8. Let F, G be AFs and C C U. Then, F = G
iff the following conditions jointly hold:

(1) if sthe(F) £, A(F)\ C = A(G) \ C;
(2) sthe(F) = stbe(G),; and
(3) forall E € stbc(F), Ef \C = EL\ C.

Proof Sketch. =: The conditions (1) and (2) are immediate
by Lem. 4.6 and Lem. 4.7. Now let stbo (F) = stba(G) # 0
and A(F) \ C = A(G) \ C, and assume there is an FE €
stbo(F) st. EL\ C # EL\ C. Wlo.g. leta € A(F)\ EE
and a ¢ A(G)\ ES. We observe thata ¢ E and a ¢ C and
thusa € Ef. Let H = ({t UA(G)\EZ, {(t,b) | b € A(G)\
E&}) where t is fresh argument from U \ C. Observe that H
does not contain arguments from C since E € stbo(G) and
thus each ¢ € C occurring in G is attacked by E. We have
EuU{t} € stb(GU H), while E U {t} ¢ stb(FUH), a
contradiction to F = G.

<: Suppose F' £ G. W.lo.g. there is an AF H over
U\C andaset S suchthat S € stb(FUH)but S ¢ stb(GU
H). By Prop. 44, E = SN A(F) € stho(F). If now E ¢
stbo(G) or A(F)\C # A(G)\C, we are done, i.e., condition
(1) or (2) is already violated. So suppose E € stbc(G), and
A(F)\C = A(G)\ C. We have to show E \ C # EL\ C.
Recall that S ¢ stb(G U H). Since E € stbo(G) there
exists an a € A(G U H) \ C not attacked by S in G U H,
thus in particular a ¢ Eé; . Since S does not attack a via
H and S € stb(F U H) we conclude that either a € Ef or
a ¢ A(F). However, since a ¢ C and A(F)\C = A(G)\C,
it follows that @ € E., thus violating (3). O

Example 4.9. Recall F from Example 4.2 and let F’
FS U ({a,d, e}, {(a,e), (e,e), (e,d)}), i.e. instead of the cy-
cle through a,b,c, we have just two arguments a,b where
a attacks itself and b. For C {a,b,c}, it is easily
checked that F and F' satisfy all three conditions, i.e.,
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we have F =3 F'. In fact, even for the AF F" =
({a,b,d,e},{(a,a), (a,e),(e,e),(e,d)}), ie, F' without
the attack from a to b, F =£* F" holds.

If we had C ia, b}, condition (1) would be vio-
lated; indeed F #£&° F' is then witnessed by adding
H = ({e,e,t},{(L.O)}), as sth(FUH) = {{t,d,b}} and
sth(F'UH) = {{t,d,b,c}}. On the other hand, for C =
{a, b, c}, the role of b and c is indeed different: if we use in F’
argument c instead of b, we have stbc(F') = {{d,c}}; thus
condition (2) would be violated. Finally, consider F""' given
by F' plus an additional attack (b, ). Note that we still have
stbo(F") = {{d,b}}, but now Ef: \ C # Ef,, \ C, hence
condition (3) is violated here. Even without expanding the
AFs, we obtain different stable extensions, i.e., stb(F) = ()
while stb(F'"") = {{d, b}}.

When considering C' = () the above characterization boils
down to (1) A(F) = A(G), (2) ¢f(F) ¢f (G) and (3)
for all £ € c¢f(F), E;C = Eg That is, the two AFs I
and G have to coincide except for attacks from self-attacking
arguments, i.e., we end up with the concept of stable ker-
nels from [Oikarinen and Woltran, 2011], which characterize
strong equivalence for stb. For C' = A(F U G), only con-
dition (2) remains which is equivalent to stb(F') = stb(G).
Similar observations can be made for the forthcoming results.

Admissible Semantics. For adm semantics we have the ad-
ditional condition that for each E € adm¢(F) the attackers
of E that are not already attacked by E coincide in F' and G.

Theorem 4.10. Let F, G be AFs and C C U. Then, F =™
G iff the following conditions jointly hold: (1) A(F)\ C
A(G)\ C; (2) adme(F) = adme(G); and (3) for all E
admc(F), (3a) Ef \ C = E} \ C and (3b) E; \ Ef.
E;\ Ef.

Example 4.11. Let us first consider F, F', and F" from Ex-
ample 4.9, again with C = {a, b, c}. It can be shown that all
three conditions then hold, i.e., F Egdm F'. However, F"'
is a too drastic simplification for admissible semantics, since
{b} € admc(F") but {b} ¢ admc(F).

To show the role of condition (3b), consider the AFs F}
FU({g}{(9,9)}) and Fy = F U ({9,b},{(9,9), (9,0)});
conditions (1), (2), and (3a) are fulfilled. However, for £ =
{d,b} € admc(Fy), we have Er, \E;] = {e}, while B} \
EYf, = {e,g}. Hence condition (3b) is violated, witnessed by
the expansion H = ({t, e}, {(t,e)}), which yields {t,d,b} €
adm(Fy U H), but {t,d,b} ¢ adm(F» U H). O

m

Preferred Semantics. The characterization for prf is very
much like for adm, the only difference being that one consid-
ers prfo(-) instead of adme(-). This similarity reflects the

fact that F =27 G whenever F =™ G.

Theorem 4.12. Let F, G be AFs and C C U. Then, F E%Tf
G iff the following conditions jointly hold: (1) A(F)\ C
AG)\ C; (2) prfo(F) = prf«(G); and (3) for all E
prfe(F), (3a) EL\ C = E£ \ C and (3b) E; \ Ef;
E;\ EL.

Iml



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Table 1: Complexity of C-relativized Equivalence.

o ‘ nawe  grd adm com stb prf

FE"CG‘ in P coNP-c. coNP-c. coNP-c. coNP-c. HQP—C

Complete Semantics. For com semantics we have all the
conditions we had for adm, but also the additional condition
(3c) that ensures that the same arguments are defended in F'U
H and G U H, for all AFs H over U \ C.

Theorem 4.13. Let F',G be AFs and C C U. Then, FF =&™
G iff the following conditions jointly hold: (1) A(F)\ C =
A(G)\ C; (2) come(F) = come(G); and (3) for all E €
comc(F), (3a) Ef\C = ES\C, (3b) Epx\E} = E;\E(,
and (3c) for all S with E,, \ Ef. € S C A(F)\ (CUE),
fFrms(E)NC =ENCorFos(E)NC = ENC then
Frs(E) = Fas(E).

Grounded Semantics. For the characterization of grd we
make use of the following variant of the characteristic func-
tion, Fr g (S) = {a€ E | S defends a in F'} for E C A(F).
Theorem 4.14. Let F,G be AFs and C C U. Then,
F =5 G iff the following holds: (1) A(F)\C = A(G)\C;
(2) grdo(F) = grd(G); and (3) for all E € grd~(F) and

all § C A(F)\(CUE) (30) F3X g puc®) = F s moc (D).
(35) if 35 5. poc (0) = E then Ef\(CUS) = E5\(CUS),
and (3c) iffl?ﬂo\s’Euc((Z)) = E then Fp\g(E) = Fens(E).

Conflict-free and Naive Semantics. Notice that two AFs
possess the same conflict-free sets iff they possess the same
naive extensions and thus Eg and =2"¢ coincide. More-
over, the C-restricted semantics of cf is just cf itself.

Theorem 4.15. Let F,G be AFs and C C U. Then, F' =
G (F =p7ve Q) iff the following conditions jointly hold:
(1) ¢f (F) = ¢f(G) and (2) A(F) \ C = A(G) \ C.

5 Computational Properties

While strong equivalence can be efficiently decided (cf.
[Oikarinen and Woltran, 2011]), testing standard equivalence
is coNP-hard for o € {stb, adm, prf, com} as it generalizes
the problem of deciding whether an AF has a (non-empty)
extension [Dunne and Wooldridge, 2009]. These hardness
results extend to C-relativized equivalence. Upper bounds
are given by the characterizations presented in Section 4.2.
Our complexity results are summarized in Table 1 (C-c. stands
for C-complete). Grounded semantics has a special behavior:
while both standard and strong equivalence are tractable, C-
relativized equivalence is coNP-complete as we show next.

Theorem 5.1. Deciding F' = —gr G is coNP-complete.

Proof. The membership in coNP is due the characterization
in Thm. 4.14. coNP-hardness is by a reduction from deciding
whether two CNF formulas are equivalent. Let ¢ and 1 be
two CNF formulas over atoms X and let C,, C, be the sets
of clauses. Moreover, we can assume that ¢ and ¢ do not
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have partial models. For a CNF formula ¢ with clauses C'y
we define the AF F, = (A, R) with A= X UX UCy U {t}
and R = {(¢,t), (¢, ¢) | ¢ € Cp}U{(, ), (Z,x) |z € X} U
{(z,c) |z € c € Cp} U{(T,c) | "z € c € Cy}. We now
have that ¢ = ¢ iff F,, =4 F, for C = C,UC, U{t}. O

It remains to show IT5-hardness of ' =27 G. We prove
the result for ¥ =P™f G by reduction from the I15-complete
problem of deciding whether an AF F' is coherent [Dunne and
Bench-Capon, 2002], i.e., whether stb(F') = prf (F).

Theorem 5.2. Deciding F =27 G is 115 -complete.

Proof. Membership in IT5 follows from Thm. 4.12. We show

hardness for testing F' =P/ G (a corner case of F Ezgf G)
by a reduction from the problem of testing whether an AF F
is coherent, where we can assume that () ¢ prf (F'). We trans-
form F to an AF F' = (A’ R") with A’ = A(F) U {t} and
R' = R(F)U{(t,a),(a,t) | a € A(F)}, yielding stb(F"’) =
stb(F) U {{t}} and prf(F') = prf(F) U {{t}}. Thatis, F’
is coherent iff F' is coherent but we have stb(F”) # (). Now
we can apply Translation 4 from [Dvofdk and Woltran, 2011]
which maps F”’ to an AF G such that stb(F’) = prf(G)
(given that stb(F’) # 0) and can be efficiently computed.
Hence stb(F') = prf(F) iff prf(F') = prf(G). O

Recall that for C' = (), testing =Z, equivalence is computa-
tionally easy, while it is hard in the general case. Thus, one
promising approach towards practical feasible algorithms is
to consider characterizations whose performance depends on
the set C. In other words, given AFs F' and G to be com-
pared under =¢,, we aim to restrict the comparison of the
C-restricted extensions (which is indeed the most expensive
test in all characterizations). We give a first result into that di-
rection for stable semantics. Let ' be an AF and B, £ C U.
We define the stable reduct of F' w.rt. E and B as the AF
Fpp = (A(F) \ ER,R*) with R* = {(a,0) € R(F) |
a,b€ A(F)\ Eg}U{(a,a)|a € (A(F)N B)\ Eg}.
Theorem 5.3. Let F,G be AFs, C C A(FUG), and B =
C?uG UCryg- Then, F = G iff the following conditions
Jjointly hold: (1) if stbc(FNB) # 0, A(F)\C = A(G)\ C;
(2) stbo(F N B) stba(G N B); and (3) for all E €
stbo(F N B), Fp =3 Gy p.

In the above characterization the number of C-restricted
sets we have to consider in (1) and (2) does not depend on the
number of total arguments but only on the number of argu-
ments that are either in C' N A(F' U G) or neighbors of such
arguments. Moreover, the strong equivalence in (3) can be
tested in polynomial time.

6 Simplifications

We come back to the issue of simplification raised in the in-
troduction. We begin by defining the notion of replacement.

Definition 6.1. Given AFs F,F’ G such that A(F")
A(F)U (U \ A(G)) and F is a sub-AF of G (i.e., A(F)
( ) and R(F) = R(G)N(A(F)x A(F))), let A = (A(G)
F)) U A(F"). The replacement of F' by F” in G is define
aSG[F/F'] (4, (R(G) \ R(F)) N (A x A)) U R(F")).

NN
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As it turns out, faithfulness of the replacement of a sub-AF
by another within a larger AF G follows from C-relativized
equivalence of the the sub-AFs conjoined with their immedi-
ate neighborhood in G.

Proposition 6.2. For AFs F,F',G and C C U such that
A(FYUA(F") C C, (A(G)\A(F))NC = 0, and F a sub-AF
of G, let B = (A(F))& U (A(F))g and F€ = (B, R(G) N
(B x B)). Then, F¢ =2, FY[F/F'| implies G =° G[F/F"].

A key feature of Def. 6.1 is that the attacks connecting the
AFs F and F” to G are not changed, unless the involved argu-
ment in F is removed in F” (then the attack is also removed).
Therefore the condition for C-relativized equivalence boils
down to stbo (F¢) = stbo(FE[F/F']), since the other con-
ditions from Thm. 4.8 are trivially satisfied (similar observa-
tions can be given for the other semantics).

Example 6.3. Recalling the introductory example, faithful-
ness of replacing Fyupe by Fyy, in an arbitrary larger AF G
being connected to Fyp. by an attack (d,a) (cf. Figure 1), is
then verified by stbc(FS,) = {{d,b}} = stbc(FS). In
other words we have that cycles of length 3 can be simplified
under the stable semantics to two arguments, whenever the
cycle has exactly one incoming attack. This kind of simplifi-
cation can be generalized to arbitrary odd-length cycles in C,
allowing for potential deletion of several arguments. %

The replacement of sub-AFs with fixed connections to the
rest-AF is a particular application of the results of Section 4.2.
The notion of C-relativized equivalence is, however, more
general and gives rise to simplifications of the following kind.

Example 6.4. Consider the AFs G and G’ depicted below.

Note the single strongly connected component in G is split
into three (smaller) components in G'. Let F', F' be the sub-
AFs of G, G' with arguments {a,b,c,d,e}. To prove G =5
G’ we show F =g F' for C = {b,c}: (1) A(F)\ C =
{a,d,e}=A(F")\ C, (2) stbc(F)={{a,c}, {b},{b,d}} =
stbo(F'), and (3) {a,c}} \ C = {d,e} = {a,c}} \ C,
{}E\C =0 = {b}£\C, {b,d};\C = {e} = {b,d} 3., \C.
Again, this result can be generalized to arbitrary even-length
paths among arguments in C. O

7 Related Work

Strong equivalence as well as further related notions have
been thoroughly studied in the literature (cf. [Baumann, 2014;
Baumann and Brewka, 2015; Baumann and Woltran, 2016]).
Almost all of these notions are somehow disappointing re-
garding potential space for simplification. In fact, for most of
these notions no arguments are redundant and deletions of at-
tacks rely on the presence of self-loops. In particular, in case
of self-loop-free AFs nothing can be simplified.
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The concept of restricted admissible and stable seman-
tics has been considered in dynamic programming algo-
rithms based on tree-decompositions [Dvoiédk et al., 2012;
Charwat, 2012]. An investigation on the amount of neigh-
borhood (in a graph-theoretical sense) needed to verify ac-
ceptability for different semantics is [Baumann et al., 2016].

The issue of local evaluation of AFs was also tackled
in the work on input/output AFs [Baroni et al., 2014a;
Giacomin et al., 2016]. There the behavior of AFs (with
dedicated input- and output-arguments) is described by the
possible valuations of the output-arguments for each possible
input. For the most prominent semantics it is shown whether
having the same I/O behavior is sufficient for replacing one
AF by another without affecting the evaluation of the rest of
the AF. Our notion of equivalence is stronger as it is w.r.t.
the whole AF and not only the part not affected by the re-
placement. Moreover, our work differs as we do not explicitly
model I/O arguments and are more focused on finding exact
conditions for the faithfulness of replacements.

The works on splitting [Baumann, 2011; Baroni et al.,
2014b] and SCC-recursiveness [Baroni et al., 2005] allow
for local evaluations but require that strongly connected com-
ponents are considered in a specific order. Baumann et al.
[2012] relaxed these conditions for stable semantics.

The concept of relativized equivalence was also studied for
other nonmonotonic formalisms, in particular for Answer-Set
Programming, see e.g. [Eiter et al., 2007]. As well, simplifi-
cation strategies have been suggested on basis of equivalence
notions. Such replacements are typically defined as an ex-
change of rules in a logic program. This already indicates
the main difference to our work, since replacing sub-graphs
in AFs provides some subtle issues to be taken into consider-
ation (cf. Section 6). This also might explain why in abstract
argumentation the relation between equivalence notions and
simplifications has been underexplored so far.

8 Discussion

In this paper, we introduced a general notion of equivalence
for AFs and studied their characterizations and complexity.

There are several ways to pursue the presented research.
First, an inclusion of other extension-based and labelling-
based semantics is an immediate objective. Another direc-
tion to consider are weaker versions of C-relativized equiv-
alence, for instance in analogy to normal expansion equiva-
lence [Baumann, 2012], altering Def. 3.3 such that attacks be-
tween the original arguments of F' and G cannot be changed.
This situation is typical in the instantiation-based context
(where AFs are constructed from an underlying knowledge
base) since usually one can decide whether there is a conflict
between arguments by solely considering these arguments.

On the practical side, we plan to employ our notion of
equivalence for a systematic investigation of possible simpli-
fications and to implement these findings in a preprocessing
tool for abstract argumentation systems.

Finally, we plan to study restricted equivalence in the gen-
eral setting of graph problems (as it was already done for
strong equivalence by Lonc and Truszczynski [2011]) which
might yield results that go beyond the field of argumentation.
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