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Abstract

The goal of person re-identification (Re-Id) is to
match pedestrians captured from multiple non-
overlapping cameras. In this paper, we propose a
novel dictionary learning based method with rank-
ing metric embedded, for person Re-Id. A new
and essential ranking graph Laplacian term is in-
troduced, which minimizes the intra-personal com-
pactness and maximizes the inter-personal disper-
sion in the objective. Different from the traditional
dictionary learning based approaches and their ex-
tensions, which just use the same or not informa-
tion, our proposed method can explore the ranking
relationship among the person images, which is es-
sential for such retrieval related tasks. Simultane-
ously, one distance measurement matrix has been
explicitly learned in the model to further improve
the performance. Since we have reformulated these
ranking constraints into the graph Laplacian form,
the proposed method is easy-to-implement but ef-
fective. We conduct extensive experiments on three
widely used person Re-Id benchmark datasets, and
achieve state-of-the-art performances.

1

Person Re-Id aims at the maintenance of a global identity as a
person moves among non-overlapping surveillance cameras.
It is essential for video surveillance and has drawn great at-
tention recently [Cheng et al., 2016; Xiao et al., 2016; Xiong
et al., 2014; Wang et al., 2016]. Many algorithms have been
proposed to tackle this problem, which can be mainly divid-
ed into two categories, which are the distance metric learning
methods and feature learning methods. The distance learn-
ing methods usually learn distance metrics that are expect-
ed to be robust to sample variations [Jose and Fleuret, 2016;
Chen et al., 2016a], while feature representation learning
methods aim to extract discriminative and distinct features
from pedestrian images [Chen et al., 2016b; Wu et al., 2016b;
Varior et al., 2016a; Ahmed et al., 2015]. However, the rep-
resentation power of the learned features or metrics might be
limited, and this task still remains a challenging problem due
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to the following two main reasons: 1) A person’s appearance
often changes dramatically across camera views due to oc-
clusion, lighting conditions, illumination and pose changes,
in real-world scenarios; 2) Different people in public spaces
wear similar clothes (e.g. dark coats, jeans) thus having the
similar visual appearance.

In order to overcome aforementioned challenges and im-
prove the person Re-Id performances, we propose a novel
ranking metric embedded dictionary learning method, which
makes the traditional dictionary learning method more suit-
able for person Re-Id. The embedded ranking metric pulls the
same person images to be close while pushes different indi-
viduals’ images far apart. Thus, by embedding these ranking
constraints, we can both reduce the intra-personal variation-
s and enlarge the inter-personal variations, which is essential
for the retrieval related tasks, especially for person Re-Id. Al-
though the dictionary learning methods have also been well s-
tudied in the past several years, and there are many dictionary
learning based methods specifically designed for person Re-
Id [Karanam et al., 2015; Jiang et al., 2013; Yang et al., 2016;
Zhang and Li, 2010], most of them have just focused on em-
bedding the same identity information without embedding
this necessary and essential ranking information.

In this paper, our proposed dictionary learning method
mainly consists of two components: one is the dictionary re-
lated part, which minimizes the reconstruction error between
the original image features and the projected feature coef-
ficients; another is the embedded ranking graph Laplacian
matrix, which makes the projected feature coefficients of the
same person images closer than that of different person im-
ages by a large margin. Though this intuition has been widely
explored in other metric learning areas, no existing dictionary
learning approach has fully explored this property. To the best
of our knowledge, we are the first to reformulate all these
triplet ranking constraints on all the datasets into the graph
Laplacian form, and then explicitly integrate it into the dic-
tionary learning. Moreover, one distance measurement ma-
trix has been simultaneously learned in the dictionary learn-
ing, which further improves the Re-Id performance. Since
we have learned one common dictionary to represent both the
gallery and probe images, the learned dictionary is invariant
to the viewpoint changes. Hence, our learned dictionary is
capable of discriminatively encoding the feature vectors of d-
ifferent people, and can also encourage signals from the same
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Figure 1: Illustration of the framework for our proposed novel dictionary learning method for person Re-Id. First, we formulate the
traditional triplet ranking constraint into the graph Laplacian form Tr(WA®ATWT), and then embed it into the dictionary learning
process. Simultaneously, the Mahalanobis distance metric M = WT™W has been explicitly learned. Thus, our proposed method iteratively
trains a discriminative viewpoint invariant dictionary, and jointly learns the dictionary D, code coefficients A and the distance measurement
matrix M by the essential ranking graph Laplacian matrix embedded dictionary learning method.

person to have more similar features, and signals from differ-
ent persons to have dissimilar features. Figure 1 illustrates
the framework for our proposed method. Our experimental
results show that the proposed ranking metric embedded dic-
tionary learning method is effective for improving the person
Re-Id performance.

To summarize, the main contributions are as follows:

e To the best of our knowledge, we are the first to formu-
lated the triplet ranking constraints into the graph Lapla-
cian form, and then embed it into the dictionary learning,
which makes the traditional dictionary learning method
more suitable for person Re-Id task.

Simultaneously, one distance measurement matrix has
been explicitly learned in the dictionary learning objec-
tive, which can further improve the Re-Id performance.

We conduct experiments on three widely used bench-
mark datasets and achieve state-of-the-art performances.

2 Related Work

In this section, we review some of the representative related
works of person Re-Id and dictionary learning.

Person Re-Id. In recent years, many algorithms have
been proposed for person Re-Id. Some traditional meth-
ods focus on learning effective metrics to measure the dis-
tance between two images captured from different camer-
a views [Xiong et al., 2014][Pedagadi er al., 2013][Liao et
al., 2015]. Among them, the Mahalanobis distance func-
tion [Chen er al., 2016al, triplet loss function and its exten-
sions have been well explored [Cheng er al., 2016]. Other
research works focus on learning discriminative features, in-
cluding the attributes, salience features, gaussian descriptors,
and some other learned features [Matsukawa et al., 2016;
Liao et al, 2015]. Nowadays, deep learning based meth-
ods have learned good feature representations and achieved
promising performances on almost all the person Re-Id
benchmark datasets [Xiao et al., 2016; Ahmed et al., 2015;
Cheng et al., 2016]. Our proposed method falls into the cat-
egory of metric learning, which embeds the ranking distance
metric into the dictionary learning.
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Dictionary Learning. Recently, dictionary learning meth-
ods have been successfully applied to various recognition
problems, and many extension works have also been pro-
posed. [Jiang er al., 2013] employed label consistency con-
straints to jointly learn a discriminative dictionary and a linear
classifier. [Zhang and Li, 2010] extended this algorithm by in-
corporating classification error into the problem formulation
and learned class-wise dictionaries. Also, many other exten-
sion works used the dictionary learning methods to learn dis-
criminative feature encodings for person Re-Id. For example,
[Yang et al., 2016] embedded one metric into the dictionary
learning by using the same or not information, and [Karanam
et al., 2015] enforces the discriminability by imposing explic-
it constraints on the projected sparse codes. There are also a
lot of works using the dictionary learning methods for unsu-
pervised person Re-Id [Kodirov et al., 2016].

In contrast to the aforementioned approaches, our method
explicitly incorporates the ranking metric into the dictionary
learning, and simultaneously learns a distance measurement
matrix to improve the discriminability for person Re-Id.

3 Algorithm Description

In this section, we first briefly review the basics of dictio-
nary learning. Then we present the proposed ranking metric
embedded approach to learn discriminative and viewpoint in-
variant dictionaries, followed by its optimization method.

3.1 Dictionary Learning Revisit

Formally, assume X € RM*V is an input feature matrix,
with each column x; corresponding to an M dimensional fea-
ture vector representing the i-th person image’s appearance
feature, and N represents the total number of samples in the
dataset. Adopting the dictionary learning model, our goal is
to learn a dictionary D € RM™>*K_ With this dictionary, each
M dimensional feature vector is projected onto a lower K di-
mensional subspace A spanned by the K dictionary atoms
(columns of D), thus their corresponding coefficients (code
vectors) can be matched by the Euclidean distance in the sub-
space. This can be formulated as the following objective:



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

D*, A* =argmin || X — DA[7 + A||A||%
D,A U)
st ||di]|3 < 1,4,
where A = [a;1, ag, ..., ay] correspond to the coding vectors
of the input signals X = [x;,Xs,...,Xy], and d; € RM*!
is the ¢-th column of the learned dictionary D. The constraint
of d; in Eq. (1) enforces the learned dictionary atoms to be
compact. This problem is typically solved by alternately fix-
ing D and A, and then optimize over the other variables.

As for the person Re-Id problem, there always exists large
viewpoint changes among the probe and gallery cameras. In
order to learn a dictionary D satisfying the property of view-
point invariant, we have learned a common dictionary to rep-
resent both the gallery and probe images.

3.2 The Proposed Dictionary Learning Algorithm
With Ranking Metric Embedded

Person Re-1d aims at searching for a person of interest from
a large amount of candidate gallery images captured from d-
ifferent cameras. Since the ranking information is essential
for this task, we intuitively incorporate the widely explored
triplet ranking constraints into our objective for discrimina-
tive dictionary learning.

Suppose we have a coding coefficient matrix A
[ai,...,ay] € REXN corresponding to the original data
matrix X = [xy,...,xy] € RM*¥ as illustrated in Eq. (1).
Each column of A denotes a new representation of each da-
ta x; in the new space. With the training data, we hope that
the objective function can encourage the dictionary to find
the embeddings where the distance between the same person
images should be closer than that of the different person im-
ages by a large margin 7, which is inspired by the triplet loss
function. Moreover, the distance between a pair is measured
by the widely used Mahalanobis distance, instead of direct-
ly using the Euclidean distance between the projected feature
vectors (a;,a;). Thus, we simultaneously minimize the fol-
lowing term of Eq. (2) on all the datasets, besides Eq. (1).

N
DAW)= > [fwai,ay) — fw(aia) +7)+, ()

0,4, k=1;
=Ll

where [.]+ is the hinge loss function max(0,.), I; is the i-
dentity of the -th training sample, fw(a;,a;) = |[[W(a; —
a;)||3 = (ai —a;)"M(a; — a;), and M = WTW is semi-
definite, which indicates that the distance between a pair is
measured by the Mahalanobis distance [Weinberger and Saul,
2009]. As illustrated in Eq. (2), we have used all the train-
ing data to generate all possible sample triplets to form the
ranking cost T'(A, W). Thus, the ranking triplet loss is con-
stituted by all the Mahalanobis distance of the sample pairs
(a;,a;) from the training set. Then, we reformulate Eq. (2)
into the graph Laplacian form as Eq. (3):

966

N

> sijfwlai,a) +C
i,j=1

N

> sil[W(a —ay)l[3+C
i,5=1

= 2Tr(WAVATWT) + C,

T'(A, W)

3)

where C is a constant, s;; is the adjacent weight be-
tween the sample pair (a;, a;), ¥ = G — (S + ST)/2,

G dia/g(gllw")gNN)v Gii = Z;V:LJ7$ZW7J =
1,2,..., N, and ¥ is called the Laplacian matrix of S, T'r(.)
denotes the trace of a matrix. The deduction from line 2 to 3
in Eq. (3) can refer to [Shi ez al., 2016]. The element s;; of
the adjacent matrix S in Eq. (3) can be deduced from Eq. (2)

as follows:

N

Z 5[fW(aiaaj)_fW(ai7ak)+T]7i7£ja
=

N
— Y dlfwlanar) — fwlaia) +7]i # .

i =7,

0,

“4)

where the function 4[.] is an indicator function which takes

one if the argument is bigger than zero, and zeros otherwise.

Therefore, the proposed dictionary learning algorithm with
ranking metric embedded arrives at:

argmin || X — DA||% + Nf)Tr(WA\I:ATWT)
T
o 5)
+AA[[E + al[WE

st ||di]|3 < 1,4,

where C' has been ignored from Eq. (3) as the constant has no
influence on the objective, and N(7) is the number of all the
sample triplets constructed by the N training examples. The
parameters A\, o and 3 are used to control the contributions
of the corresponding terms. In Eq. (5), the first term denotes
the reconstruction error. The second term is the embedded
raking metric which maintains the distance of similar sample
pairs to be closer than that of the dissimilar pairs by a large
margin in the learned dictionary space, thus reduce the intra-
personal variations. The last two terms are the regularization
terms to avoid over-fitting.

3.3 Optimization

Remark: Since there are many negative elements in S (with
each element s;; computed by Eq. (4)), the ranking Laplacian
term Tr(WAWATWT) in Eq. (5) is not convex for A or W
with other variables fixed. Hence, we optimize both A and
W by the gradient decent method. While fixing A and W,
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the objective function in Eq. (5) is convex for D. Thus D can
be computed by its analytic solution.

In order to efficiently optimize Eq. (5), we first initialize
the parameters D, A and W as follows, respectively. 1) W
can be initialized as an identity matrix; 2) D and A can be
initialized by solving the standard dictionary learning prob-
lem as defined in Eq. (1), the optimization method and its
implementation can refer to [Peng et al., 2016]. Because our
work is based on the standard dictionary learning, optimizing
Eq. (1) as the initialization can use its analytic solution which
is much more efficient than directly using the gradient decent
algorithm all the time.

Given the above initialization, we solve the problem of E-
g. (5) by alternating among the following three subproblems:

Fix A and W, update D: Given A and W, the objective
function becomes

D* = argmin ||X — DA|[%, s.t. [|dil[3 <1,¥i. (g
D

To solve Eq. (6), we use the Lagrange dual method [Lee et
al., 2007]. The analytical solution of D can be computed as:
D* = XAT(AAT + A*)~1. Where A* is a diagonal ma-
trix constructed by all the optimal dual variables. In practice,
AAT + A*isnot guaranteed to be invertible, therefore pseu-
do inverse is used in place of computing it directly.

Fix D and W, update A: When D and W are fixed, the
objective becomes minimizing the following function:

B

F(4) = IX-DAIf+ s

Tr(WAVATWT)+A||A|%.

(N
Since the Laplacian matrix ¥ in Eq. (7) is based on the adja-
cent matrix S, and each s;; is computed according to Eq. (3)
and Eq. (4), which is always changing during the iterations.
Besides, since S is not positive semi-definite, we choose to
use the gradient decent method to optimize Eq. (7). In order
to keep the convergence of Eq.(7), we always keep ¥ fixed
when optimizing A. After that, we update S and ¥ according
to Eq. (3) and Eq. (4). Solving the dictionary learning objec-
tive in Eq. (1) by its analytic solution as the initialization for
A first, can greatly improve the optimization efficiency. The
gradient of f (A) in Eq. (7) can be computed as Eq. (8),

OF (A) B

OA N(r)

=2DT(DA-X)+ WIWA (U7 +0)+2)A.

®)

Then we use the gradient decent method to update A at step

t, Attl = At — nag%) , and 7 is the learning rate. Detailed
optimization procedure can be shown in Algorithm 1.
Fix D and A, update W: Given D and A, the objective

function becomes minimizing the following function:

(W) =

N ©)
The same reason for optimizing A, we also need to keep ¥
fixed when optimizing W. After getting W, we update S and
U according to Eq. (3) and Eq. (4). The gradient of (W) is
deduced as Eq. (10),

owW) _ B

oW  N(r)

Tr(WAVATWT) + o|[W||%.

WA (U + AT +20W.  (10)
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Then, we also use the gradient decent method to update W
at step t, Witl = Wt — n%. The detailed optimization
procedure is illustrated in Algorithm 1.

Algorithm 1: The Ranking Metric Embedded Discrimi-
native Dictionary Learning Method

Input: Training Data matrix X, parameters «, 3, A and
T, iteration number T.

Output: The learned dictionary D and the explicitly

learned projection matrix W.
Initialize D, A and W following the initialization
description in Section 3.3;
Compute the Laplacian matrix ¥ according to the
examples labels of X, Eq. (3) and Eq. (4);
fort=1,2,...,Tdo
Update the dictionary D according to Eq. (6);
Update the code coefficients A as follows;
Compute the adjacent matrix S according to Eq. (3)
and Eq. (4), based on current A and W;
Compute the Laplacian matrix ¥ based on current S
as described in Section 3.2;
while Not converged do

oF (A)

L Update A"t = Af — =2 based on Eq. (8);

Update the projection matrix W as follows;
Compute the adjacent matrix S according to Eq. (3)
and Eq. (4), based on current W and A;

Compute the Laplacian matrix ¥ based on current S
as described in Section 3.2;

while Not converged do

L Update Wit! = Wt — ULKW)

oW
Eq. (10);

The computational complexity of the proposed algorithm
is O(K?), which is mainly caused by calculating the inverse
of the K-by-K matrix for solving Eq. (6), and K is the dic-
tionary size. Since the objective in Eq. (5) is not convex, the
proposed algorithm can converge to the local minimum by
alternately optimizing the variables, and we have set the iter-
ation number 7' = 30 in the experiments for Algorithm 1.

based on

3.4 Application to Person Re-Id

Given the gallery person image feature vectors Xg;,7 =
1,2,..., N, we propose the following steps to re-identify a
person represented by the probe feature vector x,,.

1. For each gallery feature x4;, compute its corresponding
code coefficients ay; with respect to the dictionary D as:

ag; =argmin |[x,; — Da||% + Allal[7. (11)
a
Detailed optimization of Eq(11) refers to [Peng et al., 2016] .
2. Similarly, compute the code coefficients a,, for the un-
known probe feature vector x,, with respect to D by Eq. (11).
3. Now compute the Mahalanobis distance between a;, and
each ag; to form the distance vector f, which can be computed
by £(2) = [[W(a, —ag;)|[2, Vi.
4. Finally, the index of the probe person is obtained as the
same index of the minimum value in f.
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4 Experiments

In this section, we use three widely used person Re-Id bench-
mark datasets, namely VIPeR, 3DPES and CUHKO3, for per-
formance evaluations. All the datasets contain a set of per-
sons, each of whom has several images captured by different
cameras. The following is their brief descriptions:

VIPeR dataset [Gray et al., 2007] contains two views of
632 persons with total 1,264 images. Each pair for a
person is captured by different cameras with different
viewpoints, poses, and lighting conditions.

3DPES dataset [Baltieri er al., 2011] includes 1,011 images
of 192 persons captured from 8 outdoor cameras with
significantly different viewpoints. The number of im-
ages for each person varies from 2 to 26.

CUHKO3 dataset [Li et al., 2014] is one of the largest person
Re-Id benchmark datasets recently. It contains 13,164
images of 1,360 identities, and the images were captured
by five different pairs of camera views in the campus.

4.1 Experimental Setup

Feature Representation: We have used two kinds of fea-
tures in our experiments: One is the traditional handcraft fea-
tures [Chen et al., 2016al, which is extracted both in the w-
hole image and the image subregions. Details about the 7538-
D handcrafted feature representations can refer to [Peng et
al., 2016; Chen et al., 2016al. Another is the 2048-D deep
residual network features(ResNet152) [He et al., 2016].

Parameter Setting: We empirically set the dictionary size
for D in Eq. (5) as K = 200. The parameters 7, «v,y and (3
are set to 1.0, 0.25, 0.1 and 0.7, respectively. The learning
rate starts with 7 = 0.01, then at each iteration, we increase 7
by a factor of 1.2 if the loss function decreased and decrease
1 by a factor of 0.8 if the loss increased.

Evaluation protocol: Our experiments follow the evalua-
tion protocol in [Peng et al., 2016]. The dataset is separated
into the training and test set, where images of the same person
can only appear in either set. The test set is further divided in-
to the probe and gallery set, and two sets contain the different
images of a same person. In the VIPeR and 3DPES dataset-
s, half of the identities are used as training or test set, while
in the CUHKO3 dataset, 100 pedestrians are used as the test
set, and the rest are used as the training set. We match each
probe image with every image in the gallery set, and rank the
gallery images according to their distance.

4.2 Experimental Evaluations

As illustrated in Eq. (5), our proposed Re-Id method contain-
s mainly two novel ingredients: 1)we formulate the original
triplet loss into the ranking graph Laplacian matrix as shown
in Eq. 3, and then learn the dictionary with this ranking metric
embedded; 2) an explicit projection matrix W was simultane-
ously learned to measure the distance between the projected
image features. To reveal how each ingredient contributes to
the performance improvement, we implemented the follow-
ing four variants of the proposed method, and compared them
with many representative works in the literature:

Table 1: Experimental results on VIPeR dataset(p=316).

Method r=1 r=5 r=10 r=20 r=30
[Prates et al., 2016] 35.8 69.1 80.8 89.9 93.8
[Chen et al., 2016b] 38.4 69.2 81.3 90.4 94.1
[Xiong et al., 2014] 39.2 71.8 81.3 92.4 94.9
[Lisanti et al., 2014] 37.0 —— 85.0 93.0 ——
[Liao ef al., 2015] 40.0 68.0 80.5 91.1 95.5
[Jose and Fleuret, 2016] 40.2 68.2 80.7 91.1 ——
[Yang et al., 2016] 41.1 71.7 83.2 91.7 ——
[Zhang et al., 2016b] 42.3 71.5 82.9 92.1 ——
[Chen et al., 2015] 43.0 75.8 87.3 94.8 ——
[Ahmed et al., 2015] 45.9 77.5 88.9 95.8 ——
[Matsukawa et al., 2016]  49.7 79.7 88.7 94.5 ——
[Chen et al., 2016al] 53.5 82.6 91.5 96.6 ——
Dict(baseline) 51.9 76.5 84.8 90.8 94.6
DictL 52.6 77.5 85.9 91.8 94.6
DictR 55.0 82.5 90.7 95.8 97.1
Ours(DictRW) 55.7 82.9 91.5 96.7 97.2

Table 2: Experimental results on 3DPES dataset(p=92).

Method r=1 r=5 r=10 r=20 r=30

[Koestinger et al., 2012] 34.2 58.7 69.6 80.2 ——
[Mignon and Jurie, 2012] 43.5 71.6 81.8 91.0

[Pedagadi et al., 2013] 45.5 69.2 70.1 82.1 88.2
[Xiong et al., 2014] 54.0 77.7 85.9 924 ——
[Paisitkriangkrai et al., 2015]  53.3 76.8 85.7 91.4 ——
[Xiao et al., 2016] 55.2 76.4 84.9 91.9 94.1
[Chen et al., 2016a] 57.3 78.6 86.5 93.6 95.2
Dict(baseline) 54.3 73.2 80.8 89.7 92.4
DictL. 55.3 76.3 83.7 91.4 94.2
DictR 59.0 80.7 87.6 94.1 95.8

Ours(DictRW) 59.6 81.4 89.7 95.0 96.1

Variant 1(denoted as Dict): We just implement the original
dictionary learning method as illustrated in Eq. (1). This
is our baseline method.

Variant 2(denoted as DictL): We implement the dictionary
learning method with the previously used Laplacian ma-
trix embedding, which just used the same identity infor-
mation, and the matrix is constructed in the following
way: s;; = Lonlyifl; = l;,% # j, otherwise s;; = 0.

Variant 3(denoted as DictR): We implement the dictionary
learning method as illustrated in Eq. (5), but with the
projection matrix W removed (equal to set W = 1,
where I is the identity matrix).

Variant 4(denoted as Ours(DictRW)): This is our proposed
final dictionary model as illustrated in Eq. (5).

Table 1, 2 and 3 show the evaluation results on VIPeR,
3DPES and CUHKO3 datasets, respectively, using the rank
1, 5, 10, 20, 30 accuracies. Each table includes the recently
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Table 3: Experimental results on CUHKO03 labeled dataset(p=100).

Method r=1 r=5 r=10 r=20 r=30

[Zhao er al., 2013] 8.8 24.1 38.3 53.4 ——
[Koestinger et al., 2012] 14.2 485 52.6 ——
Li et al., 2014] 20.6 51.5 66.5 80.0 ——
Liao et al., 2015] 52.2 82.2 92.1 96.2 ——
Xiong et al., 2014] 48.2 59.3 66.4 —— —
Wang er al., 2016] 52.2 83.7 89.5 94.3 96.5
Ahmed et al., 2015] 54.7 86.5 94.0 96.1 98.0
Varior et al., 2016b] 57.3 80.1 88.3 —— ——
[Paisitkriangkrai et al., 2015] ~ 62.1 89.1 94.3 97.8 ——
[Zhang er al., 2016al 58.9 85.6 92.5 96.3 ——
[Wu et al., 2016a] 63.2 90.0 92.7 97.6 ——
[Varior et al., 2016al 68.1 88.1 946 —— —

[
[
[
[
[
[

Dict 64.1 81.6 87.9 92.8 94.1
DictL 65.2 83.5 88.7 93.6 96.0
DictR 70.2 89.3 92.3 96.8 98.0
Ours(DictRW) 71.1 91.7 94.7 98.0 98.0

reported evaluation results. The compared methods include
the approaches based on metric learning [Jose and Fleuret,
2016; Chen et al., 2016al, common subspace based meth-
ods [Chen et al., 2015; Prates et al., ; Liao et al., 2015;
Lisanti et al., 2014; Prates et al., 2016; Zhang et al., 2016b],
and the deep learning based methods [Chen et al., 2016b;
Varior ef al., 2016a; Ahmed et al., 2015; Wang et al., 2016].
Compared with all the aforementioned recently representa-
tive works, our model(DictRW) has achieved the top perfor-
mances on the three datasets, with all the five ranking mea-
surements. We achieve the rank-1 accuracy to 55.7%, 59.6%
and 71.1% on VIPeR, 3DPES and CUHKO03 datasets, respec-
tively. The evaluation results shown in Table 1,2 and 3 can be
summarized as follows,

e Compared with many recently reported representative
works, our method(DictRW) outperforms all the com-
pared methods on the three datasets by a margin of 2.5%.

e With the novel ranking Laplacian matrix embedded, the
performance accuracies can get up to 3.8% — 7% im-
provement compared with the baseline dictionary learn-
ing method. Also, comparing methods DictR with
DictL, we can clearly see that the ranking information
is better than only using the same identity information.

e By explicitly embedding the projection matrix W' into
the ranking dictionary objective, another 0.6% — 0.9%
performance improvement can be obtained, compared to
the method DictR on the above three datasets.

Since we have used two kinds of features in our experiments
(the handcraft and the ResNet152 features), we also did ex-
periments to reveal their performances in Table 4, respective-
ly. We clearly see that combining the traditional handcraft
features with the deep learning based features can further im-
prove the Re-1d performance.
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Table 4: Experiments comparison with handcraft(HC), ResNet152
features and its combination on CUHKO3 datasets, respectively.

Method r=1 r=5 r=10 r=20 r=30
DictRW (ResNet152) 42,7 73.8 84.7 94.1 96.2
DictRW(HC) 68.3 89.7 91.9 96.1 97.0
DictRW (HC+ResNet152) 71.1 91.7 94.7 98.0 98.0
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Figure 2: Parameter Analysis: We report how the rank-1 accuracy
changes with (a) the dictionary size K, (b) the parameter 3.

4.3 Parameter Analysis of the Method

As defined in Eq. (5), there are two important parameters in
our proposed method, one is the dictionary size K of D, and
the other is the parameter 5 which controls the balance be-
tween the construction loss and the ranking graph Laplacian
cost. To investigate the effect of the dictionary size K and the
parameter /3 on the rank-1 accuracy, we conduct experiments
on VIPeR dataset, and the rank-1 results are shown in Fig. 2.
Figure 2(a) illustrates the rank-1 accuracy with different
dictionary size K from 50 to 300. We can see that firstly as
the dictionary size becomes larger, the performance increas-
es continuously. After the dictionary size K larger than 200,
the performance becomes almost constant. Although higher
performance can also be obtained with larger dictionary size,
we choose K = 200 in all our experiments, because larger
dictionary size requires more training and testing time.
Figure 2(b) shows the rank-1 accuracy with different pa-
rameter 3 from 0 to 1.0. We can clearly see that our proposed
method yields the best rank-1 performance when g = 0.7.
Thus, we set 3 to 0.7 in all our experimental evaluations.

5 Conclusion

In this paper, we present a novel dictionary learning method
with ranking Laplacian matrix embedded, for person Re-Id.
We formulate the triplet loss into the graph Laplacian form,
and then embedded it into the dictionary learning. Overal-
1, our proposed method has made the traditional dictionary
learning methods more suitable for the retrieval related tasks.
In the future, we will deploy our approach to other tasks.
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