Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

On Computing World Views of Epistemic Logic Programs

Tran Cao Son and Tiep Le
Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA

Abstract

This paper presents a novel algorithm for comput-
ing world views of different semantics of epistemic
logic programs (ELP) and two of its realization,
called EpP-ASP (for an older semantics) and EP-
ASP®¢ (for the newest semantics), whose imple-
mentation builds on the theoretical advancement in
the study of ELPs and takes advantage of the multi-
shot computation paradigm of the answer set solver
CLINGO. The new algorithm differs from the ma-
jority of earlier algorithms in its strategy. Specifi-
cally, it computes one world view at a time and uti-
lizes properties of world views to reduce its search
space. It starts by computing an answer set and then
determines whether or not a world view containing
this answer set exists. In addition, it allows for the
computation to focus on world views satisfying cer-
tain properties. The paper includes an experimen-
tal analysis of the performance of the two solvers
comparing against a recently developed solver. It
also contains an analysis of their performance in
goal directed computing against a logic program-
ming based conformant planning system, DLV-K. It
concludes with some final remarks and discussion
on the future work.

1 Introduction

Epistemic logic programs (ELP) were proposed [Gelfond,
1991; 1994] for introspective reasoning through the use of
modal operators K (“known”) and M (“may be true”). For ex-
ample, consider the following rules that were told to security
guards of an extremely secret office:

o If you know that an individual breaks the data transmission
rule then put him in a maximal secure prison.

e If you suspect that an individual breaks the data transmis-
sion rule but does not know that he/she breaks the rule then
take him into custody and interview him.

If we were to encode these rules as a logic program that would

be used by a guard to determine whether or not an individual,

given a set of observations, is a felon or a suspect, which will
then allow the guard to act appropriately. Let felon, suspect,
and break_rule denote that an individual is a felon, is a sus-
pect, and breaks the rule, respectively. Then, an encoding of

Patrick Kahl and Anthony Leclerc
SPAWAR Atlantic
North Charleston, SC 29410, USA

these rules in ELP is as follows:

felon < Kbreak_rule (1)
suspect < M break_rule, not K break_rule (2)

where the K (resp. M) operator stands for know (resp. might
know) respectively. The intuitive meaning of K is that if
break_rule is true in every belief set of the agent then
K break_rule is true and hence felon will be concluded.
And, if break_rule is true in some but not all belief sets of the
agent then M break_rule is true and hence suspect will be
concluded. Observe that this reasoning process requires that
the truth value of epistemic literals such as K break_rule and
M break_rule is evaluated over all belief sets of the agent.

In the past two decades, several semantics for ELPs have
been proposed [Gelfond, 1991; 1994; del Cerro ef al., 2015;
Kahl er al., 2015; Truszczyfiski, 2011; Shen and Eiter, 2016].
Roughly speaking, the semantics of an ELP program II is de-
fined by the notion of a world view which is a collection of an-
swer sets of a logic program IT’ without the literals containing
the K and M operators (or subjective literals) obtained after
a modal reduct of IT with respect to a set of literals (precise
definition in the next section). As such, with the exception
of the algorithm in [Kahl et al., 2015], other algorithms for
computing world views follow a guess-and-check style algo-
rithm and employ two steps: (i) guess the values of a set of
literals for the modal reduct; (if) compute the modal reduct,
its answer sets using some answer set solver, and verify that
the values of guessed literals with respect to the collection
of answer sets of the modal reduct match the guessed val-
ues. The difference between these algorithms lies in which
type of literals are selected for guessing and how their values
are guessed. For instance, the algorithm developed in [Zhang
and Zhao, 2014] starts with guessing the values of objective
literals occurring in the subjective literals of the programs;
the algorithm proposed in [Zhang, 2006] starts with the sub-
jective literals; etc. The algorithm developed in [Kahl et al.,
2015] starts with transforming an ELP program into a logic
program without guessing the values of the subjective liter-
als. It then searches for world views among the collection of
answer sets of this program.

It is worth noticing that thus far, with the exception of
the recently developed system ELPsolve described in [Kahl
et al., 2016] that can compute world views of programs
with millions of possible assignments of the subjective lit-

1269



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

erals, none of the previously developed systems reaches this
level of scalability. Perhaps the earliest attempt to develop an
ELP-solver is the system wWviews described in [Kelly, 2007].
This system implemented the algorithm proposed in [Zhang,
2006]. Esmodels (see, e.g., [Zhang and Zhao, 2014]) is an-
other system for computing world views that implements a
guess-and-check algorithm that starts with guessing of val-
ues of literals occurring in subjective literals. The system also
utilized some properties of world views to enhance its perfor-
mance. ELPS [Balai and Kahl, 2014] is yet another system for
computing an improved semantics of ELPs, called ES2014,
proposed in [Kahl er al., 2015]. The difference between ELPS
and ELPsolve lies in that ELPS computes all answer sets of
the program resulting from the transformation mentioned ear-
lier while ELPsolve implements a systematic search over the
set of truth value assignments of the set of subjective literals
that occur within the scope of a negation-as-failure operator.
In this way, ELPsolve avoids the memory problem that fre-
quently plagued other systems. ELPsolve also exploits paral-
lelism to improve its performance. We observe that all previ-
ous developed ELP-solvers usually employ answer set solvers
as a black box.

Our goal in this paper is to contribute to the development
of ELP-solvers by proposing new algorithms that facilitate
a tighter integration of world view computation and answer
set solvers. We demonstrate the usefulness of the algorithms
by developing two novel ELP-solvers for computing world
views and show experimentally that the new solvers perform
better than the state-of-the-art solvers. We also evaluate the
use of these solvers in conformant planning by comparing it
against DLV-K, one of the most efficient logic programming
based conformant planners.

2 Background

We assume that the readers are familiar with the basic nota-
tions of logic programs under answer set semantics (or ASP
programs) (see, e.g., [Gelfond and Lifschitz, 1991]). For an
ASP program P, AS(P) denotes the set of all answer sets
of P. Answer sets of ASP programs can be computed using
ASP solvers such as CLINGO [Gebser et al., 2014]. Recently,
CLINGO adds a feature, called multi-shot, for dealing with
continuously changing logic programs. It is done by augment-
ing an ASP encoding with Python procedures controlling
ASP solving processes along with the corresponding evolv-
ing logic programs. It includes methods for adding/grounding
rules, setting truth values of (external) atoms, computing the
answer sets of a current program, etc.
We assume a propositional language L. An objective literal
(or literal, for short) £ in L is either an atom a € L or its
negation —a. A subjective literal in L is of the form K¢, M/,
not K/, or not M/ where / is an objective literal. An ELP
is a set of rules of the form

{1 or ..ol < g1,..., Gm, NOt Gmy1, .., NOL Gp.

where k£ > 0, m > 0, n > m, each ¢; is a literal, and each g;
is either a literal, or a subjective literal. Observe that an ELP
that does not contain any occurrence of a subjective literal is
an ASP program. We say that a set of literals in L is consistent
if it does not contain a and —a for some a € L.

Definition 1 (Satisfaction of a Subjective Literal) Let W
be a non-empty set of consistent sets of literals, and ¢ be a
subjective literal. W satisfies , denoted by W |= ¢ if

e p=Kland VA W: (e A

= notKfand 3AeW: (¢ A

p=Mland JA e W : [ € A.

¢=not Mfand VAe W: (¢ A.

Definition 2 (Modal Reduct) Let II be an ELP and W be a
non-empty set of consistent sets of ground literals. II"V, the
modal reduct of 11 with respect to W, is defined as the ASP
program' obtained from II by replacing/removing subjective
literals and/or deleting associated rules in II as follows:

e o = Kl and W = ¢ then replace K¢ with ¢; otherwise,
delete the rule from II;

e © = not Kl and W |= ¢ then remove not K¢ from the
rule; otherwise, replace not K¢ with not

e o = M{ and W | ¢ then remove M/ from the rule;
otherwise, replace M{¢ with not not ¢;

e o = not M¢ and W = ¢ then replace not M/ with
not ¢; otherwise, delete the rule from II.

Definition 3 (World View) Let II be a ground ELP and W
be a non-empty set of consistent sets of literals. W is a world
view of ILif W = AS(I1V).

An ELP program might have multiple world views. For ex-
ample, the program
r <— not Mp.

porgq. —p < Mr, not gq.

has two world views {{p}, {¢}} and {{q,r}}.

Given an ELP II, world views of II can be computed using
an algorithm in [Kahl er al., 2015]. For simplicity of the pre-
sentation, the algorithm is simplified to only deal with ground
programs.

e Step 1: Convert IT to a program II’ without K and M oper-
ators.
For each objective literal ¢ occurring in a subjective literal,
let k_¢, kO_¢, k1_¢, m_£, mO_¢, or m1_¢ be fresh atoms2 ob-
tained from ¢ by prefixing it with k_, k0_, k1_, m_, m0_,
or m1_ (respectively). These atoms are referred to as k-/m-
atoms. Two sets S; and Sy of literals with literals from
these fresh atoms are said to share the same k-/m-atoms,
denoted by S1 ~p/p, Sz if z l € Sy iff 2 £ € 53 for all
x € {k, k0, k1,m, m0, m1} and objective literal £.
Let II' be the program that consists of rules without sub-
jective literals in II and for each rule r in II that contains
some subjective literals, replace the subjective literals in 7
to create a new rule ' in I’ as follows>.

o K/ is replaced with not —k_¢, ¢ and the following rules
will be added to IT':

!with nested expressions of the form not not £ (see, [Lifs-
chitz et al., 1999])

2 Atoms that do not occur in £.

3Note that if a rule r contains more than one subjective literals
then multiple replacements/deletions and multiple sets of rules are
introduced in the creation of '

1270



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

k14 < not k0_£. (3) -kl k0L (5)
kOl < not k1.£. (4) -kl < k1.l nott. (6)

o not K/ is replaced with —k_¢ and the rules (3)-(6) are
added to IT'.

o M/ is replaced with m_¢ and the following rules will be
added to IT":

ml_l < not m0_L. (7) mt <+ mll. (9)
m0_l < not ml.l. (8)m_l <+ m0_{l, not not £. (10)

o not M/ is replaced with not m_¢ and the rules (7)-(9)
and the next rule will be added to II':

m_A < m0_(, 1. (11)

e Step 2: Group the answer sets of II' by common k-/m-
atoms of the form k0_¢, k1_¢, m0_¢, and m1_¢, i.e., for
each group of answer sets W, it holds that V S, S2 €
W.[S1 ~k/m So]. Each group W of answer sets is said to
represent (i.e., if its k-/m-literals are removed) a candidate
world view of II.

e Step 3: For each W representing a candidate world view
of II, check that the following conditions are met for all its
k-/m-atoms:

(a) if k1_{is in the sets of W, then £ is in every set of W;
(b) if k0_¢ is in the sets of W, then /¢ is missing from at
least one set of W
(c) if m1_{is in the sets of W, then £ is in at least one set
of W; and
(d) if m0_¢ is in the sets of W, then ¢ is missing from
every set of .
Wikm = {S\km | S € W} is a world view of TI if the
conditions (a)—(d) above are met where S\KM is obtained
from S by removing all fresh atoms from S.
In the following, we will denote with AS P(II) the program
obtained from II after Step 1 of the above algorithm.

3 Algorithms for Computing World Views

In this section, we describe three algorithms. One algorithm
computes at most k world views of an ELP. The second/third
one computes a world view that satisfies a certain objec-
tive literal without/with using heuristics, respectively. We be-
gin with a discussion of the theoretical foundation underly-
ing these algorithms which depends on several properties of
ASP(II). Before we present these properties, let us recall two
important entailment notions in ASP. Given an ASP program
‘P and a literal ¢ in the language of P, £ is said to be skepti-
cally (resp. credulously) entailed by P, denoted by P =g ¢
(resp. P ¢ 0), if £ € S for every S € AS(P) (resp. for
some S € AS(P)).

Because a world view of an epistemic program II is a non-
empty subset of AS(ASP(II)), the next property is trivial.

Proposition 1 Let II be an epistemic program. If ASP(II)
has no answer set then 11 has no world view.

The next property makes use of the properties of the skeptical
and credulous entailment relation in ASP programs.

Proposition 2 Let I1 be an epistemic program. Then,

1271

e For an objective literal { such that ASP(I1) skeptically
entails ¢ then K¢ must be true in all world views of 11.

e For an objective literal { such that AS P(II) does not cred-
ulously entail ¢ then not M{ must be true in all world
views of 1.

The above two propositions are useful in preprocessing II
since ASP solver provides options for computing skeptically
and credulously entailment consequences of an ASP program
(e.g., cautious and brave options of CLINGO). For ex-
ample, if ¢ is skeptically entailed by ASP(IT)(II) then k1_¢
must be in every world view of II. In order to present other
properties, we need some extra notations. Let X be a set of
literals in the language of ASP(IT). We define

k1-m0O(X) = {k1-L| k1.t € X} U {m0-£ | m0_¢ € X} and
kO-m1(X) = {k0L | k0L € X} U{mlL|ml.le X}

To continue, we introduce some new rules involving the
atoms of the form k1_¢, kO_¢, m1_¢, or m0_¢ as follows. In
the following, nok is a fresh atom as well as ok,,, for each
k-/m- atom ¢, is a fresh atom in the language of ASP(II).

ais Name | Rule/Constraint
k1.0, k00, m1_¢, m0_¢f | r, < not a.

k1.4 Ca nok < «, not £.
m0_¢ Co nok < a, {.

k0_¢ Ca ok, < a, not /L.
ml.t Ca oky — a,l.

The next observation will be important in the proofs of the
useful properties of ASP(II). Let km(II) be the set of all
expressions of the form K¢ or M{ occurring in II.

Observation 1 Let II be an epistemic logic program and
S be an answer set of ASP(II). Then, for every K{ (resp.
MY{) that appears in 11, S contains exactly one element of
{k1-£,k0_L} (resp. {m1_£,m0_L}).

The correctness of this observation rests on the rules (3)-(4)
and (7)-(8) in ASP(IT) which are responsible for generating
the fresh atoms in answer sets of ASP(II). Furthermore, a
consequence of this observation and the definition of world
views of II constructed from ASP(II), if a world view W
containing an answer set S of ASP(II) exists then every an-
swer set S’ € W must satisfy that k1_m0(S) = k1-m0(S")
and k0_m1(S) = k0_m1(S’). The next proposition relates
world views of II and answer sets of ASP(II) through the
atoms in km(II).

Proposition 3 Let 11 be an epistemic program and S be an
answer set of ASP(II). Let A = U ,ep1.mo(s){ra:cat U

Uaeromi(s){ratU{s not nok}. LetII' = ASP(II)UA.

Then, if II' has some answer set then 11 does not have a world
view containing S\ gy

The above proposition allows for the development of a test
that checks whether or not IT has a world view containing an
answer set S of ASP(II). This is encoded in Algorithm 1.
Specifically, given S, the set A, defined in Proposition 3, is
computed (Line 4) and an answer set of ASP(IT)UA is com-
puted (Line 5). The rules in A stipulate that answer sets of
ASP(IT) U A belong to the same group W of answer sets



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Algorithm 1 TESTKIMO(ASP(II), S)

% Can 11 have a world view containing S?
Input: ASP(II): ASP program of II, S€ AS(ASP(II))
Output: IT has world view W, SEW: true; else false
Compute k1-m0(S) and k0_m1(S)

A

if ASP(II) U A has an answer set then return false
6: else return true

containing S (Step 2, Section 2) and contain nok. The pres-
ence of nok indicates that there exists some k-/m-atom « in
S such that the check for condition (a) and (c) in Step 3 (Sec-
tion 2) is not satisfied (e.g., k1_¢ is in the sets of W but ¢ is
not).

The next proposition is similar to Proposition 3. It provides
a check for conditions (b) and (d) in verifying whether a can-
didate world view is indeed a world view.

Proposition 4 Let II be an epistemic program and S be
an answer set of ASP(II). Let A = Uy mo(s){rat U

Uaeromi(s){ra, cat. Let I = ASP(II) U A. Then, if I

does not credulously entail ok, for some a € k0_m1(S) then
II does not have a world view containing S\xu.

Algorithm 2 encodes Proposition 4. Similar to Algorithm 1,
given S, the set A, defined in Proposition 4, is computed
(Line 4). Line 5 of the algorithm aims at enforcing conditions
(b) and (d) (Step 3, Section 2) for the collection of answer
sets of ASP(IT) U A.

Algorithm 2 TESTKOM 1 (ASP(II), S)

% Can 11 have a world view containing S'?

Input: ASP(II): ASP program of II, S€ AS(ASP(II))
Output: IT has world view W, SeEW: true; else false
Compute k1-m0(.S) and k0-m1(S)

A= Uaekl,mO(S){ra} U Uaeko,m(S){Tw Ca}

if ASP(IT) U A }£¢ ok, for some o € k0_m1(S) then
return false

6: else return true

EANE S i

Utilizing Propositions 2-4, we can prove the following
property of views of ELPs (proof omitted for space reason):

Proposition 5 Let 11 be an epistemic program, S be an an-
swer set of ASP(II), and A = {r, | o € k1.m0(S) U
k0-m1(S)}. If TESTKIMO(ASP(II), S) returns true and
TESTKOM1(ASP(IT), S) returns true then Wiy is a world
view of Il where W = {S | S € AS(ASP(II) U A)}.

3.1 Computing k¥ World Views

In this subsection, we describe an algorithm for computing
at most k£ world views of an epistemic logic program. We
need also the following notations. For a program IT and S €
AS(ASP(II)), by C(S) we denote the constraint

— Q... 0 (12)
where {aq,...,0¢} = k1-m0(S) U kO_m1(S). Also,
Sn = {« not k14| ASP(II) =5 ¢} (13)

1272

A= Uaekl,mO(S){Tav Ca}U Uaeko,m1(s>{ra}u{<_ not nok}.

Algorithm 3 Ep-Asp(I1, k): Compute k world views of II

1: Input: an ELP programll, k: the number of world views

2: Output: At most k world views of TI

3: Compute ASP(II) from II

4: Let ASP(IT) = ASP(IT) U Sy U Cy

5:Q=0;T=ASP(Il);n =0

6: while n < k and T is consistent do

7:  Let S be an answer set of I"

8: A ={r,|ackl.m0(S)Uk0-ml1(S)}

9: if TESTKIMO(ASP(II), S) = true then
10: if TESTKOM1(ASP(IT), S) = true then
11 W = AS(ASP(II) U A)

12 Q=QUW\xzn=n+1

13: T'=TucC(s)
14: end while
15: return €

Cr = {« not m0_C| ASP(II) lec €} (14)

Algorithm 3 computes at most k£ world views of program II.

The correctness of Algorithm 3 follows from Proposi-
tion 5. We note that the addition of the constraint C(S) to
I' (Line 13) is to eliminate any answer set Y of ASP(II)
with the property k1_m0(S) = k1-m0(Y") and k0_m1(S) =
k0-m1(Y) from consideration for computing a world view
(Line 7) after S has been considered, i.e., this prevents .S from
being selected repeatedly and thus guarantees that Alg. 3 ter-
minates and computes at most k world views of II.

3.2 Goal Directed Computing

We now propose a modification of Algorithm 3 that enables
the computation of world views satisfying a given objective
literal. In other words, given an ELP II and an objective lit-
eral ¢ in the language of II, we would like to compute one
(or at most k) world view(s) W such that W |= K/. This is
interesting and has a wide range of applications. For instance,
it has been shown that epistemic logic programs can be used
for conformant planning (e.g., [Kahl et al., 2015]). It is cus-
tomary that a conformant planning problem P is translated
into an epistemic logic program F(P) with an atom goal for
encoding the goal condition such that each world view W of
E(P) with W = Kgoal contains a solution to the problem
P. As such, to compute solutions of P, it is sufficient to com-
pute world views satisfying W = Kgoal. As it turns out,
only a slight modification of Algorithm 3 will be sufficient:
replacing Line 7 of Algorithm 3 with

Line 7G: Let S be an answer set of I' U {« not k1_¢}.

The purpose of the change is to focus on answer set satisfying
k1_¢ of T which are also answer sets of ASP(II). The new
condition requires that £1_¢ is true in the answer set .S which,
by the condition (a) in Step 2 of second section, forces £ to
be in every set of the world view containing S.

3.3 Adding Heuristics

A further enhancement of the solver can be done by providing
it with a way to select a promising answer set that results in
the successful identification of a world view. In general, this
can be expressed by replacing Line 7 of Algorithm 3 with

Line 7H: Let S be an answer set of ' U {«— not ¢ |/ € H}



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

where H is a set of literals which could be viewed as a means
to represent a heuristic to the solver. Although it might be
difficult to identify such heuristics in general, it can be de-
fined for conformant planning. Specifically, we implemented
a heuristic for conformant planning that is based on the ap-
proach in [Kurien ef al., 2002; Nguyen et al., 2012]. Given
a conformant planning problem P, the system computes so-
lutions of planning problems whose initial states are comple-
tions of the initial state of P, extracts action occurrences from
these solutions to create H, and uses this as a heuristic to
guide the search.

3.4 Implementing a Different Semantics

The semantics of ELPs used in this paper (Section 2) is de-
fined in [Kahl et al., 2015]. It is shown in [Kahl et al., 2016]
that with only a slight modification, this semantics is equiva-
lent to the newest semantics defined in [Shen and Eiter, 2016].
Indeed, the newest semantics can be computed by replacing
Line 7 of Algorithm 3 with

Line 7M: Let .S be an answer set of I' such that
I' U MC(S) does not have an answer set.

where M C'(S) is a set of rules aimed at selecting answer set
S’ of ASP(II) such that k0_m1(S) C k0-m1(S’). More
precisely, M C(S) contains (i) ro and in(a) < for a €
k0_-m1(S); (ii) ok, < B, not in(B) for 3 of the form k0_¢
orml{ and 8 ¢ k0_m1(S); and (iii) + not ok,,. In the
following, we refer to answer sets satisfying the Line 7M as
those satisfying the SE-maximality condition.

4 Implementation and Evaluation

We implement the algorithms described in Section 3 in a pro-
totype called EP-ASP and evaluate (i) the capabilities of EP-
ASP in computing world views of an ELP against ELPsolve
using the benchmarks provided in [Kahl et al., 2016]; and
(ii) the effectiveness of directed reasoning of EP-ASP, e.g., in
computing world views satisfying a given goal by comparing
against DLV-K [Eiter et al., 2003], a logic program based sys-
tem for conformant planning, using the well-known “bomb in
the toilet” problem [Reichgelt, 1987] and its variations. We
also implemented a version of EP-ASP that computes the se-
mantics of ELPs given in [Shen and Eiter, 2016] and denote
it with EP-ASP?°.

4.1 Epr-ASp and Ep-ASP*®

The implementation of EP-ASP and EP-ASP®® is in Python.
It uses the library provided in the distribution of CLINGO to
modify the ASP program and the mode of computation (e.g.,
cautious or brave reasoning). Its code is omitted for space
reason and is downloadable from https://github.com/
tiep/EP-ASP. EP-ASP®¢ differs from EP-ASP in the imple-
mentation of Line 7 (Subsection 3.4). In the following, we
write “EP-ASP(*¢)” and mean “EP-ASP or EP-ASP®¢.”

4.2 ELPsolve

ELPsolve [Kahl ef al., 2016] computes world views of
an ELP using semantics given in [Shen and Eiter, 2016].
ELPsolve guesses a collection of atoms (C maximal) of

1273

the forms not K¢ or M/, translates it into a collection of
atoms of the form k1_¢, kK0_¢, m1_¢, or m0_¢, adds them to
ASP(II), and verifies if the set of answer sets of the new
program is a world view.

4.3 Experimental Results

All experiments are performed on an Intel Core i7 2.8GHz
machine with 16GB memory. Runtimes are reported in sec-
ond; and ‘-’ indicates that an algorithm fails to solve a prob-
lem after one hour. We use an implementation of ELPsolve
provided by their authors and a publicly-available implemen-
tation of DLV-K.* Results are detailed in Table 1(a)-(b). All
three systems use the program ELPS [Balai and Kahl, 2014]
to convert an ELP IT to ASP(II).

EP-ASP(*¢) versus ELPsolve: The benchmarks in [Kahl er
al., 2016] contain two problems, the Scholarship Eligibil-
ity Problems [Gelfond, 1991] (represented by E-XX) and
Yale Shooting Problems [Hanks and McDermott, 1987] (rep-
resented by Y-XX). “XX” indicates the number of distinct
ground subjective literals in the problem. The ELP encodings
of these problems come with the ELPsolve’s system.

In E-XX problems, in/eligibility for scholarship of students
needs to be determined; and, if it cannot be determined then
an interview needs to be scheduled. The difficulty in com-
puting world views for E-XX depends on how many students
need to be interviewed. The Y-XX problems are variations
of the Yale shooting problem with additional actions and in-
complete initial state. Note that in both sets of problems, the
semantics in Section 2 is identical to the semantics computed
by ELPsolve, i.e., all systems compute the same world view.

Table 1(a) details the runtimes of ELPsolve and EP-
ASP(°®) for computing one world view of E/Y-XX prob-
lems. We note that for Y-XX problems, the planning option
is turned on for EP-ASP(®*¢). The number between the brack-
ets in the EP-ASP(®*¢) column indicates the number of itera-
tions or the number of calls to CLINGO (Lines 7-14, Algo-
rithm 3) that EP-ASP(®*¢) needs to do to find the first world
view. This number for EP-ASP*¢, however, does not include
the number of calls to CLINGO before an answer set satisfy-
ing the SE-maximality condition described in Subsection 3.4,
i.e., checking for maximality of the set of not K¢ and M/ of
the answer set.

We observe that both versions of EP-ASP (i) can solve more
problems in E-XX problems and (ii) consistently faster than
ELPsolve. In most problems, they are an order of magnitude
faster than ELPsolve. We believe their better performance
lies in the efficient way of identifying candidate world views
and its ability to utilize the pre-processor results to prune the
search space.

The behavior of EP-ASP®® shows that verifying the SE-
maximality condition does affect the performance of the sys-
tem but not significantly (see, E-18/20, E-26, and E-30/32 or
Y-20). Its trend seems to be exactly as that of ELPsolve as
both look for answer sets satisfying the SE-maximality condi-
tion before checking for the existence of a world view. On the
other hand, EP-ASP behaves a bit different from ELPsolve

4DLV-K is obtained from www.dlvsystem.com/d1lv/.



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Prob. | ET | Si ] Sy [ Prob. ] ET ] S| Sa | [ Prob. [ DLVK ] Ml S ][ Prob. [ DLVK ] EMl| Sa ]

BT (30) 58 | L16(30) | L.I9(30) || BT (90) 69.27 27.89(90) 28.55(90)
E-02 -22 -02[3]1.01[1 E-18 17.67 -05[3 ;08[} BT (50) 4.63 | 4.82(50) | 4.90(30) || BT (100) 112.81 | 38.94(100) | 39.92(100)
E-04 .23 .02[2 -02[1 E-20 37.39 5.45[60 10.37(23 BT (70) 20.98 | 14.84(70) | 14.27(70) || BT (150) 813.04 | 167.49(150) | 164.80(150)
E-06 .26 -02[2 -02[1 E-22 200.81 | 27.71[126 12.55(26 B17C (30) T.52 | 1.89(60) | 1.95(60) || B1TC(100) | 209.80 | 78.49(200) | 78.32(200)
E-08 27 .02[2 .02[1 E-24 955.88 | 89.64[213 12.96[24 B1TC (50) 10.38 | 8.41(100) | 8.21(100) || BITC(150) | 1319.24 | 402.37(300) | 392.94(300)
E-10 .28 .03(3 .03[1 E-26 - 3.12(39 13.07[23 B21C (3) 02 07(6) 07(6) || B21C(10) = ~32(20) “35(20)
E-12 .36 | .04[19 .04[1 E-28 — | 30.32[117 14.27[20 B2TC (5) .03 .10(10) .11(10) || B2TC (30) - 4.43(61) 4.61(61)
E-14 | 1.63 04[3] | .05[1 E-30 _ 14[5 16.73[19 B2T(7) 13.06 .16(14) .18(14) || B21C (100) — | 317.06(200) | 295.08(200)
E-16 6.20 .05[3 .06[1 E-32 — .12[3 23.37[23 B3TC(3) .07 .08(6) .08(6) B3TC (10) - -51(20) .47(20)

B31C (5) 23 .13(10) 14(10) || B37C (30) - 7.76(60) 7.86(60)
Y-04 .23 .02[1 03 [1] ¥-17 -56 .06[2 0712] B3TC(7) 67.25 .23(14) .27(14) || B31C (50) — | 41.02(100) | 41.39(100)
Y-06 .24 .03[1 03[1] || v-20 2.37 2.32[34 4.15[34] TUC (4) 09 30(8) 39(8) || BTUC (8) = 15.03(35) 23.21(35)
Y-08 .28 .05[3 .06 [3] Y-23 9.88 .15[4 18 [4] BTUC (6) 256.32 .73(18) 1.08(18) || BTUC (10) - 37.77(55) 58.46(55)
Y-10 .32 .03[1] | .03[1] v-34 | 419.93 .05[1 06[1]

(a) Comparison Between ELP solve, EP-ASP, and EP-ASP®®

(b) Comparison Between DLV-K, EP-ASP, and EP-ASP®®

Table 1: Experimental Results (ET: ELPsolve, S1: EP-ASP, Sp: EP-ASP*?; *: problem without world view)

and EP-ASP®® when XX increases. EP-ASP guesses an an-
swer set and tries to verify for a world view while the other
systems execute the verification only for answer set satisfies
the SE-maximality condition. In this sense, EP-ASP uses a
greedy algorithm whose performance relies on the heuristic
of (CLINGO) in computing answer sets. On the other hand,
ELPsolve (EP-ASP®®) systematically searches through all
subsets of the set of atoms of the form not K¢ or M{ (an-
swer sets satisfying the SE-maximality condition).

EP-ASP versus DLV-K: We conduct this experiment to evalu-
ate the performance of EP-ASP in computing a world view
that satisfies a predefined goal. We compare EP-ASP with
DLV-K since DLV-K is one of the most efficient logic pro-
gramming based implementations for conformant planning.
We did not run ELPsolve in this experiment since its current
implementation has a limit of 34 subjective literals and this
number is exceeded in all problems in this experiment.

The experiments are conducted using the “bomb in the toi-
let” (BT) problem [Reichgelt, 1987] and its variations, de-
noted BT(p), BITC(p), B2TC(p), B3TC(p), and BTUC(p)
where p indicates the number of packages in a problem. The
key idea is that to be safe, one needs to dunk all the packets
in one of the available toilets (BT). Furthermore, dunking a
packet might or might not clog the toilet (C and UC), and one
needs to flush the clogged toilet before one can dunk another
packet into it. The ELP encoding of these problems are de-
rived from the world-state encoding in [Eiter et al., 2003].
We did not use the knowledge-state encoding because it uses
a different semantics that was not implemented in the generic
conformant planning module of EP-ASP(*¢).

The runtimes of the systems are detailed in Table 1(b).
In this experiment, we use EP-ASP(°¢) with the heuris-
tic described in Subsection 3.3. Without the heuristic, EP-
ASP(*®) performs significantly slower and does not scale up
well. While DLV-K always finds optimal length solution, Ep-
ASP(*?) does not because of its heuristic. The length of the
solution computed by EP-ASP(*¢) is given between the paren-
theses in the column EP-ASP(*¢).

We observe that EP-ASP(°°) is able to solve more prob-
lems (in B2TC(p), B3TC(p), and BTUC(p) domains) than
DLV-K. It is faster than DLV-K when the problem becomes
more complex (i.e., increasing p) while DLV-K is faster than
EP-ASP(®?) for problems with small p. The reason is that, in
these problems, the times for computing the heuristic domi-
nates the times saved from using the heuristic.

5 Conclusions and Future Work

We present an algorithm for computing world views of epis-
temic logic programs. The new algorithm exploits the rela-
tionship between world views and the subjective literals of
the program II to avoid the need of computing all answer sets
of a modal reduct of II for verifying whether or not a collec-
tion of answer sets of the equivalent ASP program ASP(II)
is indeed a world view of II. We discuss different variations
of the algorithm such as the use of heuristics, the computation
of world views satisfying a given properties, and the compu-
tation of different semantics.

We present two implementations of the algorithm, called
EP-ASP and EP-ASP?®, that take advantage of the multi-shot
feature of the answer set solver CLINGO and provide a tight
integration of the two processes: world view computation
and answer set computation. EP-ASP implements the seman-
tics of ELPs in [Kahl er al., 2015] and EP-ASP*¢ computes
the newest semantics of ELPs proposed in [Shen and Eiter,
2016]. Both systems perform exceptionally well comparing
to state-of-the-art epistemic logic program solvers in bench-
marks from the literature. We also experimentally evaluate
the goal directed feature of these systems by comparing it
against DLV-K. The experimental results show that they can
be competitive with DLV-K in solving conformant planning
problems given a good heuristic. It is worth noticing that even
though conformant planning has been often mentioned as one
of the ideal applications of ELPs, to the best of our knowl-
edge, EP-ASP (or EP-ASP®®) with heuristic is the first imple-
mentation based on ELP that is competitive with DLV-K.

The experimental evaluation shows that epistemic logic
program solver can be efficient and could reach the mature
level needed to be useful in practical applications that require
strong inspection. A particular situation that is of great in-
terest to us is the following problem. Consider an agent who
needs to guard a system. The guard knows possible actions
that could affect the state of the system. The guard also know
that if an enemy does not know the truth value of some
proposition p then the system is safe. This type of problem
could be represented by a conformant planning problem with
the goal equivalent to not Kp. To the best of our knowl-
edge, such problem has not been considered before in the
planning community. None of the current conformant plan-
ners can solve this type of problem although all will solve
the problem of finding plans achieving K p. This will be our
focus in the near future.

1274



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Balai and Kahl, 2014] Evgenii Balai and Patrick Kahl.
Epistemic logic programs with sorts. In Daniela Inclezan
and Marco Maratea, editors, ASPOCP 2014, 2014.

[del Cerro et al., 2015] Luis Farinas del Cerro, Andreas
Herzig, and Ezgi Iraz Su. Epistemic equilibrium logic. In
Qiang Yang and Michael Wooldridge, editors, I/JCAI 2015.
AAAI Press / IICAI 2015.

[Eiter et al., 2003] Thomas Eiter, Wolfgang Faber, Nicola
Leone, Gerald Pfeifer, and Axel Polleres. A logic pro-
gramming approach to knowledge-state planning, II: the

divk system. Artif. Intell., 144(1-2):157-211, 2003.

[Gebser et al., 2014] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Clingo = ASP +
control: Preliminary report. CoRR, abs/1405.3694, 2014.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz.  Classical negation in logic pro-
grams and disjunctive databases. New Generation
Computing, 9(3/4):365-385, 1991.

[Gelfond, 1991] Michael Gelfond. Strong introspection. In
Thomas L. Dean and Kathleen McKeown, editors, AAAI-
91, volume 1, pages 386-391. AAAI Press / The MIT
Press, 1991.

[Gelfond, 1994] Michael Gelfond. Logic programming and
reasoning with incomplete information. Annals of Mathe-
matics and Artificial Intelligence, 12(1-2):89-116, 1994.

[Hanks and McDermott, 1987] Steve Hanks and Drew Mc-
Dermott. Nonmonotonic logic and temporal projection.
Artificial Intelligence, 33(3):379-412, November 1987.

[Kahl et al., 2015] Patrick Kahl, Richard Watson, Evgenii
Balai, Michael Gelfond, and Yuanlin Zhang. The language
of epistemic specifications (refined) including a prototype
solver. Journal of Logic and Computation, 2015.

[Kahl et al., 2016] Patrick T. Kahl, Anthony P. Leclerc, and
Tran Cao Son. A parallel memory-efficient epistemic logic
program solver: Harder, better, faster. In ASPOCP, 2016.

[Kelly, 2007] Michael Kelly. Wviews: A worldview solver
for epistemic logic programs. Honour’s thesis, University
of Western Sydney, 2007.

[Kurien er al., 2002] James Kurien, P. Pandurang Nayak, and
David E. Smith. Fragment-based conformant planning. In
AIPS, pages 153-162, 2002.

[Lifschitz and Turner, 1994] V. Lifschitz and H. Turner.
Splitting a logic program. In Pascal Van Hentenryck,
editor, Proceedings of the Eleventh International Confer-
ence on Logic Programming, pages 23-38, 1994.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang,
and Hudson Turner. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25:369—
389, 1999.

[Nguyen et al., 2012] H-K. Nguyen, D-V. Tran, T.C. Son,
and E. Pontelli. On computing conformant plans using
classical planners: A generate-and-complete approach. In

1275

Proceedings of the 22st International Conference on Auto-
mated Planning and Scheduling, ICAPS 2012,Atibaia, Sao
Paulo Brazil, June 25-29. AAAI Press, 2012.

[Reichgelt, 1987] Han Reichgelt. A review of mcdermott’s
“critique of pure reason”. Al Commun., 0(1):39-42, 1987.

[Shen and Eiter, 2016] Yi-Dong Shen and Thomas Eiter.
Evaluating epistemic negation in answer set programming.
Artificial Intelligence, 237:115-135, 2016.

[Truszczytiski, 20111 Miroslaw Truszczyfiski.  Revisiting
epistemic specifications. In Marcello Balduccini and
Tran Cao Son, editors, Logic Programming, Knowledge
Representation, and Nonmonotonic Reasoning, volume
6565 of Lecture Notes in Computer Science, pages 315—
333. Springer, 2011.

[Zhang and Zhao, 2014] Zhizheng Zhang and Kaikai Zhao.
ESmodels: An epistemic specification solver. CoRR,
abs/1405.3486, 2014.

[Zhang, 2006] Yan Zhang. Computational properties of epis-
temic logic programs. In Patrick Doherty, John Mylopou-
los, and Christopher A. Welty, editors, KR-06, pages 308—
317. AAAI Press, 2006.



