
Grounding of Human Environments and Activities for Autonomous Robots

Muhannad Alomari1∗, Paul Duckworth1∗, Nils Bore2, Majd Hawasly1,
David C. Hogg1, Anthony G. Cohn1

1University of Leeds, United Kingdom.
2Royal Institute of Technology (KTH), Sweden

1{scmara, p.duckworth, m.hawasly, d.c.hogg, a.g.cohn}@leeds.ac.uk, 2nbore@kth.se

Abstract
With the recent proliferation of human-oriented
robotic applications in domestic and industrial sce-
narios, it is vital for robots to continually learn
about their environments and about the humans
they share their environments with. In this paper,
we present a novel, online, incremental framework
for unsupervised symbol grounding in real-world,
human environments for autonomous robots. We
demonstrate the flexibility of the framework by
learning about colours, people names, usable ob-
jects and simple human activities, integrating state-
of-the-art object segmentation, pose estimation, ac-
tivity analysis along with a number of sensory
input encodings into a continual learning frame-
work. Natural language is grounded to the learned
concepts, enabling the robot to communicate in a
human-understandable way. We show, using a chal-
lenging real-world dataset of human activities as
perceived by a mobile robot, that our framework
is able to extract useful concepts, ground natural
language descriptions to them, and, as a proof-of-
concept, generate simple sentences from templates
to describe people and the activities they are en-
gaged in.

1 Introduction
To integrate in human environments, mobile robots with col-
laborative/assistive human-oriented tasks should be enabled
to continuously learn about their environments, the people
who inhabit these environments, and the activities that take
place there. From an autonomous robot point of view, this
requires incremental, unsupervised methods that operate on
the outputs of various kinds of sensor modalities the robot
might have, ranging from laser rangefinder and RGB-D cam-
eras to voice recognition. The desired outcome of this process
is learning a collection of grounded concepts of the robot’s
environment that are beneficial for the robot’s specific task.

In this paper, we present a framework for symbol ground-
ing for autonomously-extracted components of real-world,
human environments for a mobile robot. The novelty of this

* The first two authors contributed equally to this paper.

framework is that it extends existing work in autonomous
symbol grounding towards ‘the wild’, i.e. from the typical
lab settings towards more realistic, real-world scenarios, and
from ideal sensing conditions to noisy, limited and changing
perception of a mobile robot. Moreover, it does this in an
unsupervised, incremental fashion. We presuppose that the
robot can navigate and visually analyse the environment to
extract a multitude of visual features in order to incremen-
tally recover useful ‘classes’ of visual features, here named
concepts. If natural language descriptions of the observations
are also provided, they can be analysed along with the visual
features to ground the words describing people, objects, ac-
tivities, etc. to their most relevant perceptual concepts. One
possible application of such a framework could be in the field
of security or assistive robotics where robots need the ability
to learn on-the-go how to describe new objects or situations
in a human-understandable form in a lifelong setting.

As a proof of concept, this paper supports recognition of
individuals, describing (some aspects of) their physical ap-
pearance using natural language, and commenting on the ac-
tivities they are engaged in. We do not claim that these chosen
concepts are exhaustive, more challenging or more relevant to
human environments than any others, but they are provided
here to give a flavour of the framework and its application.
To this end, we integrate state-of-the-art object segmentation,
human pose estimation and activity analysis into a flexible,
incremental framework for learning to distinguish instances
of faces, colours, objects, and activities in real-world complex
scenarios. Moreover, we propose a simple language ground-
ing framework to learn concept names for human-robot inter-
action purposes using natural language descriptions.

We concentrate on a small number of features and sensory
data that are easily acquirable by capable mobile robots. To
learn about humans we extract facial features using off-the-
shelf face detectors/descriptors, and we acquire human pose
estimates using a state-of-the-art pose machine. We also col-
lect colour information from people’s clothing in order to de-
scribe their appearance. For objects, we use automatic object
segmentation and trajectory analysis to identify usable ob-
jects in the environment. For human activities, we use qual-
itative spatial-temporal representations to capture the inter-
action through the relations between body poses and object
positions, which feed into a generative Bayesian model that
learns activity classes in an unsupervised setting.
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Lastly, given textual descriptions, we propose a natural lan-
guage grounding framework that deploys integer program-
ming techniques to assign words to their physical represen-
tation in the visual domain, i.e. to the learned concepts in the
numerous visual feature spaces.

2 Related Work
Enabling robots to share the human environment has been a
goal of AI and robotics research, manifested in a vast array
of active research areas e.g. continual learning, learning by
demonstration, human-robot interaction, dialogue planning,
compliant robotics, humanoid robots, etc.

In the robotics literature, grounding learned feature spaces
focuses on fusing sensor modalities such as vision or hap-
tics with natural language in order to teach robots useful
concepts like object names, action labels, and spatial rela-
tions, e.g. [Beetz et al., 2011; Spranger and Steels, 2015;
Aksoy et al., 2017], or the semantics of natural language nav-
igation and manipulation commands, e.g. [Lauria et al., 2002;
Tellex et al., 2011; Matuszek et al., 2013; She et al., 2014;
Hemachandra et al., 2015]. This is normally achieved in sim-
ple, controlled environments. In this work, we learn visual
concepts and natural language groundings in a more challeng-
ing, real-world human environment.

Existing research has addressed incremental learning of
simple elements in the robot’s environment, e.g. object fea-
tures [Sinapov et al., 2014; Craye et al., 2015; Young et al.,
2016] or patterns of human occupancy over time [Jovan et al.,
2016]. Other work has focused on learning and grounding
more complex elements non-incrementally, e.g. human ac-
tions from image motion features [Song et al., 2016]. In this
work, we incrementally and simultaneously learn and ground
multiple elements of the robot’s environment (objects, peo-
ple, and human activities) in an unsupervised manner.

There is a wealth of research in computer vision that relates
to learning the concepts we concentrate on here (e.g. activity
analysis, deep learning object segmentation, face recognition,
etc.), of which we present one variation. Note that our focus
in this work is on the continual learning framework that inte-
grates various learning elements and runs online with mobile
robots’ onboard computation, rather than on advancing the
state-of-the-art in learning any individual element, and our
approach can take advantage of advances in these individual
areas.

3 Concepts
In this section we introduce our notion of concepts: abstrac-
tions of the perceptual feature spaces generated by the robot’s
sensory modalities which carry a human-level meaning. For
example, concepts might include a colour represented as a
cluster of values in the HSL colour space (Hue-Saturation-
Lightness), or an object represented as a cluster of points
in a 3D point cloud. We present next the sensors and fea-
ture spaces we use, for a Scitos A5 mobile robot [MetraLabs,
2016], along with the unsupervised methods we employ to
generate such concepts. Note that our framework does not
rely on any particular robot or any specific sensors; rather it
is flexible to what the modalities of the robot can support.

Figure 1: (left) Mobile Scitos A5 robot gathering RGB-D data.
(right) An example of a human pose estimate.

For its basic operations, the mobile robot we use is
equipped with a base-mounted laser scanner used to model
the physical environment as a 2D occupancy grid where occu-
pied cells indicate static objects, allowing localisation, map-
ping and navigation. Also, the robot is equipped with two
RGB-D sensors, one over-head and one chest-mounted, that
allow collecting 640×480 RGB video streams in addition to
depth point clouds. These sensors are used to generate a 3D
map of the robot’s environment as shown in Fig. 1 (left). The
robot detects and tracks humans as they pass within the field
of view of its head-mounted RGB-D sensor. We define a
human pose as the estimated 3D position of the person’s 15
body joint locations at a single timepoint, see Fig. 1 (right).
To estimate the human pose, we use a real-time depth-only
tracker built on OpenNI [OpenNI, 2016] along with a post-
processing state-of-the-art RGB pose estimation [Wei et al.,
2016]. For each human detected by the robot, a sequence of
human pose estimates over a time series of frames is acquired.

3.1 Extracting Concepts
Concepts are learned automatically by clustering the low-
level input of each of the robot’s sensor modalities after an
appropriate encoding. This clustering operation results in a
collection of classes that are candidate concepts in each fea-
ture space. Because we assume no prior knowledge of the
structure of the sensor feature spaces, we employ probabilis-
tic modelling techniques to each feature space independently
to elicit meaningful classes that are supported by the observed
data.

We differentiate between two kinds of concepts. Simple
concepts are ones that are time-independent and can be de-
tected from a single or a small number of observations. For
example, simple visual concepts like colours can be repre-
sented as Gaussian components in a Gaussian Mixture Model
over the HSL space [Alomari et al., 2017]. Similarly, static
objects are simple concepts that can be segmented from fused
3D point clouds using geometrical/textural cues [Bore et al.,
2017].

On the other hand, complex concepts exhibit a temporal
dimension and manifest over longer sequences of observa-
tions. For instance, temporally-extended human activities are
one example of complex concepts. For these, a more elabo-
rate encoding and a more sophisticated clustering mechanism
are needed [Duckworth et al., 2017]. Namely, the robot first
abstracts each observed human pose sequence using a qual-
itative representation [Chen et al., 2015], translating the de-
tected quantitative pose sequence into a sequence of abstract,
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spatio-temporal descriptors which qualitatively describe the
interaction. For example, in a “drinking coffee” activity,
the exact spatial position of a person’s hand is not as use-
ful for learning the activity as a qualitative relation between
the hand and a coffee mug. Then, a probabilistic mixture
over that qualitative space is obtained using a hierarchical
Bayesian generative model, namely Latent Dirichlet Alloca-
tion (LDA) [Blei et al., 2003]. We consider the components
of that mixture (called topics) as human activity concepts.

In this paper, we demonstrate extracting four kinds of con-
cepts; three simple ones: faces (to learn to distinguish people
and later learn their names), colours (to describe people’s at-
tire) and objects (to learn their function), and one complex
concept: human activities. We briefly introduce each of the
feature spaces we use and show how the robot clusters obser-
vations in each of them to obtain candidate concepts.

Faces: To learn and recognise people’s faces, a small patch
from the RGB feed is automatically cropped around the lo-
cation of the head joint of the human pose estimate for ev-
ery person detected. We check for the presence of a face
in the cropped image using a cascade of boosted classifiers
with Haar features [Lienhart and Maydt, 2002] along with the
OpenCV generic face model. Then, we compute the Eigen-
values for the n most prominent Eigenfaces [Turk and Pent-
land, 1991] (extracted from a collection of face images.) This
transforms a face into a much-smaller n-dimensional data
point in the space of Eigenfaces. Finally, we fit a Gaussian
mixture model in that space with an optimal number of com-
ponents selected using the Bayesian Information Criterion
(BIC) [Posada and Buckley, 2004]. The resulting Gaussian
components are used as candidate concepts to represent peo-
ple. Examples of such clusters are shown in Fig. 2 (faces).

Colours: We cluster the HSL colour values of the upper
and lower garments of each person detection using a Gaus-
sian mixture model. The number of Gaussian components
is selected automatically using the BIC. The colours of the
upper and lower garments are extracted from the visual feed
using the human pose estimate, where the colour of the up-
per garment is estimated by taking the average pixel colour
from the triangle of the two shoulders and the torso, and the
colour of the lower garment is estimated by taking the average
pixel colour of the triangle between the torso and the knees, as
shown in Fig. 2 (colours). The extracted colours are projected
into HSL space to increase the robustness under varying light-
ing conditions. Examples of six clusters extracted can be seen
in Fig. 2 (colours).

Objects: The robot constructs a 3D model of its environ-
ment by fusing RGB-D images into surfels [Pfister et al.,
2000]. As demonstrated in [Schoeler et al., 2015], an unsu-
pervised segmentation algorithm grounded in the convexity
of common human objects can achieve state-of-the-art per-
formance in extracting semantically meaningful segments.
We use a similar method to that presented in [Bore et al.,
2017], which first splits the scene into a collection of super-
voxels [Papon et al., 2013] over which an adjacency graph

Figure 2: (faces) Examples of face clusters, with the averaged
(mean) face shown in the centre of each cluster. (colours) left:
Upper and lower garments extracted from a human pose estimate.
right: Examples of different colour clusters, averaged (mean) colour
shown in the centre. (objects) Processing of RGB-D feed (a) RGB
image from a 3D sweep (b) registered 3D point cloud of the kitchen
(c) segmented surfel map.

is formed. Then, weights are assigned to the edges based
on local convexity of the point cloud and colour differences
between segments. Finally, to segment the point cloud, itera-
tive graph cuts are performed to separate parts with concave
boundaries and/or large colour differences. This results in a
collection of point cloud segments which relate to the objects
in the environment, as illustrated in Fig. 2 (objects).

To concentrate attention on only the objects that are part
of the observed activities, the 3D human pose estimate se-
quences are analysed to extract the locations where people
stop more frequently in the environment. Then, the candidate
objects are scored according to their proximity to people’s
hands in these locations. The highest scoring candidate ob-
jects are considered as object concepts.

Human Activities: To learn temporally-extended human
activities, the pose of humans within the environment is de-
tected and tracked along with the positions of the learned ob-
ject concepts. Then, the observations are encoded into a num-
ber of Qualitative Spatio-temporal Representations (QSRs).
A QSR is an abstraction of exact quantitative observations in
a particular feature space into qualitative states, condensing
noisy observations of arbitrary spatial positions into higher-
level relational descriptors. We briefly introduce the three
QSRs used to encode object-human pose sequences in this
paper, which we compute using the publicly available library
QSRlib [Gatsoulis et al., 2016]:
1) Ternary Point Configuration Calculus (TPCC) [Moratz and
Ragni, 2008] qualitatively describes the spatial arrangement
of a point (the referent) relative to two other points (a line
connecting the relatum and origin). Relations are triples of
〈 { front, back }, { left, right, straight }, { distant, close } 〉.
An illustration of this QSR can be seen in Fig. 3 (top centre).
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Figure 3: QSRs and Interval representations; (top left) QDC (rela-
tive distance) between right hand and object 1, with three possible
relations: touch, near and far. (top centre) Subset of the TPCC
system between right hand and the torso-head line. 6 of the 12 pos-
sible relations are shown, where the symbols f, b, l, r, d, c stand
for front, back, left, right, distant and close, respectively (top right)
QTC (relative motion) between left hand and object 2, where rela-
tions could be one of (+) for moving away, (−) for moving closer,
or (0) for being static (bottom left) Interval representation for an
example scenario, using QDC (green) and QTC (purple). (bottom
right) Interval Graph of the interval representation.

2) Qualitative Trajectory Calculus (QTC) [Delafontaine et
al., 2011] represents the relative motion of two points with
respect to the reference line connecting them, and is com-
puted over consecutive timepoints. For two objects o1, o2, it
defines the following three relations: {o1 is moving towards
o2 (symbol −), o1 is moving away from o2 (+), o1 is neither
moving towards or away from o2 (0)}. An illustration of this
QSR for a joint relative to an object can be seen in Fig. 3 (top
right).
3) Qualitative Distance Calculus (QDC) [Clementini et al.,
1997] expresses qualitative Euclidean distance between two
points based on defined distance thresholds. A set of QDC
relations localises a joint with respect to reference landmarks
(e.g. object locations in an environment). Thus, changes in
the relations can help explain relative motion. An illustration
of this QSR for a joint relative to an object is in Fig. 3 (top
left).

By encoding a human pose sequence as a QSR abstrac-
tion, we obtain a set of qualitative relations (one per calculi
used) that hold between each body joint pose and each auto-
matically segmented object concept, per time point. We then
perform a temporal abstraction which compresses repeated
qualitative relations at adjacent frames into an interval rep-
resentation, maintaining only the relation and duration infor-
mation. An example interval representation between joints
and objects can be seen in Fig. 3 (bottom left). Then, we
employ Allen’s Interval Algebra (IA) [Allen, 1983] to cre-
ate an Interval Graph, where nodes represent intervals (rela-
tions holding between joints/objects) and directed arcs con-
nect temporally-adjacent intervals with IA relations. An ex-
ample Interval Graph can be seen in Fig. 3 (bottom right).

Given a corpus of Interval Graphs, one per human detec-
tion, k-length paths are extracted from the graphs as code
words for some small k (usually k ≤ 4). Thus, a code

word encodes a small number (≤ 4) of temporally-connected
nodes, i.e. spatial relations of joint-object/joint-joint pairs,
capturing a snapshot of an activity. The set of all unique code
words is considered as a discrete vocabulary, from which a
descriptor analogous to bag-of-words representation (a his-
togram) can be computed for each detection. This histogram
maintains counts of occurrence of code words in a detection.
Note that, this representation is different from the traditional
bag-of-words normally used in document analysis, in that it
maintains some temporal information inside the code words.

We use Latent Dirichlet Allocation (LDA) [Blei et al.,
2003], a three-layer hierarchical generative model for dis-
crete data, to model the histograms. This Bayesian model
has proved successful in problems with large corpora not ex-
clusive to document analysis, e.g. [Duckworth et al., 2017].
LDA simultaneously discovers topics in the ‘corpus’ of his-
tograms and infers the topic proportions for each detection. A
topic is a probability distribution over the vocabulary of code
words, thus it is a conceptual model of a human activity and
a candidate activity concept. The graphical model represen-
tation of LDA can be seen in Fig. 4.

Figure 4: Graphical model representation of LDA using plate no-
tation. Nodes represent random variables, links between nodes
are conditional dependencies, plates are replicated components, and
shaded nodes are observables.

Here, α, β are the model-level Dirichlet hyperparameters,
T is the number of topic distributions (activity concepts), M
the number of detections in the corpus, and Nd is the number
of code words in a detection d. As the model shows, only
the code words/histograms are observable, while the rest
of the latent variables are inferred, namely the distribution
p(topic distr., doc. distr., code word assignments | histogram),
which captures a mixture of activity topics in a detection.

4 Grounding Natural Language to Concepts
In this section we describe the process of grounding natu-
ral language sentences to the learned concepts (e.g. faces,
colours, human activities, etc.), in order to enable the robot to
communicate effectively with the humans in its environment.

First, it is essential to acquire a natural language descrip-
tion of what the robot is perceiving to perform the grounding.
Ideally we would like our robot to have a speech recogni-
tion modality and the capacity to ask people about particular
objects, qualities or actions using natural language, but this
remains a goal for future work. At present, we use Amazon
Mechanical Turk to collect multiple natural language descrip-
tions of video clips recorded by the robot. The descriptions
are parsed into grammar trees using NLTK and an off-the-
shelf English grammar model [Schuster and Manning, 2016].
For example, parsing the sentence “Andy is tall and is wear-
ing a blue shirt with black shorts” gives a grammar tree from
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which we extract all verbs (e.g. “wear”), nouns (e.g. “Andy”),
and adjectives (e.g. “blue”). After applying a low-pass filter
on the frequency of extracted words (removing words with
low occurrence – fewer than three times in the entire dataset),
this becomes the set of words that will be used for language
grounding to concepts. We attempt to ground verbs to activity
concepts, adjectives to colour concepts and nouns to people
names and object labels.

For grounding, we search for the highest correlations be-
tween words in a video clip description and the various con-
cepts that feature in that clip, allowing multi-to-multi asso-
ciations to preserve the richness of natural language. Given
the set of m learned concepts C and the set of n unique words
W , the concept-word correlation matrixK is anm×nmatrix
computed using the maximum of two frequentist measures:

K(c, w) = max
(#(c, w)

#(c)
,
#(c, w)

#(w)

)
, c ∈ C, w ∈ W

where #(.) is the count function. This computes the number
of times a concept and a word are observed together, nor-
malised by either the number of times the word is observed
or the concept is observed, i.e. the strength of associating the
word to the concept or the concept to the word. The maxi-
mum of these two terms concentrates on the less-observed of
the word and the concept, improving the quality of the multi-
to-multi associations.

Defining a target function A where A(c, w) = 1 if the
association (c, w) is correct and 0 otherwise, we can formu-
late the problem of multi-to-multi concept-to-word associa-
tion as solving a constrained integer program with the objec-
tive function:

max
A

∑
C×W

A(c, w)K(c, w).

We optimise the objective function subject to the constraints:

•
∑
C×W A(c, w)/mn < λ%, keeping sparsity of the as-

sociations by forcing the number of selected associations
to be below some small percentage λ% (set between 5
and 10%) of the total number of possible associations.

•
∑
W A(c, w) ≥ 1, ∀c ∈ C, forcing the assignment of at

least a single word to each of the concepts.

Solving this integer program results in assigning a num-
ber of highly-correlated words to each concept. The error in
this process gets rectified through continual learning as more
video is processed.

5 Continual Learning
In this section we describe the incremental techniques we use
to update the visual concepts and activity topics with new ob-
servations, and the incremental language grounding process.

For the concepts extracted from 2D visual features (i.e.
faces and colours), we use an Incremental Gaussian Mixture
Model (IGMM) [Song and Wang, 2005] which uses statistical
tests (namely, W -statistic and Hotelling’s T 2 test) to decide
whether a new measurement is part of a known component
(representing a learned concept), and thus the component is

updated with the measurement. Otherwise, a new component
in the feature space is created, i.e. a new concept is learned.

For human activity concepts, we incrementally update the
generative LDA model using Variational Bayes Inference
(VB) [Hoffman et al., 2010]. For new observations the pro-
cess is threefold: i) any new code words in the observations
are first appended to the vocabulary and to the topic distri-
butions with zero probability, ii) the multinomial distribution
over the current set of topics/activity concepts for the new de-
tection is computed, then iii) the topic distributions over the
vocabulary are updated with the new observations.

The use of an Incremental Gaussian Mixture Model and
Variational Bayes inference allows the robot to incrementally
learn new concepts in the environment, whilst efficiently up-
dating its model of the previously-learned concepts with new
observations. By processing a small number of observations
at a time, both IGMM and VB optimise storage and compu-
tational complexity of the framework, avoiding the need to
store or re-analyse previous observations.

For grounding of natural language, the integer program-
ming association is performed again whenever new observa-
tions and text descriptions are available. This is vital as the
richness of natural language and the possible noise in the data
require continuous re-evaluation of the associations. This is
achieved by i) adding new rows and columns to the corre-
lation matrix K for new words and newly-learned concepts,
ii) updating the frequency measure of every observed word
and concept pair, then iii) re-solving the integer program to
generate new associations. Again, there is no need to store
anything more than the frequencies in K.

6 Empirical Evaluation
We present three experiments to evaluate the system’s per-
formance in: 1) unsupervised concept extraction, 2) unsu-
pervised language grounding, and 3) simple sentence gener-
ation to describe previously unseen video clips. We use a
publicly-available long-term human activity dataset collected
over the period of five days by a mobile robot from multi-
ple view points 1. The dataset contains 493 video clips each
containing a single human performing a simple activity in
a kitchen area of an office environment (e.g. heating food,
preparing hot drinks, using a multi-function printer, throw-
ing trash, washing up, etc.) On top of the dataset, we col-
lected natural language descriptions of each video clip using
Amazon Mechanical Turk, where we requested ‘Turkers’ to
describe the activity in the clip and the person’s appearance
(given a fabricated name). A total of almost 3000 descrip-
tions were collected (6 per clip on average). Example images
from a video clip are shown in Fig. 5 along with a subset of
the descriptions obtained.

Concept Extraction Evaluation We incrementally extract
concepts in each of the feature spaces; namely faces, colours,
objects, and activities, over the 5-day dataset. Since the
learning is performed in an unsupervised setting, we use
two popular clustering metrics to evaluate the performance:

1Dataset: http://doi.org/10.5518/86
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Figure 5: Example images from the dataset with natural language
descriptions. Fabricated names were provided to the annotators.

normalised Mutual Information [Vinh et al., 2009] and V-
measure [Rosenberg and Hirschberg, 2007]. Normalised Mu-
tual Information is a measure of how many bits are needed
in order to store predicted outcomes given that the true
value is known. V-measure is a combination of homogene-
ity – whether each predicted cluster contains same-class data
points, and completeness – whether the member data points
of a given class are all elements of the same predicted clus-
ter. Both metrics provide a measure of similarity of any two
sets of class labels, where 0 indicates no mutual information
and 1 indicates perfect correlation. For ground truth we use
the sets of 17 names, 9 colours, 12 objects, and 11 activities,
extracted manually from the dataset by paid volunteers. For
objects, the closest from the 12 objects to the location where
the person stopped in the video is chosen to be the ground
truth object.

Table 1 presents results of our incremental, unsuper-
vised concept extraction when compared against ground truth
classes. We use the most likely component in a mixture as a
label if the prediction is multinomial, as in the case of activ-
ity topics. The robot managed to recover 34 face concepts, 13
colour concepts, 14 object concepts, and 13 activity concepts
from this challenging real-world dataset with multiple view
points, changing lighting conditions and occlusions. The re-
sults show the majority of the instances observed are success-
fully clustered into consistent concepts.

As an upper bound and to provide a reference result, we
also show the V-measure results obtained using a supervised
(linear) support vector machine classifier (SVM) with 4-fold
cross-validation. The SVM clearly has access to the ground
truth labels during training. Still, it only marginally outper-
forms our unsupervised techniques.

Given the limited size of the dataset, we compute the most

Metric Faces Colours Objects Activities
Mutual Information 1.85 1.27 1.21 1.34
Normalised MI 0.70 0.70 0.69 0.62
Homogeneity Score 0.90 0.91 0.71 0.60
Completeness Score 0.55 0.54 0.68 0.64
V-measure 0.68 0.66 0.69 0.62
V-measure (SVM) 0.75 0.74 0.77 0.69

Table 1: Experimental results of unsupervised concept extraction
showing four clustering metrics for face, colour, object and activity
extraction. Also, we show the V-measure using a supervised SVM,
that has access to the ground truth labels in the four datasets, as an
upper limit.

prominent 20 Eigenfaces from the observations of day 1, and
use them after that to compute Eigenvalues in all later detec-
tions. Also, we first seed the activity model by learning top-
ics using Collapsed Gibbs Sampling [Gelman et al., 2014] on
day 1 observations in batch mode. After that, we incremen-
tally process new data using Variational Bayes with a regular
mini-batch size of 5 videos to allow frequent updating. For
the number of topics/activity concepts T , we first start with
the number of discovered objects, then increase this number
by one each day to allow new activities to appear over time.
Also, we remove any unused topics.

It is worth noting that all data collection, processing and
analysis were performed using midrange CPU and GPU units.
Our robot has two PCs with i7 processors running ROS in-
digo, and a single GTX 1050 Ti GPU with 2 GB of memory
on which the convolutional pose machine for human pose es-
timation runs. The use of incremental techniques (IGMM and
VB) for concept learning allowed relatively less complex and
more memory-efficient processing, making it possible for the
full framework to run onboard.

Language Grounding Evaluation We evaluate the sys-
tem’s ability to acquire correct word groundings using pairs
of short video clips accompanied with their correspond-
ing descriptions. We aim to learn all the possible ground-
ings of words to their corresponding visual concepts. For
ground truth, we manually annotated all correct word-concept
groundings in the dataset. As a metric, we compute the F1-
score of the grounding results in each feature space sepa-
rately. Daily batches of recorded videos are fed to the system,
effectively updating the robot’s groundings each evening.

Figure 6 (left) shows the improving trend in the F1-score
of the word groundings in each feature space as more data is
observed in the 5-day dataset. We hypothesise that extended
observation of the environment will allow all the concepts in
these pre-defined feature spaces to be correctly grounded in
an unsupervised manner. Similarly, the concepts themselves
will become better defined with more observations. Examples
of learned concepts and the natural language words which are
grounded to them are shown in Fig. 6 (right).

Figure 6: (left) F1-score for incremental grounding over five days.
(right) Examples of learned concepts from the three simple feature
spaces along with their grounded words. Note that in each case one
or more groundings are correct. The rest are semantically related but
are not the actual concept labels (e.g., Alex wears glasses and jeans
in all the videos he appears in.)
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Sentence Generation Evaluation Finally, we evaluate the
soundness of both the learned concepts and word groundings
by generating natural language sentences of previously un-
seen video clips. For this task, we removed a video clip
from the training data and passed it to the robot after train-
ing on the remaining videos in order to generate a sentence
describing the unseen video. We repeated this 10 times. The
robot is provided with natural language sentence templates,
to describe an activity or a person, with placeholders for con-
cept labels. The two templates we use are “〈person〉 has a
〈colour〉 top and a 〈colour〉 lower garment” and “The person
is 〈activity〉 using a(n) 〈object〉”. The robot detects learned
concepts from the test video and picks their most-highly as-
sociated words to fill in the sentence templates. In 10 videos
our system was able to correctly generate/fill 46 out of the
50 available blank spaces. The correctness of the generated
sentences were evaluated by an external volunteer. Examples
of the generated sentences along with images from the test
video clips can be seen in Fig. 7.

7 Conclusion
We have presented a novel framework for autonomous learn-
ing of human concepts in real-world scenarios, with partial,
noisy and changing viewpoints of the world using on-board
sensors and limited computing power of a mobile robot. The
framework continually acquires and updates simple and com-
plex concepts, differing in the richness of the feature spaces
in which they are embedded, in an unsupervised manner and
grounds natural language words to them. The perceptual side
of the framework is presented in this paper, while exploiting
the learned concepts in useful behaviour is an ambition for
future work.

For language grounding, the framework depends on human
descriptions of the visual scenes. We noticed that limitations
in human perception, e.g. under varying lighting conditions,
might cause errors in scene annotation leading to mistakes
in grounding. Even though the process of continual learn-
ing is able to rectify erroneous associations in grounding as
more data is observed, a direction of future work is to en-
able the robot to enquire about unknown entities/activities di-
rectly, removing the need of external annotations. An addi-
tional improvement to the grounding could be to remove from

Figure 7: Examples of generated sentences from previously-unseen
videos. (a-b) describing video 1, (c,d) describing 2.

consideration words already having a strong association to a
concept, or words that are not consistent to any particular con-
cept. This would boost scalability of the continual grounding
over time. Also, the interplay between concept learning and
language grounding could be exploited to improve both pro-
cesses.

Finally, the fixed experimental setup made it sufficient for
the object segmentation to be performed with a single scan
of the environment. A direction for future work could be
to continually track the object locations in the environment
by modelling the change in the object segmentation repre-
sentation in multiple scans over time. This lifelong learning
approach also requires handling a continuous, unsegmented
visual feed, compared to the segmented videos used in this
paper. This is possible using a method similar to [Duckworth
et al., 2017], but correlating natural language annotations to
the unsegmented video stream would be more challenging.
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Hawes, and Tomáš Krajnı́k. A Poisson-Spectral Model for
Modelling the Spatio-Temporal Patterns in Human Data
Observed by a Robot. In IROS, 2016.

[Lauria et al., 2002] Stanislao Lauria, Guido Bugmann,
Theocharis Kyriacou, and Ewan Klein. Mobile robot pro-
gramming using natural language. Robot Auton Syst, 2002.

[Lienhart and Maydt, 2002] Rainer Lienhart and Jochen
Maydt. An extended set of Haar-like features for rapid
object detection. In Image Processing, 2002.

[Matuszek et al., 2013] Cynthia Matuszek, Evan Herbst,
Luke Zettlemoyer, and Dieter Fox. Learning to parse nat-
ural language commands to a robot control system. In Ex-
perimental Robotics, 2013.

[MetraLabs, 2016] MetraLabs. www.metralabs.com, 2016.
[Moratz and Ragni, 2008] Reinhard Moratz and Marco

Ragni. Qualitative spatial reasoning about relative point
position. J Visual Lang Comput, 19(1):75–98, 2008.

[OpenNI, 2016] OpenNI. www.openni.org, 2016.
[Papon et al., 2013] Jeremie Papon, Alexey Abramov,

Markus Schoeler, and Florentin Worgotter. Voxel cloud
connectivity segmentation-supervoxels for point clouds.
In CVPR, 2013.

[Pfister et al., 2000] Hanspeter Pfister, Matthias Zwicker,
Jeroen Van Baar, and Markus Gross. Surfels: Surface ele-
ments as rendering primitives. In SIGGRAPH, 2000.

[Posada and Buckley, 2004] David Posada and Thomas R.
Buckley. Model selection and model averaging in phylo-
genetics: advantages of Akaike information criterion and

Bayesian approaches over likelihood ratio tests. System-
atic Biology, 53(5):793–808, 2004.

[Rosenberg and Hirschberg, 2007] Andrew Rosenberg and
Julia Bell Hirschberg. V-measure: A conditional entropy-
based external cluster evaluation measure. In EMNLP-
CoNLL, 2007.

[Schoeler et al., 2015] Markus Schoeler, Jeremie Papon, and
Florentin Worgotter. Constrained planar cuts-object parti-
tioning for point clouds. In CVPR, 2015.

[Schuster and Manning, 2016] Sebastian Schuster and
Christopher D. Manning. Enhanced English universal
dependencies: An improved representation for natural
language understanding tasks. In LREC, 2016.

[She et al., 2014] Lanbo She, Shaohua Yang, Yu Cheng,
Yunyi Jia, Joyce Y. Chai, and Ning Xi. Back to the blocks
world: Learning new actions through situated human-
robot dialogue. In Meeting of the SIG on Discourse and
Dialogue, 2014.

[Sinapov et al., 2014] Jivko Sinapov, Connor Schenck, and
Alexander Stoytchev. Learning relational object categories
using behavioral exploration and multimodal perception.
In ICRA, 2014.

[Song and Wang, 2005] Mingzhou Song and Hongbin
Wang. Highly efficient incremental estimation of Gaus-
sian mixture models for online data stream clustering. In
Defense and Security, 2005.

[Song et al., 2016] Young C. Song, Iftekhar Naim, Abdullah
Al Mamun, Kaustubh Kulkarni, Parag Singla, Jiebo Luo,
Daniel Gildea, and Henry Kautz. Unsupervised alignment
of actions in video with text descriptions. In IJCAI, 2016.

[Spranger and Steels, 2015] Michael Spranger and Luc
Steels. Co-Acquisition of Syntax and Semantics - An
Investigation in Spatial Language. In IJCAI, pages
1909–1905. 2015.

[Tellex et al., 2011] Stefanie Tellex, Thomas Kollar, Steven
Dickerson, Matthew R. Walter, Ashis G. Banerjee, Seth
Teller, and Nicholas Roy. Approaching the symbol
grounding problem with probabilistic graphical models. AI
magazine, 32(4):64–76, 2011.

[Turk and Pentland, 1991] Matthew Turk and Alex Pentland.
Eigenfaces for recognition. J cognitive neurosci, 3(1),
1991.

[Vinh et al., 2009] Nguyen Xuan Vinh, Julien Epps, and
James Bailey. Information theoretic measures for cluster-
ings comparison: Is a correction for chance necessary? In
ICML, 2009.

[Wei et al., 2016] Shih-En Wei, Varun Ramakrishna, Takeo
Kanade, and Yaser Sheikh. Convolutional pose machines.
In CVPR, 2016.

[Young et al., 2016] Jay Young, Valerio Basile, Lars Kunze,
Elena Cabrio, and Nick Hawes. Towards lifelong object
learning by integrating situated robot perception and se-
mantic web mining. In ECAI, 2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1402


