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Abstract

Low rank matrix factorizations(LRMF) have at-
tracted much attention due to its wide range of ap-
plications in computer vision, such as image im-
painting and video denoising. Most of the exist-
ing methods assume that the loss between an ob-
served measurement matrix and its bilinear factor-
ization follows symmetric distribution, like gaus-
sian or gamma families. However, in real-world
situations, this assumption is often found too ide-
alized, because pictures under various illumination
and angles may suffer from multi-peaks, asymmet-
ric and irregular noises. To address these problems,
this paper assumes that the loss follows a mixture of
Asymmetric Laplace distributions and proposes ro-
bust Asymmetric Laplace Adaptive Matrix Factor-
ization model(ALAMF) under bayesian matrix fac-
torization framework. The assumption of Laplace
distribution makes our model more robust and the
asymmetric attribute makes our model more flexi-
ble and adaptable to real-world noise. A variational
method is then devised for model inference. We
compare ALAMF with other state-of-the-art ma-
trix factorization methods both on data sets ranging
from synthetic and real-world application. The ex-
perimental results demonstrate the effectiveness of
our proposed approach.

1 Introduction

Low rank matrix factorization is one of the most popular
methods for subspace learning. It uses the product of a ba-
sis matrix and a coefficient matrix under some criteria to ap-
proximate a given data matrix. Matrix factorization can be re-
garded as an efficient technique to reveal the low-dimensional
structure of the data when the underlying rank of the two fac-
tor matrices is lower than that of the original data matrix.
Under the assumption of Gaussian noises, it is natural to
utilize the Lo norm as the noise measure, which has been
extensively studied in LRMF literatures [Mitra et al., 2010;
Okatani et al., 2011]. However, these methods are sensitive
to outliers and non-Gaussian noises. In order to introduce
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robustness, the L; norm-based models have attracted much
attention [Ji et al., 2010; Shu et al., 2014]. But the L; norm
is only optimal for Laplace-like noises and still very limited
for handling various types of noises encountered in real prob-
lems. Recently, some novel models were presented to expand
the availability of LRMF under more complex noise. [Meng
and De La Torre, 2013] proposed MoG (Mixture of Gaussian)
to fit the noise and further it is extended into a full Bayesian
model by [Chen er al., 2015] and to RPCA by [Zhao et al.,
2014]. Later on, [Cao et al., 2015] assumed noise as a more
general mixture of exponential power distribution and pro-
posed a more robust PMoEP method.

Almost all of the existing methods use symmetric distribu-
tion to fit noise. However, in many cases this is just for simpli-
fying the model, and the noise is more likely to be asymmet-
ric in reality. In real images, there are different types of noise
sources [Meng and De La Torre, 2013]. First, there are cast
shadows, so the usual Lambertian surface assumption [Smith
et al., 1980] is invalid. Second, due to the camera range set-
tings there might be pixels that are saturated and there ex-
ist specular reflections (especially in people with glasses).
Third, the camera noise is amplified in the dark areas. So pic-
ture under varying illumination may suffer from multi-peaks,
asymmetric and irregular noises. All the existing methods
based on MoG can approximate an asymmetric distribution
at an expensive price. A simple situation can be considered
for clear explanation. When the noises follow single compo-
nent asymmetric distribution, MoG should first fit them with
a large component, then fit the rest with a smaller one, and so
on. This process is similar to series expansion, which leads
to infinite components. It is similar when the situation is pro-
moted to the general. So a more direct method for modeling
asymmetric noise should be considered.

In this paper, we propose a novel robust Asymmetric
Laplace Adaptive Matrix Factorization model under bayesian
matrix factorization framework. We assume the loss follows
a mixture of Asymmetric Laplace distributions. A variational
method is then devised for model inference. To the best of
our knowledge, this is the first low-rank matrix factorization
work which takes asymmetric distribution into consideration.
Experimental results on synthetic and real-world data sets
demonstrate the effectiveness of our model.

The rest of the paper is organized as follows: Section 2
provides related work regarding ALAMEF. Some preliminary
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knowledges are introduced in Section 3. The ALAMF model
and corresponding variational inference algorithm are pre-
sented in Section 4. Experimental results are shown in Sec-
tion 5. Finally, concluding marks are provided in Section 6.

2 Related Work

Improving model robustness in matrix factorization is a hot
research in machine learning for decades. Several privious
works such as [Croux and Filzmoser, 1998; Ke and Kanade,
2005] are good explorations for matrix factorization but un-
appealing for large-scale applications. Recently, [Candes
et al., 2011] proposed principal component pursuit (PCP)
and [Zhou er al., 2010] proposed stable principal compo-
nent pursuit (SPCP), which utilize the nuclear norm for nor-
malization and can be regarded as a breakthrough in this re-
search topic. [Qian er al., 2016] encodes features correlation
by Wasserstein distance to improve robustness. The convex-
ity of the L; and nuclear norms enables the application of
efficient convex program solvers [Lin e al., 2010].

There are some other efficient methods like probabilis-
tic algorithms. The most representative models for (non-
robust) matrix factorization are PMF [Salakhutdinov and
Mnih, 2007] and BPMF [Salakhutdinov and Mnih, 2008].
Based on Students t-distribution, [Lakshminarayanan et al.,
2011] proposed a robust extension of BPMF for collabora-
tive filtering. Another recent attempt is PRMF [Wang et al.,
2012] which uses the expectation-maximization (EM) algo-
rithm. The highlights of PRMF are its high efficiency and
online extension. Inspired by the work of Bayesian robust
PCA (BRPCA) [Ding ef al., 2011] and variational Bayesian
low-rank factorization (VBLR) [Babacan et al., 2012], PRMF
has been later extended to fully Bayesian settings (BRMF
and MBRMF) by [Wang and Yeung, 2013]. Subspace-
MoG [Meng and De La Torre, 2013] modeled the noise as
a MoG distribution for LRMF and was extended to MoEP
distribution by [Cao et al., 2015] and to MRPCA by [Zhao et
al., 2014]. The previous work that is most closely related to
ours are AMF [Chen et al., 2015], which is an extension from
subspace-MoG to the Bayesian framework.

3 Preliminary

3.1 Notations

We introduce some notations for probability distributions.
N (u, o) denotes the univariate Gaussian distribution with
mean y and variance o, B(a, ) the beta distribution with pa-
rameters « and (3, IG(«, 8) the inverse-gamma distribution
with shape parameter « and the scale parameter 5, Multi(0)
the multinomial distribution, GEM («) the stick-breaking
distribution, and Ray(u, o) the Rayleigh distribution with the
location parameter p and the scale parameter o.

3.2 Asymmetric Laplace Distribution

We firstly give out the definition of Asymmetric Laplace
distribution.

Definition 1. A random variable has an Asymmetric
Laplace distribution (denoted as AL(u, 0, 7)), if its proba-
bility density function is
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or alternatively:

T(1—7) [exp(TZ=£) z<pu
. — I3 2

Here, p is a location parameter, o > 0, is a scale parameter,
and 7 is an asymmetry parameter. When 7 = % the distribu-
tion degenerates to the Laplace distribution.

For computational efficiency, Asymmetric Laplace dis-
tribution is expressed as a composition of two simple
distributions, which is described as follow.

Theorem 1. Let x and a be random variables such that

(1-7) o?
tla~ Nip+ ar(l—71)" ar(l — 7'))
and a~IG(1,1)
Then
x ~ AL(p,0,7)

Theorem 1 follows from Result2 of [Wand et al., 2011]. The-
orem 1 is the footstone of our model solving. The direct use
of asymmetric Laplacian distribution in probabilistic graphi-
cal model will lead to model insolvability.

The following integral families comprise the full set of
non-analytic integrals which arise in the models considered
in this paper.

Definition 2. Non-analytic Integral Families

JT(A,B,C) = /OO zexp(Bx — Cx?)dr, 3)
0

LT (A, B,C) :/ log(z)z’exp(Bx — Cz?)dz. (4)
0
where, A > —1,—co< B < 00,C >0

[Wand et al., 2011] discusses the stable and efficient
computation of J*(A, B,C). The similar properties of
LT(A, B, C) are omitted due to limited space.

4 ALAMF

In this section, we first present the graphical model and the
generative process of our robust Asymmetric Laplace Adap-
tive Matrix Factorization(ALAMF) model. We then present
details of the model inference.

4.1 Bayesian Model

We assume that the noise follows:

Plemn) = Y Ok AL (€mn 0, 0k, %) (5)

k=1

where the mixing proportion of each AL component is ob-
tained from the stick-breaking process. As a consequence,
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Figure 1: Graph model of ALAMF

the noise entries will cluster themselves into K groups with-
out the need for a complicated selection procedure.

According to Theorem 1, we decompose Asymmetric
Laplace distribution as a composition of Gaussian distri-
bution and inverse-gamma distribution. This produces the
component si in our Graphical model. As we can see,
the new coming component s; has a forward influence on
the location parameter value (U,, and V,,) and the scale
parameter (o) of Yppn. Upn, Vi, and oy then have feedback
on s due to the iterative update in model inference. The rate
of asymmetry is controlled by asymmetric hyper-parameter
7, which is a directed impact factor on almost all the compo-
nents of our model.

The overall generative process is summarized as follows:
1. Draw component mixing proportions 6 ~ GEM («)
2. For each cluster k of noise:
e Draw variance o7 ~ IG(ag, bo)
%
3. For each dimension r of U and V(i.e. for each column of
U and V):
e Draw variance A\, ~ IG(a1,b1)
4. For each element in U and V:
o Draw Uy, Unr ~ N(0, \;)
5. For each data element y,,,,:

e Draw s ~ [G(as,bs), where ay = 1,bs =

e Draw noise cluster label z,,,, ~ Multi(6)
e Draw observation

1 2
(G =70 T

~ N (Um0 ,
Ymn (um Un. + SkT(l _ 7_) SkT(l _ 7-)

k-1
Here 0, = B > (1— ;) and S is drawn indepently from
=1
B(1, a) according to the stick-breaking construction. Based
on the generative process, the joint distribution can be ex-
pressed as:

p(U7V?Y7Z705 A?ﬂ?‘s)
=p(Y|U,V,2,0,5)p(UN)p(VIN)p(Aai, br)
p(alao, bo)p(z|8)p(Bla)p(s|as, bs) (6)
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4.2 Model Inference

Since all the distributions in our model belong to the exponen-
tial family, we can take advantage of the efficient variational
inference.

Based on the mean-field variational approach, we devise
the following variational distribution:

M N R
Q(Ua ‘/327570-7>\7ﬂ) = H Q(um) H q(’Un) H q(A?”)

m=1 n r=1

M N K
g(ox) TT T] azmn) [T a(sw)
1 m=1n=1 k=1
(N

The optimization problem of minimizing the KL diver-
gence is equivalent to maximizing the following lower bound:

L= E[lng(U,‘/,Y;Z,O',A,ﬂ,s)—lOg q(Ua V;Z,S,O})\,B)]

K

K
1T a8
k=1 k

3

®)
By solving (8), we get the update rules as follow:
Update By, 0k 2mn and si
e For fy,
G (Vs 2) o BTN (L= BT ()

It is easy to see that g, (Vk,1, Vk,2) is a beta distribution, and
Yk,1, Vk,2 are the positive real shape parameters.

Ve, = 14 Z (bmnk

(m,n)eN

K (10)
V2 = Q& + Z Z ¢mnt
(m,n)eQ t=k+1
Here ¢,k 1s defined in Eq(14).
e For o},
q(0}) o< (o) Aexp(Boy ' — Coy) (1)
where
A= 2(10 +2+ Z d’mnk
(m,n)eQ
1 T
B = (§ - T) Z ¢mnkE(ymn - um-vn.)
(m,n)€eN
C=bo+ =D gy 3" Gnnk EWn — tmvl)?
0 9 k mnkL\Ymn m-Up,.
(m,n)€eN
(12)

Three important estimators used in this paper are listed as
follows:

E(o;")=J"(A-2,B,C)/J"(A-3,B,0)
E(0;?)=J"(A-1,B,C)/J"(A-3,B,C) (13)
E(log(o; ') = LY (A—-3,B,0)/ T (A—-3,B,C)

e For z,,,,
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For convenience, we use ¢,,,; to denote the probability

k—1
Omnk < exp(E(log Br) + Z E(log(1 — )
t=1

5= ) B0 ) B (55 B i — L)
(5 = DB (07 ) B — L)
S Bl )+ Bllog(oi ) + 3 Ellog(su)
(14)
e For s;.
q(sg) o 87_1exp(—%(ozs +Bs7h (15)

where,

a=71(1-1)E(c;> Z Gk EYmn — tm.vyh.)°

(m,n)eQ
l _
6 =1+ 2 Z ¢mnk
( (m,n)eN
Z ¢'rrmk -1
(m,n)eN

(16)

It is easy to see that ¢(sy) follows generalized inverse Gaus-
sian (GIG) distribution. Three important estimators used in
this paper are listed as follows:

B(sy) = YPE 1 (VaB)
Vak, (ap)
Bllog(sw)) =10 Y2 + - log K, (v/aB)

where K, (z) is a modified Bessel function of the second
kind.

Update A\, U,,. and V,,.
e For )\,

a() o A7 T eap(~002) (18)
T
It is easy to see that ¢(A,) follows inverse-gamma distribu-
tion, where 7, 1, 7,2 are the positive real shape parameters.

M+ N
Nr1 = a1 +
2
M
Nr2 = b1 + = aa,ZE“ Yo + 010, ZE”,,
m—1 n—1

(19)
e For Up,., V.
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Algorithm 1 Variational Inference for ALAMF
Input: Data Y = {y;; }mn, compotent number K,
maximum rank R and asymmetric parameter 7
Repeat:
for each cluster k of noise do
Update Bi, 0k, dmnk and s by (10)(13)(14)(17)
Remove insignificant mixture components
end for
Update A, by (19) for each rank r
Update U,,,. and V,,. by(21)(22)
Shrink rank
until converse
Output: U,,. and V,,.

am )T (Z8) N (Upn. —am.) (20)

Each row of U follows a Gaussian distribution with mean
al and covariance ¥V, where,

K
an. =% Y Y [r(l-7)

n:(m,n)eQ k=1

]; 1)¢mnk] b;l; )

o(Un) o eap(—3 (Un. -

E(JIZZ)E(Sk)yanSmnk

1
(5~ T)E(
(21)

Sk qunk (bT bn

e =[r(1-1) Z ZE (i
n:(m,n)eQ k=1
+30) + A
(22)

where, A = diag(\)~*

The update for b,. and X is similar.

By repeating the update steps above, we finally get the es-
timation of U and V corresponding to a.,. and b,,.. The al-
gorithm of ALAMF is summarized in Algorithm 1. The de-
tails of insignificant mixture components removing and rank
shrinking in Algorithm 1 can be found in [Chen er al., 2015].

5 Experiments
In this section, we empirically compare the proposed

ALAMF model with seven state-of-the-art methods. There
are non-Bayesian methods (PMoEP [Cao er al., 2015],
CWM [Meng er al., 2013], PCP [Candes er al., 2011])
and Bayesian methods (AMF [Chen et al., 2015],

MBRMF [Wang and Yeung, 2013], VBLR [Babacan er al.,
2012], MRPCA [Zhao et al., 2014]). Note that PCP, MBRMF
and MRPCA are not designed to handle missing data, thus
we replace MRPCA with its previous version MoG [Meng
and De La Torre, 2013]. For all the experiments we have
conducted, the hyperparameters of ALAMEF are fixed without
further tuning: ag = bg = 107%,a; = by = 0.1,a = 1.

5.1 Synthetic Experiments

In this section, we follow [Chen et al., 2015; Cao et al., 2015]
and design three sets of synthetic experiments to compare the
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performance of all the above low-rank matrix factorization
methods. For each of experiment, we generate 30 ground-
truth low-rank matrices. Each of them was generated by the
multiplication of two randomly generated low-rank matrices
Ug € R?* and Vyy € RP* | ieYy = U,V Bach
element of U and V follows Gaussion distribution N(0, 1).

We add different types of noises in the non-missing en-
tries as follows: (1) Gaussian Noise: all of the entries were
corrupted with A/(0,0.5%) (2) Rayleigh Noise: all of the
entries were corrupted with Ray(—2,2) (3) Mixture Noise:
15% of the entries were corrupted with Gaussian Noise
N(0.05,0.52) , 20% are contaminated with uniform distri-
bution noise U[—5, 5] and 20% were contaminated with uni-
form distribution noise U[—2, 2]. Further, we randomly spec-
ify 20% of entries in Y, as missing data.

We denoted the noisy matrix as Y,,,. Six measures were
utilized for performance assessment:

E1= W& (Yoo —UVT)||1, B2 = [[W O (Yno = UVT) ]2,
E3 =Yy — UV |1, B4 = ||(Yy — OV 7)o,
E5 = subspace(Ug, U), E6 = subspace(Vg, V)

where U,V are the recovered low-rank matrices, and
subspace(Uy,Us) denotes the angle between subspaces
spanned by the columns of U; and Us. Note that E1 and E2
are the optimization objective function for L; and Ly norm
LRMF problems, while the latter four measures are more
faithful to evaluate whether the method recovers the correct
subspaces.

We alleviate the local optimum issue by means of the mul-
tiple random initialization strategy. For all the methods, we
first run with 20 random initializations for each generated ma-
trix and then select the best result with respect to the objec-
tive value. Finally, we select the initialization with the largest
likelihood value as the result for this generated matrix. The
performance of each method on each simulation is evaluated
as the average results over the 30 random generated matrices
in terms of the six measures, and the results are summarized
in Table 1. For all the methods, we set the rank of the low-
rank component to 8 and apply the random initialization strat-
egy to U and V. For ALAME, we choose asymmetric parame-
ter 7 uniformly from 0.2 to 0.8 and record the corresponding
results on different datasets. Specifically, ALAMF degener-
ates as symmetric form when 7 = 0.5, and then we denote it as
LAMF. Finally, we use 6 measures to show the performance
of ALAMF whose 7 makes the best general performance.

From Table 1, when given a simple noise type (Gaussian),
ALAMF achieves the best when 7 = 0.5, and it shares the
same result with LAMF. In this case, ALAMF(LAMEF) has
a little improvement from previous methods. When given
asymmetric noise or complex noise, ALAMF and LAMF
perform much better in most measures than other methods,
which means our model is extremely adept at dealing with
asymmetric distribution. What’s more, ALMF can still have a
good result even when 20% of the input entries are corrupted.

5.2 Text Removal

In this part, we follow [Wang and Yeung, 2013] and [Chen
et al., 2015] to conduct a text removal simulation experiment.
This task is to remove some text embedded in an image which
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(e) CWM

(f) PCP (g) VBLR  (h) MBRMF

Figure 2: Background and foreground masks recovered by
different algorithms.

has a certain pattern as background. The size of the clean
image is set to 256 x256 with the corresponding data matrix
of rank 10. As the true rank is often unknown beforehand in
real-world data, we set the initialized rank of the initial U and
V' to be twice of the true rank for all the algorithms. For all
the methods, we first run with 20 random initializations and
then select the best result with respect to the objective value.
For our ALAME, 7 is uniformly chosen from 0.2 to 0.8, and
the best result is reported.

From foreground (mask) it is obviously that ALAMEF,
AMF, MRPCA and MBRMF are better than other meth-
ods. Furthermore, the results on the background show that
ALAMF does the best job in denoising. According to Table
2, which is the quantitative analysis, ALAMF has the highest
RE record and has a competitive result on AUC.

5.3 Face Reconstruction Experiments

Similar to [Meng er al., 2013], we study a real application
using face images captured under varying illumination. We
generate some relatively large datasets and some relatively
small datasets in the experiments.

Firstly, a larger dataset was built by using the first and fifth
subsets of Extended Yale B datasets(Georghiades, Belhumeur
and Kriegman 2001;Basri and Jacobs 2003). For each person,
we use all the 64 images in the datasets. We use the original
face as input and compare all the eight methods.

Further, for a smaller dataset, we downsample the im-
ages to 48x42 and set (0%,10%), (10%,10%), (20%,10%),
(30%,10%) of the randomly selected pixels of each image in
the first and fifth subsets as (missing entries and salt-pepper
noise), respectively. We random sample 16 faces of each sub-
set and then two data matrices of dimension 2016x 16 are
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ALAMF LAMF AMF PMoEP MRPCA/MoG CWM VBLR PCP MBRMF
Gaussian Nosie
El - 4.58e+2/3.58e+2 4.61e+2/3.58e+2 3.98e+2/2.87e+2 4.59¢+2/2.82e+2 4.15e+2/3.14e+2 4.57e+2/3.59e+2 4.23e+2 4.01e+2
E2 - 1.32e+2/1.02e+2 1.34e+2/1.01e+2 9.99e+1/6.59e+1 1.33e+2/6.36e+1 1.38e+2/1.05e+2 1.74e+2/1.01e+2 1.42e+2 1.23e+2
E3 - 2.13e+1/3.04e+1 2.47e+1/3.21e+1 6.70e+1/2.10e+2 2.52e+1/9.72e+1 5.46e+1/8.10e+1 6.44e+1/3.28e+1 7.56e+1 5.09e+1
E4 - 1.79e+2/2.11e+2 1.92e+2/2.17e+2 3.18e+2/4.07e+2 1.95e+2/3.71e+2 2.86e+2/3.38e+2 3.10e+2/2.19e+2 3.38e+2 2.79%e+2
E5 - 4.45e-2/5.54e-2 5.22¢-2/5.99e-2 5.08e-2/6.33e-2 5.25e-2/5.82e-2 5.86e-2/6.23e-2 8.47e-2/5.82e-2 - 5.89%-2
E6 - 4.23e-2/6.15e-2 4.89¢-2/5.80e-2 4.78e-2/6.24e-2 4.90e-2/5.86e-2 5.86e-2/6.51e-2 8.09¢-2/5.87e-2 - 5.71e-2
Rayleigh Noise
El 2.53e+3/1.02e+3 2.36e+3/7.40e+2 2.38e+3/9.37e+2 1.98e+3/9.15e+2 2.55e+3/7.49e+2 2.04e+3/7.97e+2 2.53e+3/9.88e+2 2.16e+3 1.99e+3
E2 4.31e+3/8.62e+2 3.61e+3/6.71e+2 3.63e+3/6.99¢+2 2.90e+3/5.07e+2 4.48e+3/4.48e+2 3.65e+3/7.27e+2 5.46e+3/8.02e+2 3.96e+3 3.66e+3
E3 5.93e+2/2.04e+2 1.12e+3/2.62e+2 1.06e+3/3.37e+2 1.70e+3/7.51e+2 6.36e+2/8.64e+2 2.01e+3/5.85e+2 1.84e+3/2.54e+2 1.55e+3 2.20e+3
E4 9.44e+2/5.41e+2 1.09e+3/6.24e+2 1.29e+3/7.10e+2 1.60e+3/1.06e+3 9.73e+2/1.08e+3 1.75e+3/9.21e+2 1.65e+3/6.15e+2 1.54e+3 1.84e+3
E5 2.48e-1/1.46e-1 2.43e-1/1.53e-1 2.67e-1/1.50e-1 2.46e-1/1.49e-1 2.47e-1/1.51e-1 3.23e-1/1.57e-1 4.90e-1/1.60e-1 - 2.99%e-1
E6 2.41e-1/1.77e-1 2.59-1/1.51e-1 2.66e-1/1.80e-1 2.56e-1/1.49e-1 2.92e-1/1.52e-1 3.31e-1/1.71e-1 5.07e-1/1.65e-1 - 2.88e-1
Mixture Noise
El 1.83e+3/1.49e+3 1.83e+3/1.49e+3 1.82e+3/1.51e+3 1.79e+3/1.48e+3 1.83e+3/1.42e+3 1.77e+3/1.38e+3 1.83e+3/1.74e+3 1.83e+3 1.72e+3
E2 4.85¢+3/9.27e+2 8.50e+2/2.87e+3 4.82e+3/3.96e+3 4.78e+3/3.60e+3 4.82e+3/1.92e+3 4.09e+3/3.02e+3 4.80e+3/3.26e+3 4.53e+3 4.27e+3
E3 9.01e-1/2.09e+1 9.55e-1/2.54e+1 6.24e+0/2.52e+1 3.80e+2/9.50e+2 6.43e+0/6.89¢+3 4.59e+2/9.87e+2 1.68e+1/9.80e+2 2.71e+2 1.66e+2
E4 7.16e+0/3.45e+1 7.60e+0/4.47e+1 1.51e+1/4.64e+1 5.08e+2/9.51e+2 2.07e+1/2.15e+3 6.56e+2/9.96e+2 5.08e+1/1.21e+3 5.11e+2 3.73e+2
E5 1.65e-2/5.97e-2 1.70e-2/1.43e-2 2.39e-2/1.42e-2 9.15e-2/1.49e-1 2.35e-2/3.329e-1 1.42¢-1/1.94e-1 5.33e-2/3.28e-1 - 8.01le-2
E6 9.07e-3/3.02e-2 1.19e-2/7.28e-2 2.33e-2/9.22e-2 8.38e-2/1.53e-1 2.35e-2/3.249e-1 1.52e-1/1.96e-1 4.16e-2/3.12e-1 - 8.48e-2

Table 1: Performance evaluation on synthetic data. For each item, results with full matrices are showed on the left of slash
and results with missing data are showed on the right. The best results in terms of the six criteria are highlighted in bold. The
best result of ALAMF under Gaussian noise is observed when 7 is set to 0.5. We omit the result of ALAMEF in this situation,
because it shares the same result with LAMEF. Notice that the six measures on ALAMEF share the same 7 for each kind of noise.

ALAMF AMF PMoEP MRPCA CWM VBLR PCP MBRMF
AUC  0.9956 0.9958 0.9840 0.9829 0.9759 0.9867 0.9823  0.9949
RE 0.0671 0.0688 0.1717 0.0886 0.1569 0.1448 0.1102 0.0740

Table 2: Comparison of different methods on text removal
simulation experiment.

Figure 3: Face shadow removal results. Each of the nine
groups from left to right shows the original face and those re-
covered by ALAMF, AMF, PMoEP, MRPAC, CWM, VBLR,
PCP and MBRMF.

Figure 4: Face shadow removal results with input corrupted.
Each of the seven groups from left to right shows the original
face and those recovered by ALAMF, AMF, PMoEP, MoG,
CWM and VBLR. The number of missing entities is increas-
ing from top to bottom.
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formed. Since only ALAMF, AMF, PMoEP, MoG, CWM
and VBLR are claimed to be able to handle missing data, we
give the result of the six algorithms.

In Figure 3 and Figure 4, we show the result of all the com-
pared method on large face datasets and small datasets. We
set the rank to 8 and adopt random initialization strategy for
all methods. For our ALAMEF, 7 is uniformly chosen from 0.2
to 0.8, and the best result is reported.

According to figure 3, MRPCA, CWM, PCP and MBRMF
still have some residual shadow and VBLR suffers from los-
ing detail information of faces. It is hard to distinguish
ALAMF, AMF, PMoEP by naked eyes, and all of them can
not only remove shadow, but also keep the details of faces.

Moreover, on more challenging small datasets, we can ob-
serve from figure 4 that from top to bottom, PMoEP, MoG,
CWM and VBLR can not achieve satisfactory results on re-
covering images with the increasing of missing data. How-
ever, ALAMF and AMF perform much better in most cases
and ALAMEF can be in the lead when the noise is stronger.

6 Conclusion

In this paper, we propose a novel robust non-parametric
Bayesian method for matrix factorization. Firstly, due to the
use of Laplace distribution assumption on the residual error,
our model is more effective. Secondly, asymmetric distribu-
tion is a better fit to noise in real-world, which makes our
method more reasonable and adaptable. What’s more, the de-
composability of Asymmetric Laplace distribution into two
simple distributions brings solvable model inference.
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