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Abstract

Mixture of regressions (MoR) is the well-
established and effective approach to model discon-
tinuous and heterogeneous data in regression prob-
lems. Existing MoR approaches assume smooth
joint distribution for its good anlaytic properties.
However, such assumption makes existing MoR
very sensitive to intra-component outliers (the noisy
training data residing in certain components) and the
inter-component imbalance (the different amounts
of training data in different components). In this pa-
per, we make the earliest effort on Self-paced Learn-
ing (SPL) in MoR, i.e., Self-paced mixture of re-
gressions (SPMoR) model. We propose a novel self-
paced regularizer based on the Exclusive LASSO,
which improves inter-component balance of train-
ing data. As a robust learning regime, SPL pursues
confidence sample reasoning. To demonstrate the
effectiveness of SPMoR, we conducted experiments
on both the sythetic examples and real-world ap-
plications to age estimation and glucose estimation.
The results show that SPMoR outperforms the state-
of-the-arts methods.

1 Introduction
Nonlinear regression is a longstanding problem in artificial
intelligence community with enormous applications. The fun-
damental approaches extract feature representations from the
data and learn a nonlinear function that maps the input features
to the outputs, which fall into two main categories: (1) the uni-
versal approaches and (2) the divide and-conquer approaches.

Regression methods proposed in early ages are mainly the
universal approaches. These methods fit data with universal
nonlinear functions to whole data space such as the kernel func-
tion in Kernel Support Vector Regression [Guo et al., 2009]
and Rectifier functions used in neural networks. These ap-
proaches can effectively improve the regression performance
when facing the non-smooth data collection. However, when
dealing with the piecewise continuous and heterogeneous data,
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Figure 1: Inter-component imbalance and intra-component outliers
in Mixture of Regression (MoR) approaches. Standard MoR cannot
learn accurate regressors (denoted by the dashed lines). By introduc-
ing a novel self-paced scheme, our SPMoR approach (denoted by
the solid lines) selects balanced and confident training samples from
each component, while prevent learning from the outliers throughout
the training procedure.

they will be inevitably biased by data distribution: low re-
gression error in densely sampled space while high error in
everywhere else.

For addressing the issues of the data discontinuity and
heterogeneity, the divide-and-conquer approaches were pro-
posed lately. The core idea is to learn to combine multiple
local regressors. For instance, the hierarchical-based [Han
et al., 2015] and tree-based regression [Hara and Chellappa,
2014] make hard partitions recursively, and the subsets of sam-
ples may not be homogeneous for learning local regressors.
While Mixture of Regressions (MoR) [Jacobs et al., 1991;
Jordan and Xu, 1995] distributes regression error among local
regressors by maximizing likelihood in the joint input-output
space. These approaches reduce overall error by fitting re-
gression locally and reliefs the bias by discontinuous data
distribution.

Unfortunately, the aforementioned approaches still cannot
achieve satisfactory performance when applying in some real-
world applications. The main reason is that these approaches
tend to be sensitive to the intra-component outliers (i.e., the
noisy training data residing in certain components) and the
inter-component imbalance (i.e., the different amounts of train-
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Table 1: A brief summarization of the properties of the Standard LASSO, Group LASSO, and Exclusive LASSO.

Standard LASSO Group LASSO Exclusive LASSO
Norm `1 `2,1 or `0.5,1 `1,2
Property Global sparsity Inter-group sparsity Intra-group sparsity and inter-group non-sparsity
Implication in SPL Selecting competing Selecting samples from Selecting competing (confident) samples

(confident) samples diverse groups from diverse groups
Reference [Kumar et al., 2010] [Jiang et al., 2014b; Zhang et al., 2017] OURS

ing data in different components), which, however, happens
to be two inherent properties of the exotic nature of the real-
world data, i.e., nonuniform sampled and noisy (see Figure 1).
For example, in the existing MoR approaches [Huang and
Yao, 2012; Young and Hunter, 2010], regressors learnt from
the components with more training data tend to dominant the
other regressors in estimating the final output. In addition, re-
gressors learnt with noisy training data tend to generate noisy
mapping. These will inevitably prevent the learnt regression
model from reaching to the global optimum.

To solve these two folds of problems, we make the earliest
effort to introduce the self-paced learning (SPL) mechanism
into the investigated regression problem and develop a novel
Self-paced Mixture of regressions (SPMoR) model. The in-
tuition behind SPL [Kumar et al., 2010] can be explained
in its analogous to human education. A pupil is supposed
to understand elementary algebra before he or she can learn
more advanced algebra topics. In the past few years, the ef-
fectiveness of such learning regime has been validated in a
number of tasks, like event detection [Jiang et al., 2014a]
and co-saliency detection [Zhang et al., 2017]. SPL is essen-
tially a robust learning regime: starting with easier aspects
of a certain task and then gradually taking more complex
examples into consideration, while the noisy examples are
prevented from being used throughout the learning procedure.
Consequently, it can be naturally used to screen the outliers
during the learning procedure and thus address noisy data
in regression. Notice that [Nguyen and McLachlan, 2016;
Song et al., 2014; Basso et al., 2010; Lin, 2010] have also
made efforts to build robust mixture models by using Laplace
or t distribution, which do not consider conditional mixing pro-
portions nor expand to the hierarchical framework. Compared
with them, our SPMoR model overcome the sensitivity to the
noisy data by introducing the effective self-paced regularizer
rather than using certain types of data distribution.

Moreover, SPL is very flexible in designing task-specific
regularizer. The most basic self-paced regularizer is the
Standard LASSO [Kumar et al., 2010], i.e., the `1 norm,
which favors selecting sparse but competing training sam-
ples, i.e., samples with small training loss or high confi-
dence. More recently, [Jiang et al., 2014b] and [Zhang
et al., 2017] have additionally introduced the negative `2,1
and negative `0.5,1 norm into the self-paced regularizer. As
two kinds of the Group LASSO [Yuan and Lin, 2006], `2,1
and `0.5,1 norm enforce the sparsity on variables at an inter-
group level, where variables from different groups are com-
peting to survive. Thus, their counter-part would discour-
age the inter-group sparsity and thus encourage the leaner
to select diverse training samples residing in more groups.
In this paper, we propose a novel self-paced regularizer,

which is based on the Exclusive LASSO [Kong et al., 2014;
Campbell and Allen, 2015]. Specifically, the Exclusive
LASSO is formed by the `1,2 norm, which encourages intra-
group competition but discourages inter-group competition.
The intra-group competition (sparsity) is achieved via `1 norm,
while inter-group non-sparsity, i.e., diversity, is achieved via
`2 norm. Consequently, it can be naturally used to build the
robust mixture of regressions mechanism: On one hand, the
encouraged intra-group competition will prevent the learner
from using the outlier data within each component. On the
other hand, the discouraged inter-group competition will in-
duce the learner to select balanced training data from different
components. A brief summarization of the properties of the
Standard LASSO, Group LASSO, and Exclusive LASSO is
shown in Table. 1. In sum, this paper present three major
contributions:

• The earliest effort to use SPL to MoR, which effec-
tively address the intra-component outlier and the inter-
component imbalance problem of the existing MoRs.
• A novel Exclusive LASSO based self-paced regularizer,

which simultaneously encourages the intra-group compe-
tition and discourages inter-group competition.
• Significantly superior performance than other regression

models and self-paced regulaizers on two real-word ap-
plications. To our knowledge, SPMoR achieves the best
performance ever reported in literature on MORPH and
NHANES datasets.

2 Mixture of Regressions
The standard MoR consists of a fully conditional mixture
model where both the gating functions and the experts, are
conditional on input features. Specifically, given xi ∈ <dx

(the training sample) and yi ∈ <dy (the output vector), MoR
splits the n pairs of samples {xi,yi}s into k components and
learn a weighted linear regressor for each component.

The total probability of generating yi from input xi is the
mixture of the the probabilities of generating yi from each
component density, where the gating function provides multi-
nomial probabilities. The conditional density of MoR is com-
puted by summing over all local regressors:

p(yi|xi) =
k∑

j=1

g(x̂i,wj)φ(yi|βT
j x̂i,σ

2
j ). (1)

where β = {β1,β2, · · · ,βk}, w = {w1,w2, · · · ,wk}, σ =
{σ1,σ2, · · · ,σk}, wj is the gating function parameter, βj ∈
<dy×(dx+1) is the regression coefficients, x̂ = [1,x], g(·) is
the gating function, e.g., softmax function, which is positive
and sum to 1, φ(·) is a density function of regression error,
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e.g., Gaussian errorN (0,σ2). The output yi is estimated as a
weighted combination over all local regressors:

yi =
k∑

j=1

ew
T
j x̂i∑k

p=1 e
wT

p x̂i
βT
j x̂i. (2)

The MoR model parameters are estimated by maximizing
the observed data log-likelihood via using the EM algorithm.
The observed data log-likelihood for the parameter vector is

L = log
n∏

i=1

p(yi|xi),

=
n∑

i=1

log
k∑

j=1

[g(x̂i,wj)φ(yi|βT
j x̂i,σ

2
j )].

(3)

For optimizing (3), the E-Step at each iteration of the EM
algorithm requires the calculation of the following posterior
probability zij that the sample (xi,yi) belongs to the jth
expert, given a parameter estimation wj ,βj and σj . Then,
the M-step calculates the parameter update wj ,βj and σj

by maximizing the expected complete-data log-likelihood for
each expert where zij is fixed.

3 SPMoR
Without loss of generality, we introduce the method to ob-
tain SPMoR by integrating the proposed self-paced regular-
izer with the standard MoR model. By using the proposed
method, we can also integrate the self-paced regularizer with
the stronger hierarchical mixture of experts model [Jordan and
Jacobs, 1994], which obtains the SPMoR+ model by using
Bayes’ rule 1.

3.1 The Object Function
We establish a novel SPMoR framework by introducing the Ex-
clusive LASSO-based self-paced regularizer into the learning
objective:

E =
n∑

i=1

log
k∑

j=1

[g(x̂i,wj)φ(yi|βT
j x̂i,σ

2
j )]

vij − λ||V||21.

(4)
where vij ∈ {0, 1} is the learning weight of each training
sample, which represents whether the sample xi has been se-
lected by self-paced learning for jth component. ||V||21 =∑k

j=1(||vj ||1)2 is the Exclusive LASSO, which is a combina-
tion of the `1 and `2 norms. Specifically, the Exclusive LASSO
is originally used for variable selection, where the structured
variable selection problem can be phrased as a constrained op-
timization problem where loss function is minimized subject
to a constraint that ensures sparsity and selects at least one
variable from every group. Inspired by this, we introduce the
Exclusive LASSO to perform structured sample selection in
learning MoR. It seeks to accurately learn the mixture model
by using a set of “easy” samples from each component rather
than using all the training data. “Easy” samples in this case

1The joint posterior probability is the product of the conditional
posterior probabilities along path from the root to the experts in ( 1).

Algorithm 1 SPMoR Training Algorithm

Require: Given training samples xi,yi (i = 1, · · · , n):
1. Initialize the number of the regression k.
2. Do k-means clustering on {xi,yi}s to get k subsets, and
initialize zij according to cluster label, i.e. zij = 1 if xi is
assigned to the jth cluster, otherwise zij = 0.
3. Use samples in each subset to initialize the gate function
parameters wj , and local regressor parameters βj , and σ2

j .
4. implement the generalized EM algorithm:
for each iteration do

a. Calculate the zij in E-Step (Eq. 5);
b. Update thevij , wj , βj , and σ2

j in M-Step;
for each component do

(1. Fix parameter zij , wj , βj , and σ2
j , compute the

log-likelihood value lij for xi by Eq. 8, and sort lij in
descent order;
(2. For all r = 1, . . . , n, if lrj ≥ λ(2r − 1), then set
vrj = 1, otherwise, vrj = 0.
(3. Fix parameter zij and vij , update parameters wj ,
βj , and σ2

j by Eq. 12, 13 and 14.
end for

end for
5. Repeat until convergence.

refers to the samples having high likelihood value. Basically,
when λ is small, only the samples with high likelihood, gate
probability is close to 1, and density is larger than 1, will
be chosen as training data. Thus, the learning objective (4)
can on one hand help improving the balance of the selected
training data among different components, and on the other
hand, screening most of the outliers in each component.

Notice that (4) has some distinct properties as compared
with the existing SPL formulations [Jiang et al., 2014b; Zhang
et al., 2017]. Specifically, in our formulation, by setting λ to 0,
i.e., only introducing the sample weight parameter V without
any self-paced regulzier, the SPMoR would already enable the
learner to select “easy” training samples, i.e., the samples with
φ(yi|βT

j x̂i,σ
2
j ) > 1. However, in [Jiang et al., 2014b; Zhang

et al., 2017], the learner won’t have such capacity and it won’t
select any training sample in this case. In addition, instead of
obtaining the data group solely based on clustering [Jiang et
al., 2014b] or using physical constraint [Zhang et al., 2017],
we propose a unified framework to jointly infer the expert
components as the data groups and learn the local regressors
in each components.

3.2 The Optimization
To maximize log-likelihood function (4), the generalized EM
algorithm starts from an initial parameter vector and alternates
between E-step and M-step until convergence. The E-step
computes the expected completed data log-likelihood and the
M-step maximizes it. The pseudo code of the SPMoR training
algorithm is summarized in Algorithm 1.

E-Step
Similar with the standard MoR, we compute the posterior
probability zij of function 4 in the E-step. Specifically, given
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the initial parameters, we can obtain

zij =
vijg(x̂,wj)φ(y|βT

j x̂,σ
2
j )∑k

h=1 vijg(x̂,wh)φ(y|βT
h x̂,σ

2
h)
. (5)

where vij indicates that whether the sample is chosen by self-
paced learning. If vij = 0 for all the components, then the
sample is eliminated from training procedure. If all vij = 1, it
is the same as the function of the conventional MoR.

M-step
In M-step, we fix zij and utilize the alternative convex search
(ACS) to alternatively optimizes w,β,σ and V.

Updating Self-paced Parameter:
Firstly, we fix the parameters w,β,σ of the gating function

and local regressors to optimize V as following
V? = argmax

V
E(V),

= arg max
vij∈{0,1}

k∑
j

n∑
i=1

vij [zij log g(x̂,wj)

+ zij log φ(y|βT
j x̂,σ

2
j )]− λ

k∑
j=1

(||vj ||1)2.

(6)

where V ∈ <n×k, each element vij in the matrix indicates
the sample xi’s “easiness” in jth component. Here, “easiness”
means the confidence of the sample, which indicates whether
the sample should be used for training. By contrast, zij indi-
cates the probability that sample belongs to jth component.

It is easy to see that the original problem (6) can be
equivalently decomposed as a series of the following sub-
optimization problems (j = 1, . . . , k):

v?
j = arg max

vj∈{0,1}
E(vj),

= arg max
vj∈{0,1}

n∑
i=1

vij lij − λ(
n∑

i=1

|vij |)2.
(7)

where
lij = zij log g(x̂i,wj) + zij log φ(yi|βT

j x̂i,σ
2
j ). (8)

For r = 1, . . . , n, let’s denote
vj(r) = arg max

vj ∈ {0, 1}
||vj ||0 = r

E(vj(r)), (9)

which means that vj(r) is the optimum of function (7) if it is
further constrained to be with r nonzero entries. It is then easy
to deduce that

v?
j = argmax

vj(r)
E(vj(r)),

= arg max
vj∈{0,1}

r∑
i=1

vij lij − λr2.
(10)

Then let’s calculate the difference between any two adjacent
elements in the sequence E(vj(r)).

diffr+1 = (

r+1∑
i=1

vij lij − λ(r + 1)2)− (

r∑
i=1

vij lij − λr2),

= l(r+1)j − λ(2r + 1).
(11)

Here, we sort the log-likelihood values in the jth component
in descent order. Then, lij is a monotonically decreasing
sequence with r, while 2r + 1 is a monotonically increasing
sequence. So diffr is a monotonically decreasing sequence.
When diffr → 0 and diffr > 0, we can get the function
E(vj(r)) is increasing more and more slowly. When diffr <
0, the log-likelihood value will be decreasing. Therefore, in
function (11) E(vj(r)) will get the maximum value when
diffr = 0. Finally, we can get the optimal solution for vj in
jth component. For all r = 1, . . . , n, if lrj > λ(2r − 1), then
vrj = 1; otherwise, vrj = 0.

Updating MoE parameter: After updating the self-paced
parameter V, we can fix vij and zij to update the MoE pa-
rameters w,β and σ. Here, we use Iteratively Reweighted
Least Squares (IRLS) algorithm [Jordan and Jacobs, 1994] to
update the gating function and experts function:

1) For the jth gating function, the gradient of any sample
xi is obtained by:

∇wj =
n∑

i=1

vij(zij − g(x̂i,wj))x̂i. (12)

2) For the jth regression coefficients, the gradient is ob-
tained by:

∇βj =

n∑
i=1

vijzij(yi − βT
j x̂i)x̂i, (13)

and the corresponding variance σj is obtained by:

σj =

∑n
i=1 vij(yi − β

T (t+1)
j x̂i)

2zij∑n
i=1 vijzij

. (14)

Given a test input xt ∈ <dx , the output of SMMR, yt ∈
<dy , is computed as (15).

yt =
k∑

j=1

ew
T
j x̂t∑k

p=1 e
wT

p x̂t
βT
j x̂t. (15)

4 Experiments
4.1 Simulation
We conducted simulation experiments in two settings to
demonstrate the effectiveness of the proposed algorithm.

Setting 1: In this experiment we mainly examine the robust-
ness of the proposed model to outliers by comparing with the
standard MoR and another two existing robust MoR methods.
Specifically, we followed the same settings with [Chamroukhi,
2016] to generate the simulated data: we simulated 500 obser-
vations from a k = 2 component MoR with (1), where the
parameter components were w1 = (0, 10)T , w2 = (0, 0)T ,
β1 = (0, 1)T , β2 = (0,−1)T and σ1 = σ2 = 0.1. The
feature xi was simulated uniformly over interval (-1, 1). Out-
liers (0% - 5% of 500 observations) were also generated by
simulating xi uniformly over the interval (-1,1), while setting
y = −2. To assess robustness, the mean squared error (MSE)
between each component of the true parameter vector and the
estimated one, were averaged on 100 trails and reported in
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Table 2: MSE between each component of the estimated parameter vectors of four models and the true one for 500 data points.

Method 0% 1% 2% 3% 4% 5% Avg.
MoE [Jacobs et al., 1991] 0.000178 0.001057 0.001241 0.003631 0.013257 0.028966 0.008055
LMoE [Nguyen and McLachlan, 2016] 0.000144 0.000389 0.000686 0.000153 0.000296 0.000121 0.000298
TMoE [Chamroukhi, 2016] 0.000168 0.000566 0.000464 0.000221 0.000263 0.000045 0.000288
SPMoR(ours) 0.000091 0.000269 0.000277 0.000202 0.000112 0.000101 0.000175

Table 2. As it can be observed, the parameter estimation error
of our method (SPMoR) can stay in relative smaller values,
which demonstrates the robustness of the proposed algorithm
outperforms the existing robust MoR methods.

Setting 2: In this experiment, we subjectively evaluated the
effectiveness of the proposed algorithm. The data used for this
simulation were generated basically following the same way
as in the Setting 1, expect for two components were generated
with different amount of observations and variances. The
experimental results are shown in Figure 2, from which we
can observe that due to the intra-component outliers and the
inter-component imbalance, the initial regressors as well as
the standard MoR cannot fit to the data well. Whereas along
the learning iteration, our algorithm (SPMoR) can gradually
revise the local regressors by inferring the reliable training
data from each component (i.e., the red/green dots in Figure 2).
Finally, the regression result of our algorithm converges to the
solution that is close to the ground-truth.

As can be seen from Figure 2, with a feasible λ, it seeks to
select more even set of “easy” samples from each component.
Specifically, in each iteration, it prefers to select the confi-
dant samples which are the easy-separable points with small
regression-errors. So the posterior probabilities zij for the se-
lected samples tend to be equal to 1, which makes the variance
σj for each component is similar and small. Consequently,
the learner tends to select samples within similar and small
bandwidth from each component (shown as the red/green dots
in the Figure 2), which leads to the increase of the balance of
the selected training data.

4.2 Age Estimation
Given a collection of human face images, the goal is to de-
termine the specific ages of the subjects shown in the corre-
sponding face images, solely based on the image content. The
task is very challenging due to the complex pattern structure,
which not only caused by intrinsic factors, e.g. genetic factors,
but also by extrinsic factors, e.g. expression, and environment.

Dataset: We conducted experiments on the most fre-
quently used Longitudinal Morphological Face Database
(MORPH) [Ricanek and Tesafaye, 2006] database, which con-
tains 55,132 face images from more than 13, 000 subjects. The
ages of the subjects range from 16 to 77 with a median age
of 33. The faces are from different races, including African,
European, Hispanic, Asian, Indian, et al.

Experimental settings: We used the 4,376 BIF fea-
tures [Guo et al., 2009] 2 to represent each image and fol-
lowed [Geng et al., 2013] to reduce the feature dimension
to 200 by using the marginal Fisher analysis. Note that both
SPMoR and SPMoR+ used softmax in partition and linear

2thank Dr. Guodong Guo for providing the BIF features of the
MORPH database.

Table 3: Comparison with the state-of-the-art age estimation methods
on the MORPH dataset. The smaller Mean Absolute Error indicates
the better performance.

Method Mean Absolute Error
CPNN [Geng et al., 2013] 4.87
CCA [Guo and Mu, 2013] 4.73
KPLS [Guo and Mu, 2011] 4.43
LSVR [Guo et al., 2009] 4.31
OHRank [Chang et al., 2011] 3.82
HSVR [Han et al., 2015] 3.60
SPMoR+(ours) 3.55

local regressors. In SPMoR, we set k to 9, and λ to 1e-05.
In SPMoR+, we set k to 8, and λ to 1e-05. The SPMoR+
approach will be converged after 70 iterations, The running
time of our method is 565 seconds, which is faster than HME
which needs 48 iterations but costs 589 seconds.

In our experiment, we compared with the six state-of-the-
arts and four baseline models (see Table. 3 and Table. 4 for
concrete references). All the comparisons were based on the
same BIF feature and followed the same experimental proto-
cols: randomly dividing the whole dataset into two parts: 80%
for training and the other 20% for test, and repeating 30 ran-
dom trails. Next, in the first run, the optimal hyper-parameters,
including k and λ, were obtained by using grid-search with
tenfold CV on the training set. To ensure the fair performance
of the trained model, another 29 runs were conducted with
the same parameters. All results were evaluated by Mean
Absolute Error (MAE).

Results: The comparison results with the state-of-the-art
age estimation on the MORPH dataset were reported in Ta-
ble 3, from which we can observe that the proposed SPMoR+,
i.e.,the “ours” shown in the table, can obtain more promising
performance. Specifically, compared with the universal non-
linear regression methods, such as KPLS [Guo and Mu, 2011]
and LSVR [Guo et al., 2009], our regression model was learnt
in a divide-and-conquer fashion, which can better address the
issues of the data heterogeneity. While, compared with the ex-
isting divide-and-conquer nonlinear regression methods, such
as HSVR [Han et al., 2015], our regression model was learnt
under the guidance of a novel self-paced learning regime,
which can further address the issues of the intra-component
outliers and the inter-component imbalance of the data. For
evaluating the sensitivity of the parameters on SPMoR+, we
firstly fix k to 4, and set lambda to 1e-05,1e-04 and 1e-03. The
corresponding MAEs obtained on MORPH dataset are 3.67,
3.88, 3.94. Then we set k to 4 and 8, and fix lambda to 1e-05.
The obtained MAEs are 3.67 and 3.55.

To further demonstrate the effectiveness of the proposed
self-paced regularizer, we reported the comparison results with
four baseline models as in Table. 4. The comparison between
MoE and SPMoR as well as the comparison between HME
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(a) Initialization
C1: 330; C2: 170

(b) Iteration 2: 79 Selected
C1: 43/330; C2: 36/170

(a) Iteration 20: 282 Selected
C1: 146/330; C2: 136/170

(a) Iteration 200: 329 Selected
C1: 190/330; C2: 139/170

Figure 2: Visualization of SPMoR results for inter-component imbalance problem. (a) The black lines denote the initial coefficients of
regressors. The red and green circles denote data points of two components. The blue circles denote the outliers. (b), (c) and (d) show the
learning results on iteration 2, 20 and 200. The red dots and green dots indicate the selected samples from two components by SPMoR, and
the digits below show the amount of selected samples from each component. The gray lines denote the ground-truth, and the blue lines are
estimated by normal MoR. (Best viewed in color).

Table 4: Comparison with the baseline methods for age estimation
on the MORPH dataset.

Method Mean Absolute Error
MoE [Jacobs et al., 1991] 3.83
HME [Jordan and Xu, 1995] 3.69
HME+`1 [Kumar et al., 2010] 3.65
HME+`2,1 [Jiang et al., 2014b] 3.62
SPMoR(ours) 3.76
SPMoR+(ours) 3.55

and SPMoR+ demonstrate that introducing the proposed self-
paced regularizer can significantly improve the performance of
the corresponding base regression model. While, the compari-
son among HME+`1 [Kumar et al., 2010], HME+`2,1 [Jiang et
al., 2014b], and SPMoR+ demonstrate the superior capability
of the proposed Exclusive LASSO-based self-paced regular-
izer as compared with the existing ones.

4.3 Glucose Estimation
Given a collection of cohort data, the goal is to estimate the
Glycated Hemoglobin HbA1c [Bennett et al., 2007], which
can reflect the level of glucose [Vijayakumar et al., 2017] for
undiagnosed type 2 Diabetes patients.

Dataset: We conducted experiments on the popular 2009-
2014 National Health and Nutrition Examination Survey
(NHANES) dataset [Zipf et al., 2013], which is the cross-
sectional data and the ground-truth HbA1c data were publicly
available. The amount of all available data is 8,271. In spe-
cific, 15 features of NHANES data have been included into
the model under routine health examination through a ques-
tionnaire on health behavior and clinical measurements.

Experimental settings: In this experiment, we compared
our approach with 6 baseline models under the same protocol
of Age Estimation. We randomly shuffled the dataset 100
times, and divided the data into two parts: 80% for training
and the other 20% for test. All the results were evaluated by
Mean Squared Error (MSE) and the Standard Deviation (S.D.).
In SPMoR, we set k to 5, and λ to 1e-05. In SPMoR+, we set
k to 16, and λ to 1e-04.

Results: The experimental results on the NHANES dataset
were shown in Table 5. From which we can observe that the
proposed SPMoR+ obtains the most state-of-the-art perfor-

Table 5: Comparison with the baseline methods for glucose estima-
tion on the NHANES dataset.

Method MSE± S.D.
Support Vector Regression 0.510± 0.02
Gaussian Mixture Regression 0.338± 0.01
MoE [Jacobs et al., 1991] 0.349± 0.01
HME [Jordan and Xu, 1995] 0.312± 0.05
HME+`1 [Kumar et al., 2010] 0.293± 0.06
HME+`2,1 [Jiang et al., 2014b] 0.292± 0.05
SPMoR(ours) 0.346± 0.01
SPMoR+(ours) 0.279± 0.03

mance. To be more specific, the universal nonlinear method
SVR cannot obtain the performance as good as the other
divide-and-conquer models, while the hierarchical methods
generally obtain better performance than the single mixure
model. In addition, consistent with the experimental results in
Sec. 4.2, the comparison between MoE and SPMoR and the
comparison between HME and SPMoR+ demonstrate the ef-
fectiveness of the proposed framework to introduce self-paced
learning into the regression problem. Finally, the comparison
between HME+`1, HME+`2,1, and SPMoR+ demonstrates
the superior performance of the proposed Exclusive LASSO-
based self-paced regularizer.

5 Conclusion

We have proposed a novel SPL-based framework to effectively
overcome limitations of MoR under nonuniform sampled and
noisy real-world data. To our knowledge, this is the earliest
effort to build self-paced regularizer based on the Exclusive
LASSO, and to directly avoid the intra-component outlier and
the inter-component imbalance problems in existing MoR ap-
proaches. Comprehensive experiments on the simulation data
and two real-world tasks have demonstrated the effectiveness
of the proposed approach. In the future, we will explore soft
weighting regularizers in MoRs and appliy our approach in
more computer vision tasks like object tracking [Supancic and
Ramanan, 2013], co-saliency detection [Zhang et al., 2016],
and object detection [Cheng et al., 2016].
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