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Abstract
Convolutional neural networks (CNNs) have
achieved breakthrough performance in many
pattern recognition tasks. In order to distinguish
the reliable data from the noisy and confusing data,
we improve CNNs with self-paced learning (SPL)
for enhancing the learning robustness of CNNs.
In the proposed self-paced convolutional network
(SPCN), each sample is assigned to a weight to re-
flect the easiness of the sample. Then a dynamic
self-paced function is incorporated into the leaning
objective of CNN to jointly learn the parameters of
CNN and the latent weight variable. SPCN learns
the samples from easy to complex and the sample
weights can dynamically control the learning rates
for converging to better values. To gain more in-
sights of SPCN, theoretical studies are conducted
to show that SPCN converges to a stationary solu-
tion and is robust to the noisy and confusing da-
ta. Experimental results on MNIST and rectangles
datasets demonstrate that the proposed method out-
performs baseline methods.

1 Introduction
In recent years, convolutional neural networks (CNNs) [Le-
Cun et al., 1998] have attracted widespread interests in the
field of machine learning and computer vision. CNN is a
supervised learning algorithm that aims to learn the map-
ping between the input data and its corresponding label. In
general, CNN consists of three main components: convolu-
tion kernels, active function and pooling. Convolution ker-
nels work on small local receptive fields of input data in a
sliding-window fashion and then the active function is im-
posed on the convolution kernel output. Each kernel can be
considered as a specific feature detector. The pooling can
reduce the data size to make the final prediction be robust
to the translation of input data. The parameters of CNN,
i.e., the coefficients of convolution kernels and the final ful-
ly connected layer, are learnt by using stochastic gradient
descent with the standard back-propagation algorithm. The
success of CNNs brought about a revolution through the
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efficient use of graphics processing units (GPUs), rectified
linear units, new dropout regularization, and effective data
augmentation [LeCun et al., 2015]. Convolutional networks
have been successfully applied to various applications, such
as image and video classification [Krizhevsky et al., 2012;
Karpathy et al., 2014], face recognition [Taigman et al., 2014]
and objective detection [Girshick et al., 2014].

The goal of robust learning is to reduce the influence of
the noisy and confusing data. The learning robustness relies
on a sample selection to distinguish the reliable samples from
the confusing ones [Pi et al., 2016]. The recently proposed
self-paced learning (SPL) is such a representative method for
robust learning. SPL can trace back to curriculum learning
(CL) [Bengio et al., 2009] proposed by Bengio et al., in which
a curriculum defines a set of training samples organized in
ascending order of learning difficulty. However, in CL, the
curriculum remains unchanged during the iterations and is
determined independently of the subsequent learning [Ben-
gio et al., 2009; Jiang et al., 2015]. Then self-paced learn-
ing [Kumar et al., 2010] have been proposed to dynamical-
ly generate the curriculum according to what the learner has
already learned. SPL is inspired by the learning process of
humans/animals, which learns with easier concepts at first
and then gradually involves more complex ones into train-
ing. Both CL and SPL have been proved to be beneficial in
avoiding bad local minima and in achieving a better general-
ization result [Khan et al., 2011; Basu and Christensen, 2013;
Tang et al., 2012b].

Based on the above analysis, we notice that convolution-
al neural networks and self-paced learning are consistent
and complementary. For consistency, both convolutional
networks and self-paced learning are biologically-inspired. In
fact, CNN is nicely related to the self-paced learning idea that
it may be much easier to learn simpler concepts first and then
build higher level ones on top of simpler ones [Bengio et al.,
2013]. Furthermore, convolutional neural networks and self-
paced learning are complementary because CNNs aim to ex-
tract features and self-paced learning tends to explore the data
smoothly with more robustness. Therefore the two schemes
can benefit from each other.

In this paper, a self-paced convolutional network (SPCN) is
proposed to enhance the learning robustness of CNNs. In the
proposed SPCN model, each sample is assigned to a weight
to reflect the easiness of the sample. Then a convolution-
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al network is established to learn the weighted samples. In
SPCN, the weighting and minimization are integrated in a s-
ingle function by incorporating a novel dynamic self-paced
function into the learning objective of CNN. SPCN iterative-
ly updates the model parameters and the weight variable. The
learning rates of SPCN are dynamically changed based on the
current sample weights. Theoretical studies show that SPCN
converges to a stationary solution and is robust to the noisy
and confusing data. Experimental results on MNIST and rect-
angles datasets demonstrate the effectiveness and robustness
of the proposed method.

The contribution of this paper are summarized as follows:
(1) We improve CNNs with self-paced learning for enhancing
the learning robustness of CNNs. (2) A dynamic self-paced
function is proposed for the proposed SPCN model. (3) We
conduct theoretical studies to show that SPCN converges to
a stationary solution and is robust to the noisy and confusing
data.

2 Self-paced Learning
Compared to the other machine learning methods, SPL in-
corporates a self-paced function and a pace parameter into
the learning objectives to jointly learn the curriculum and
model parameters. Formally, we denote the training dataset
as D = {(x1, y1), · · · , (xn, yn)}, where xi ∈ Rm de-
notes the ith observed sample, and yi represents its label. Let
L(yi, g(xi,w)) denote the loss function which calculates the
cost between the ground truth label yi and the estimated label
g(xi,w). Here w represents the model parameter inside the
decision function g. In SPL, variable v is introduced into the
learning objective to indicate whether the ith sample is easy
or not. The target of SPL is to jointly learn the model param-
eter w and the latent weight variable v = [v1, · · · , vn] by
minimizing:

min
w,v

E(w,v) =
n∑
i=1

viL(yi, g(xi,w)) + λtf(v), (1)

where v ∈ [0, 1]n and f(v) is the self-paced function. The
parameter λ is the “age” of the SPL model to control the
learning pace. In the process of the SPL calculation, we grad-
ually increase λ to learn new samples. When λ is small, on-
ly “easy” samples with small losses will be considered into
training. As λ grows, more samples with larger losses will be
gradually appended to training a more “mature” model.

The algorithm of SPL is shown in Algorithm 1. In the in-
ner loop, the model parameter w and the weight variable v
are iteratively updated with a fixed pace parameter λ. Then
the pace parameter λ increases in the outer loop to pro-
gressively approach the rational solution. Kumar et al. pro-
posed a hard weighting scheme [Kumar et al., 2010] to in-
dicate whether the sample is easy or not. Then Jiang et al.
proposed three soft weighting methods [Jiang et al., 2014a]
to assign real-valued weights to reflect the importance of
samples, such as the linear soft weighting, logarithmic soft
weighting and mixture weighting schemes. Then several use-
ful sample importance priors have been incorporated into the
SPL model, such as spatial smoothness [Zhang et al., 2015],
partial order [Jiang et al., 2015] and diversity [Jiang et al.,

Algorithm 1 Algorithm of Self-paced Learning.

Input: The training datasetD, the initial step λ, the step size
µ.

Output: Model parameter w.
1: Initialize w∗.
2: while not converged do //Outer Loop
3: while not converged do //Inner Loop
4: Update v∗ = arg minv E(w∗,v).
5: Update w∗ = arg minw E(w,v∗).
6: end while
7: λ← λ+ µ.
8: end while
9: return w = w∗.

2014b]. In [Meng and Zhao, 2015], Meng et al. have proved
that the solving strategy on SPL exactly accords with a ma-
jorization minimization algorithm implemented on a laten-
t objective and the loss function contained in the latent objec-
tive has a similar configuration with non-convex regularized
penalty. SPL has been successfully applied to various appli-
cations, such as segmentation [Kumar et al., 2011], domain
adaption [Tang et al., 2012a], dictionary leaning [Tang et al.,
2012b], long-term tracking [Supančič and Ramanan, 2013],
reranking [Jiang et al., 2014a], multi-view learning [Xu et
al., 2015], action and event detection [Jiang et al., 2014b;
2015; Li et al., 2016], matrix factorization [Zhao et al., 2015;
Li et al., 2016], and co-saliency detection [Zhang et al.,
2015].

3 Self-paced Convolutional Networks
3.1 SPCN Model
The cost function of CNNs can be expressed as

ECN (w) =
n∑
i=1

L(yi, g(xi,w)). (2)

When the softmax layer is the last layer of a CNN, the
cross entropy between the softmax activations α1, · · · , αK
of the output neurons and the binary target vector y is
−
∑K
k=1 yk ln(αk). In this paper, we propose a self-paced

convolutional network (SPCN) to enhance the learning ro-
bustness. Figure 1 presents the schematic diagram of the pro-
posed SPCN model. Each sample is assigned to a weight to
reflect the easiness of the sample. Then we incorporate a self-
paced function into the learning objective of CNNs to joint-
ly learn the model parameters and the latent weight variable.
The proposed SPCN model is shown as follows:

min
w,v

E(w,v) =

n∑
i=1

viL
t
i + λtf(v; t), (3)

where f(v; t) is a dynamic self-paced function with respect
to v and t.

In this paper, we use a majorization minimization algorith-
m to solve the proposed SPCN model. MM algorithms have
been widely used in machine learning and aim to convert a

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2111



Selecting training samples and 

updating their weights

Training a CNN with the 

sample weights

Self-paced Convolutional 

Networks

Samples Sample weights

Figure 1: The framework of the proposed self-paced convolutional
networks.

complicated optimization problem into an easy one by alter-
natively iterating the majorization step and the minimization
step. We can get the integrative function of v∗(λ, L) as

Fλ(L) =

∫ L

0

v∗(λ;L)dL. (4)

We use Qλ(w|w∗) to represent a tractable surrogate for
Fλ(L(w)). In [Meng and Zhao, 2015], Meng et al. have
proved that

Q
(i)
λ (w|w∗) = Fλ(Li(w

∗)) (5)
+v∗i (λ;Li(w

∗))(Li(w − Li(w∗),
and

n∑
i=1

Fλ(Li(w)) ≤
n∑
i=1

Q
(i)
λ (w|w∗). (6)

In this paper, we denote wt as the model parameters in the
tth iteration of the MM algorithm.

Majorization Step
We can calculate v∗i (λ;Ln(wt)) by solving the following
problem to obtain each Q(i)

λ (w|wt)

v∗i (λ;Li(w
t)) = arg min

vi∈[0,1]
viLi(w

t) + λtf(vi; t). (7)

The self-paced function needs to be specified for solving
v∗i (λ;Li(w

t)) in Eq. (7). In recent years, several efficient S-
PL functions have been proposed for various data with differ-
ent characteristics, such as linear soft weighting, logarithmic
soft weighting and mixture weighting [Jiang et al., 2014a].
However, all these methods assign low weights to the easy
samples in the early stage of self-paced learning. To address
this issue, we propose a dynamic self-paced function for rea-
sonably assigning weights. The proposed dynamic self-paced
function f(v; t) is described as follows:

f(v; t) =
1

q(t)
‖v‖q(t)2 −

n∑
i=1

vi, (8)

where q(t) > 1, which is a monotonic decreasing function
with respect to the time t.

In order to analysis the proposed dynamic self-paced func-
tion, we deduce the closed-form solutions of the SPCN model

under the proposed dynamic self-paced function. Eq. (8) is a
convex function of v in [0,1] and thus the global minimum
can be obtained at∇vE(v) = 0. Therefore we have

∂E
∂vi

= Li + λt(v
q(t)−1
i − 1) = 0. (9)

The closed-form optimal solution for vi(i = 1, 2, · · · , n)
can be written as:

v∗i =

{
(1− Li

λt )(1/(q(t)−1)) Li < λt

0 Li ≥ λt.
(10)

We can also deduce the closed-form solutions of the SPCN
model under the hard, linear soft, logarithmic soft and mix-
ture weighting functions. Then we can graph the curves of the
sample weight with respect to the sample loss based on the
obtained closed-form solutions. Figure 2 shows the compari-
son of the hard, linear soft, logarithmic soft, mixture weight-
ing and dynamic self-paced functions. Obviously, when q(t)
is smaller than 2, the proposed self-paced function is similar
to the logarithmic soft weighting method. When q(t) is equal
to 2, the proposed self-paced function is to linearly discrimi-
nate samples with respect to their losses, which is equivalent
to the linear soft weighting method. When q(t) is larger than
2, the proposed self-paced function obtains higher weight val-
ues when the loss is low. Therefore both the proposed method
and mixture weighting scheme can tolerate small errors.

The proposed SPCN model has some important properties.
First, at the tth iteration (or the time t), q(t) can be considered
as a constant. The second derivative of Eq. (8) is

∂2f

∂2vi
= λ(q(t)− 1)v

q(t)−2
i ≥ 0. (11)

Therefore f(v; t) is convex with respect to v ∈ [0, 1]n be-
cause the above second derivatives are non-negative and the
sum of convex functions is convex. Second, the optimal solu-
tion v∗ is shown in Eq. (10). Obviously, vi is decreasing with
respect to Li and we have that lim

Li→0
v∗i = 1, lim

Li→∞
v∗i = 0. It

indicates that the SPCN model favors easy samples because
the easy samples have lower loss values and larger weights.
Finally, each individual v∗i increases with respect to λt in the
closed-form solution in Eq. (10). In an extreme case, when
λt approaches positive infinity, we have lim

λt→∞
v∗i = 1. Simi-

larly, when λt approaches 0, we have lim
λt→0

v∗i = 0. When the

model “age” gets larger, it trends to incorporate more samples
into training.

Minimization Step
In this step, we need to calculate

wt+1 = arg min
w

n∑
i=1

viLi(w
t). (12)

Then the cost function of SPCN is

ESPCN (w) =
n∑
i=1

viL(yi, g(xi,w)). (13)
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Figure 2: The comparison of different self-paced functions. (a) is the
comparison of hard, linear soft, logarithmic soft and mixture weight-
ing schemes. (b) represents the comparison of the proposed dynamic
self-paced function with q(t) = 1.3, 1.6, 2, 3 and 4.

ECN and ESPCN are the error functions of the standard
convolutional networks and the proposed SPCN model, re-
spectively. For a single pattern, the two error functions have
the following relationship

∆w = −η ∂E
i
SPCN

∂w
(14)

= −vi · η ·
∂EiCN
∂w

where w is the weights in a certain layer of the network, and
η is the learning rate. It is obvious that the sample weight
vi can control the learning rate and the sample weight vi are
constrained in [0,1]. When the samples are easy, the learning
rates are high values and the network can update the param-
eters in a large step. The samples have small learning rates
when the samples are difficult. With the small learning rates,
the network is able to update the parameters slowly for con-
verging better values.

3.2 SPCN Implementation
It is difficult to decide the increasing pace λt [Jiang et al.,
2014a]. In general, we need the range of loss values in ad-

vance and give the initial value and the step size. A ro-
bust way is to search the solution path with respect to the
sample number involved into training instead of extracting
the solution path with respect to the pace parameter. There-
fore we can predefine a sample number sequence N =
{N1, N2, · · · , Nmaxgen} (Ni < Nj for i < j) representing
the number of selected samples in self-paced learning pro-
cess. Each Nt denotes how many samples will be selected
in the tth SPL stage, and Nmaxgen = n means finally all
samples are chosen into training. For tth iteration, we can get
Lsort by sorting the loss L in ascending order and select the
Ntth loss value of Lsort as the values of λt, i.e., λt can be
represented as

λt = LsortNt
(15)

where Lsort is obtained by sorting the loss L in ascending
order.

Algorithm 2 Algorithm of Self-paced Convolutional Net-
works.
Input: The training dataset D.
Output: Model parameter w.

1: Initialize w∗, and predefine the pace sequence N =
{N1, N2, · · · , Nmaxgen}.

2: for t=1 to maxgen do //Outer Loop
3: Calculate λt by Eq. (15) and q(t) by Eq. (16).
4: while not converged do //Inner Loop
5: Update v∗ = arg minv E(w∗,v).
6: Update w∗ = arg minw E(w,v∗).
7: end while
8: end for
9: return w = w∗.

The function q(t) controls the selection of the learning
schemes. In the early stage of SPCN, only simple samples are
involved into training and their weights should be large. As
shown in Figure 2 (b), the self-paced function with large q(t)
works better in this stage. During iterations, more complex
samples are taken into consideration. Therefore q(t) should
be set to a small value. To implement the SPCN model, the
solution path is searched with respect to the sample number.
Then q(t) can be also defined with respect to the sample num-
ber, which is shown as follows

q(t) = 2 tan((1− Nt
Nmaxgen + 1

) · π
2

). (16)

The algorithm of SPCN is shown in Algorithm 2.
In the initialization, a sample number sequence N =
{N1, N2, · · · , Nmaxgen} is predefined. In the sequence, we
make Ni < Nj for i < j to simulate the increasing process
of the pace parameter. Then we obtain λt and q(t) by Eq.
(15) and Eq. (16) in the outer loop, respectively. The model
parameter w and the weight variable v are iteratively updated
with the fixed λt and q(t) in the inner loop.

4 Theoretical Analysis
In this section, we analyze the convergence and proper-
ties of the proposed method. Let wt and vt indicate the
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values of w and v in the tth iteration. As minw E(w,v)
is a quadratic programming problem [Jiang et al., 2014a;
2014b], the solution wt is the global optimum, i.e.

E(wt,vt−1) ≤ E(wt−1,vt−1). (17)

f(v, t) is a convex function of v at the time t. Therefore
Eq. (3) is a convex funtion of v. Suppose that vt is a solu-
tion found by gradient descent, due to the convexity, vt is the
global optimum for Eq. (3), i.e.

E(wt,vt) ≤ E(wt,vt−1). (18)

Substitute Eq. (18) back into Eq. (17), we have

E(wt,vt) ≤ E(wt−1,vt−1). (19)

Obviously, the objective values decrease in every iteration in
SPCN algorithm. The algorithm is bounded from below be-
cause E is the sum of finite elements. Therefore Algorithm 2
can converge to a stationary solution.

The solving strategy on SPL exactly accords with a ma-
jorization minimization algorithm implemented on a latent
objective and the loss function contained in this latent objec-
tive has a similar configuration with non-convex regularized
penalty [Meng and Zhao, 2015]. In SPCN, we can obtain the
solution v∗ as follows:

v∗(λt;L) = arg min
v

vL+ λtf(v, t). (20)

We can get the integrative function of v∗(λ;L) calculated
by Eq. (20) as:

Fλt(L) =

∫ L

0

v∗(λt;L)dL+ c, (21)

where c is a constant.
Now we try to discover more interesting insight under the

proposed SPCN method from this latent objective. To this
aim, we first calculate the latent losses under the proposed
dynamic self-paced function (8) by Eq. (21) as follows:

Fλt(L) =

{
− (q(t)−1)λt

q(t) (1− L
λt )

q(t)
q(t)−1 + c L < λt

c L ≥ λt.
(22)

Note that when λt = ∞, the latent loss Fλt(L) will degen-
erate to the original loss L. There is an evident suppressing
effect of Fλt(L) on large losses as compared with the origi-
nal loss function L. When L is larger than a certain threshold,
Fλt(L) will become a constant thereafter. This provides a ra-
tional explanation on why SPCN can perform robust in the
presence of noisy and confusing data: The samples with loss
values larger than the age threshold will have no influence
to the model training due to their 0 gradients. Corresponding
to the original SPL model, these large loss samples will be
with 0 importance weights vi, and thus have no effect on the
optimization of model parameters.

5 Experiments
In order to evaluate the performance of the proposed SPCN,
we studied variants of MNIST digits [Larochelle et al., 2007]
and the rectangle datasets [Larochelle et al., 2007] in the
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Figure 3: The results of SPCN with different pace sequence on the
mnist-basic dataset. The initial value of the pace sequence N1 is set
to 5500, 6000, 6500, 7000 and 7500. (a) shows the results of the
validation-set. (b) presents the results of the test-set.
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Figure 4: The results of SPCN under 1: linear soft weighting, 2:
logarithmic soft weighting, 3: mixture weighting and 4: dynamic
self-paced function.

experiments. The first database consists of five variants of
MNIST digits, i.e. {mnist-basic, mnist-rot, mnist-back-rand,
mnist-back-image, mnist-rot-back-image}. Each variant in-
cludes 10,000 labeled training, 2,000 labeled validation, and
50,000 labeled test images. The second database includes two
subsets, i.e. {rectangle, rectangle-image}. The dataset rect-
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Table 1: Comparison of self-paced convolutional network (SPCN) with other models. The best performer is marked in bold.

Datasets mnist-basic mnist-rot mnist-back-rand mnist-back-image mnist-rot-back-rand rectangles rectangles-image

SVMrbf 3.03±0.15 11.11±0.28 14.58±0.31 22.61±0.37 55.18±0.44 2.15±0.13 24.04±0.37
SVMpoly 3.69±0.17 15.42±0.32 16.62±0.33 24.01±0.37 56.41±0.43 2.15±0.13 24.05±0.37
NNet 4.69±0.19 18.11±0.34 20.04±0.35 27.41±0.39 62.16±0.43 7.16±0.23 33.20±0.41
DBN-1 3.94±0.17 14.69±0.31 9.80±0.26 16.15±0.32 52.21±0.44 4.71±0.19 23.69±0.37
DBN-3 3.11±0.15 10.30±0.27 6.73±0.22 16.31±0.32 47.39±0.44 2.60±0.14 22.50±0.37
SAA-3 3.46±0.16 10.30±0.27 11.28±0.28 23.00±0.37 51.93±0.44 2.41±0.13 24.05±0.37
SdA 2.80±0.14 10.29±0.27 10.38±0.27 16.68±0.33 44.49±0.44 1.99±0.12 21.59±0.36
CAE-1 2.83±0.15 11.59±0.28 13.57±0.30 16.70±0.33 48.10±0.44 1.48±0.10 21.86±0.36
CAE-2 2.48±0.14 9.66±0.26 10.90±0.27 15.50±0.32 45.23±0.44 1.21±0.10 21.54±0.36
GSN 2.40±0.04 8.66±0.08 9.38±0.03 16.04±0.07 43.86±0.05 2.04±0.04 22.10±0.03

SPCN 1.82±0.04 9.81±0.07 5.84±0.03 9.55±0.06 35.26±0.05 0.19±0.03 10.60±0.03

angle consists of 1000 labeled training, 200 labeled valida-
tion, and 50,000 labeled test images. The dataset rectangle-
image includes 10,000 labeled train, 2000 labeled validation
and 50,000 labeled test images.

5.1 Analysis of the Pace Sequence
Concerning the influence of the pace sequence, we tested
the initial value of the pace sequence in the range N1 ∈
{5500, 6000, 6500, 7000, 7500}. The step size of the pace
sequence is same to the batch size. In this experiment, al-
l training samples are exploited to train a CNN and then this
trained CNN is used to initialize the proposed SPCN. Fig-
ure 3 shows the results of SPCN with different pace sequence
on the mnist-basic dataset. As shown in Figure 3, the errors
of SPCN with different pace sequences are much lower than
these of the initial CNN on the validation and test sets. When
the initial value of the pace sequence is small, SPCN needs
many iterations to involve all samples into training. We can
always obtain satisfactory results compared to the original
CNN.

5.2 Analysis of the Dynamic Self-paced Function
In this experiment, we compared the proposed dynamic self-
paced function with the linear soft weighting, logarithmic
soft weighting and mixture weighting schemes [Jiang et al.,
2014a]. Figure 4 shows the results of SPCN under the four
self-paced functions. It can be observed that the errors ob-
tained by SPCN under the proposed dynamic self-paced func-
tion are much lower than those of competing methods on sev-
en variants of MNIST and rectangles datasets. In the early
stage of self-paced learning, the involved samples tend to be
easy and should be given large weights. However, the pre-
vious self-paced functions assigned low weights to the easy
samples. In the proposed dynamic self-paced function, we
dynamically select suitable learning curve shown in Figure
2(b). The proposed dynamic self-paced function gives large
weights to the easy samples in the early stage and can reduce
the influence of the complex samples during iterations.

5.3 Experimental Results
In this experiment, we compare the results provided by
the proposed SPCN model with those obtained by SVM-

rbf, SVMpoly, NNet, DBN-1, DBN-3, SAA-3 [Larochelle et
al., 2007], SDA [Vincent et al., 2008], CAE-1, CAE-2 [Ri-
fai et al., 2011] and GSN [Zöhrer and Pernkopf, 2014]. Ta-
ble 1 shows that the proposed method outperforms baseline
methods on six out of seven variants on MNIST and rect-
angles datasets. The proposed SPCN model ranks first except
for the mnist-rot datasets. These statistics indicate that our ap-
proach can achieve the higher accuracy and better stability in
the statistical sense when compared with the other competing
methods.

6 Conclusion
In order to distinguish the reliable data from the noisy and
confusing data, we have proposed a self-paced convolution-
al neural network model. In the proposed SPCN model, the
loss of a sample is discounted by a weight. Then a dynam-
ic self-paced function is incorporated the learning objective
of CNNs. SPCN uses a majorization minimization algorithm
to jointly learn the model parameters of CNN and the laten
variable. In the majorization step, SPCN selects the reliable
samples based on the acquired model parameters. In the min-
imization step, SPCN updates the model parameters with the
sample weights. The leaning rates are dynamically changed
based on the current sample weights during iterations. The
complex samples always have small learning rates to get bet-
ter results.

Our theoretical analysis shows that SPCN can converge to
a stationary solution and SPCN can perform robust in the p-
resence of noisy and confusing data. Furthermore, we also
achieved state-of-the-art performance on variants of MNIST
digits and the rectangle datasets. The proposed method can
enhance the learning robustness of convolutional neural net-
works. In future research, we will explore other deep archi-
tectures with self-paced learning.
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