Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Self-Paced Multitask Learning with Shared Knowledge

Keerthiram Murugesan and Jaime Carbonell
Carnegie Mellon University, Pittsburgh, PA, USA
{kmuruges,jgc} @cs.cmu.edu

Abstract

This paper introduces self-paced task selection
to multitask learning, where instances from more
closely related tasks are selected in a progression of
easier-to-harder tasks, to emulate an effective human
education strategy, but applied to multitask machine
learning. We develop the mathematical foundation
for the approach based on iterative selection of the
most appropriate task, learning the task parameters,
and updating the shared knowledge, optimizing a
new bi-convex loss function. This proposed method
applies quite generally, including to multitask fea-
ture learning, multitask learning with alternating
structure optimization, etc. Results show that in
each of the above formulations self-paced (easier-
to-harder) task selection outperforms the baseline
version of these methods in all the experiments.

1 Introduction

Self-paced learning, inspired by established human education
principles, defines a new machine learning paradigm based
on a curriculum defined dynamically by the learner ("self-
paced") instead of a fixed curriculum set a-priori by a teacher.
It is an iterative approach that alternatively learns the model
parameters and selects easier instances at first, progressing to
harder ones [Kumar et al., 2010]. However, naive extension
of self-paced learning to the multitask setting may result in
intractable increases in the number of learning parameters and
therefore inefficient use of shared knowledge among the tasks.
Existing work in this area is not scalable and/or lacks sufficient
generality to apply to several multitask learning challenges [Li
etal., 2017].

Not all tasks are equal. Some tasks are easy to learn and
some tasks are complex, facilitated by previously learned
tasks to solve it efficiently. For example, classification task of
whether an image has a bird or not can be learned by solving
easier component tasks first such as Is there a wing?, Is there
a beak?, Does it have feathers?, etc. The knowledge learned
from these previously learned easier tasks can be used to solve
the complex tasks effectively and such shared knowledge plays
an important role in transfer of information between these
tasks. This phenomenon is more evident in many real-world

2522

data such as object detection, weather prediction, landmine
detection, etc.

We introduce a new learning framework for multiple tasks
that addresses the aforementioned issues. It starts with easier
set of tasks, and gradually introduces more difficult ones to
build the shared knowledge base. Our proposed method pro-
vides a natural way to specify the trade-off between choosing
the easier tasks to update the shared knowledge and learn-
ing new tasks using the knowledge acquired from previously
learned tasks. Our proposed framework based on self-paced
learning for multiple tasks addresses these three key chal-
lenges: 1) it embeds task selection into the model learning;
2) it gradually learns the shared knowledge at the system’s
own pace; 3) it is generalizable to a wider group of multitask
problems.

We first briefly introduce the self-paced learning framework.
Next, we describe our proposed approach for self-paced multi-
task learning with efficient learning of latent task weights. We
give a probabilistic interpretation of these task weights, based
on their training errors. We apply our learning framework to
a few popular multitask problems such as Multitask Feature
Learning, Multitask Learning with Alternating Structure Op-
timization (ASO), Mean regularized Multitask Learning and
show that self-paced multitask learning significantly improves
the learning performance of the original problem. In addi-
tion, we evaluate our method against several algorithms for
sequential learning of multiple tasks.

2 Background: Self-Paced Learning

Given a set of N training instances along with their labels
(%4, :)ie[n)> the general form of the objective function for
single task learning is given by:

Ex{Ww} = argmin,, Z Lys, fxi, w)) + py(W))
i€[N]

where p.,(w) is the regularization term on the model param-
eters and typically it is set to p(w) = v||w]||3 (ridge or L2
penalty) or v||w||1 (lasso or L1 penalty). ~y is the regulariza-
tion parameter and [N] is the index set {1,2,... N}

Self-paced learning (SPL) provides a strategy for simulta-
neously selecting the easier instances and re-estimating the
model parameters w at each iteration [Kumar ez al., 2010]. We

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

assume a linear predictor function f(z;, w) with unknown pa-
rameter w. Self-paced learning solves the following objective
function:

Ex{w, 7} = argmin Y~ mil(y;, f(xi, w))
WTEE el 2)

+ Py (W) + Ar(7)

where r(7) is the regularization term, {2 is the domain space
of 7, py(w) is the regularization term on model parameters
w as defined earlier, and) is the regularization parameter
that identifies the difficulty of the instances. There are two
unknowns in equation 2: model parameter vector w and the
selection parameter 7 (restricted to the domain (2).

A common choice of the constraint space C =
{p- (W), r(r), 2} in SPLis {~]|wl[3. —||||:}, {0, 1}V}. See
[Jiang et al., 2015] for more examples on the constraint space.
With this setting, equation 2 is a bi-convex optimization prob-
lem over w and 7, which can be efficiently solved by alter-
nating minimization. Given a fixed 7, the solution for w can
be obtained using any off-the-shelf solver and for a fixed w,
solution for 7 can be given as follows:

P {1 if (i, fxi, w)) <A
o

otherwise

There exists an intuitive explanation for this alternative
search strategy: 1) when updating 7 with a fixed w, a sample
whose loss is smaller than a certain threshold A is taken as an
“easy” sample because it is a sample with “less error”, and
will be selected in training (7;° = 1) or otherwise unselected
(77 = 0); 2) when updating w with a fixed 7, the classifier is
trained only on the selected “easy” samples. When A is small,
only “easy” samples with small losses will be considered.

Vie [N] @)

3 Self-Paced Multitask Learning with Shared
Knowledge

Suppose we are given 1" tasks where the ¢-th task is associ-
Ny

ated with N, training examples. Denote by {(z},y/)} ", and

L(ye, [(Xg,wy)) = N% Zie[Nt] 2y, f(xt, wy)) the train-
ing set and loss for task ¢, respectively. In this paper, we
consider a more general formulation for multitask learning,
which is given by [Caruana, 1997; Baxter and others, 2000;
Evgeniou and Pontil, 2004]:

E{W, O} = argmin Z L(ye, f(X¢, W)
WOLE tei) “

+P,(W,0)

where P, (W, ©) is the regularization term on task param-
eters W, © is the knowledge shared among the tasks which
depends on the problem under consideration. We assume that
P, (W, ©) canbe written as) _, ¢ () P (w¢, ©), such that, for
a given O, the above objective function decomposes into T’
independent optimization problems. P, (w;, ®) gives a scor-
ing function on how easier the task is, compared to that of
the learned knowledge ®. Several multitask learning prob-
lems fall under this general characterization. For example,

2523

Multitask Feature Learning (MTFL), Regularized Multitask
Learning (MMTL), Multitask learning with manifold regular-
ization (MTML), Multitask learning via Alternating Structure
Optimization (MTASO), Sparse coding for multitask learn-
ing (SC-MTL), etc [Evgeniou and Pontil, 2007; Evgeniou and
Pontil, 2004; Agarwal et al., 2010; Ando and Zhang, 2005;
Maurer er al., 2013]. With this formulation, one can easily ex-
tend the S PL framework to multitask setting, by considering
instance weights for each task.

o A 1
Ex{W,0,7} = argmin — il (yl, f(al,w
2 ¥ Wg,;eer Z N, Z 1il(yis S (t)

Le0 te(T) 1E€[N]

+ P,(W,0) + Ar(7)

&)
But there are two key issues with this naive extension of
SPL: 1) The above formulation fails to effectively utilize the
knowledge shared among the tasks; 2) The number of un-
known parameters 7 grows with the total number of instances
N = Y, N; from all the tasks. This is a serious problem
especially when the number of tasks 7" is large [Weinberger et
al., 2009] and/or when manual annotation of task instances is
expensive [Kshirsagar et al., 2013].

To address these issues, we consider task-level weights, in-
stead of instance-level weights. Our motivation behind this
approach is based on the human educational process. When
students learn a new concept, they (or their teachers) choose a
new task that is relevant to their recently-acquired knowledge,
rather that more distant tasks or concepts or other haphazard
selections. Inspired by this interpretation, we propose the fol-
lowing objective function for Self-Paced Multitask Learning
(spMTL):

SA{VAV, é, 7A'} = arg min Z Tt [ﬁ(}’t» f(Xt7 Wt))
WoesT tel) ©6)

+ P, (wy, @)} + Ar(T)

Note that the number of parameters 7; depends on 7" instead
of N and the 7, depends on both the training error of the task
and the task regularization term for the shared knowledge ©.

The pseudo-code is in Algorithm 1. The learning algo-
rithm defines a task as "easy" task if it has low training error
N% Zie[Nt] L(y;, f(x;,w;)) and similar to the shared knowl-
edge representation P, (w;, ®). These tasks will be selected
in building the shared knowledge ®. Following Equation 3,
we can define 7, as ':

1 lf‘c(ytaf(XtaWEk)))
+Py(wiV, @k D)y <\ Ve[l ()
1) otherwise

’ft:

For multitask setting, it is desirable to consider an alterna-
tive constraint space that gives probabilistic interpretation for
7. By setting C = {7||w]|[3, —H (1), AN71} | we get

i o< exp(—[L(ye, f(Xs, W) + Py (wy, ®)]/A), (8)

"For correctness of the algorithm, we set 7 = ¢ for the hard tasks,
instead of 7 = 0 with § = 0.01.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Algorithm 1: Self-Paced Multitask Learning: A General
Framework

Input :D = {(X;,y)},,00 ¢>1

Output: W, ©
1k 1,2+ X

2 repeat
3 Solve for wgk) —

arg ming L(y¢, f(X¢, w)) + Py (w, @* 1) vt ;
4 Solve for (%) using equation (7) or equation (8) ;

5 Solve for ®¥) :
. k k
6 O®) « argming DotelT) Tt()P,Y(wg), 0);
7 A c;
8 k<+ k+1;
o until ||7(F) — 7(-=D|2 < ¢

where H (1) = — Ztem 7¢ log 74 denotes the entropy of
the probability distribution 7 over the tasks. The key idea is
that the algorithm, at each iteration, maintains a probability
distribution over the tasks to identify the simpler tasks based
on the shared knowledge. Similar approach has been used
in learning relationship between multiple tasks in an online
setting [Murugesan et al., 2016]. Using this representation,
we can use 7 to sample, at each iteration, the "easy" tasks
and thus makes the learning problem scalable using stochastic
approximation when the number of tasks is large. It is worth
noting that our framework can easily handle outlier tasks by
a simple modification to Algorithm 1. Since outlier tasks are
different from the main tasks and are usually difficult to learn,
we can take advantage of this simple observation for early
stopping, before the algorithm visits all the tasks [Romera-
Paredes et al., 2012].

Our algorithm can be easily generalized to other types of
updating rules by replacing exp in (8) with other functions.
In latter cases, however, 7 may no longer have probabilistic
interpretations. Algorithm 1 shows the basic steps in learning
the task weights and the shared knowledge. The algorithm
uses an additional parameter ‘¢’ that controls the learning
pace of the self-paced procedure. Typically, 'c’ is set to some
value greater than 1 (in our experiments, we set it to 1.1) such
that, at each iteration, the threshold A is relaxed to included
more tasks. The input to the algorithm also takes @(%), initial
knowledge about the domain and can be initialized based on
some external sources.

3.1 Motivating Examples

We give three examples to motivate our self-paced learning
procedure. We briefly discuss how our algorithm alters the
learning pace of the original problem. Note that the exist-
ing implementation of these problems can be easily "self-
paced", by simply adding a few lines of code to get a bet-
ter performance of the original problem. We refer the read-
ers to [Evgeniou and Pontil, 2007; Agarwal et al., 2010;
Ando and Zhang, 2005] for additional background.

2524

Example 1: Self-Paced Mean Regularized Multitask
Learning (spMMTL)

Mean Regularized Multitask learning assumes that all task
parameters are close to some fixed parameter w in the param-
eter space. sp)MMTL learns 7 to select the easy tasks based on
the distance of each task parameter w; from w.

SMMTL,A = argmin Z Ttﬁ(Yt7f(Xt7Wt))
e el ©)

+l[wi — wol[3 + Al 7]

In the above objective function, we can get the closed-form

solution for wo as wo = = Zthl w; which is the mean of
the task parameters.

Example 2: Self-paced Multitask Feature Learning
(spMTFL) Multitask feature learning learns a common fea-
ture representation D shared across multiple related tasks. In
addition to learning the task parameters and the shared fea-
ture representation, spMTFL learns 7 to select the easy tasks
first, defined by the learning parameter \. The algorithm starts
with these easy tasks to learn the shared feature representation
which is used for solving progressively harder tasks.

EurpL,a = argmin Z T L(ye, f(Xe, W)
{Wl’w2""WT}t€[T]
Des?
TESR (10)
+ Z T (we, D7 wy) + Ar(7)
te[T]

The value of 7; determines the importance of a task in
learning this shared feature representation, i.e., tasks with high
probability contributes more towards learning D than the tasks
with low probability.

Example 3: Self-paced Multitask learning with Alter-
nating Structure Optimization (spMTASO)

Alternating Structure Optimization learns a shared low-
dimensional predictive structure U on a hypothesis space from
multiple-related tasks. This low-dimensional structure along
with the low-dimensional model parameters v; are learned
gradually from easy tasks guided by 7.

gMTASO,)\ = argmin Z Ttﬁ(}’nf(xuwt))
{W17W2,...WT} tE[T]
UU =Inxn
ren (11)
+7 Y mllwe = U3 4 Ar(7)
te[T)

4 Related Work

In this section, we briefly review two learning methods that
are most related to our proposed learning algorithm. Both
these methods learn from multiple tasks sequentially in a
specific order to either improve the learning performance or
to speedup the algorithm. Pentina er al. (2015) propose a
curriculum learning method (CL) for multiple tasks to find the
best order of tasks to be learned based on training error. The
tasks are solved in a sequential manner based on this order by

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

transferring information from the previously learned tasks to
the next ones through shared task parameters. They show that
this sequential learning of tasks in a meaningful order can be
superior than solving the tasks simultaneously. The objective
function of CL for learning the best task order and the task
parameters is given as follows:

oo = argmin Z L(Yrt), f(Xrit), Wa(r)))
{wi,wawr} o
melr (12)
Y M Waiey = Wage—p)l3
te[T)

where U is the symmetric group of all permutations over
[T]. Since, minimizing with respect to all possible permuta-
tions m € ¥r is an expensive combinatorial problem, they
suggest a greedy, incremental procedure for approximating
the task order. Their method shares with ours the motivation
of learning from easier tasks first, and then gradually add
more difficult tasks, based on training errors. But unlike our
proposed method, which utilizes shared knowledge from all
previous tasks, their method does not allow sharing between
different levels of task relatedness. In addition, the Euclidean
distance based regularization in their objective function forces
the parameter of newly learned task to be similar to its im-
mediate predecessor. This more myopic approach can be a
restrictive assumption for many applications.

Perhaps the most relevant work to ours in the context of
lifelong learning is from [Ruvolo and Eaton, 2013b], which
learns the shared basis L from tasks that arrives sequentially.
They propose an efficient online multitask learning algorithm
(ELLA) that allows the transfer of knowledge from previously
learned tasks to the new tasks using this shared basis. The task
parameters are represented as a sparse linear combination of
the columns of the shared basis w; = Ls;. The motivation
for ELLA and our method are significantly different. Whereas
ELLA tries to achieve nearly identical to the performance of
batch MTL with increased speedup in learning, our proposed
method focuses on improving the learning performance over
that of the original algorithm, with minimal changes to said
original algorithm. Unlike our proposed method, ELLA can-
not be easily generalized to existing multitask problems. It
only uses efficient update equations specific to their proposed
objective function.

S Experiments

All reported results in this section are averaged over 10 ran-
dom runs of the training data. Unless otherwise specified, all
model parameters are chosen via 3-fold cross validation. For
all the experiments, we update the 7 values using the equation
8. We evaluate our self-paced multitask learning algorithm
on the four well-known multitask problems (MMTL, MTFL,
MTASO), briefly discussed in the previous section. We also
compare our results with Independent multitask learning (ITL)
where each task is learned independently and Single-task learn-
ing (STL) where we learn a single model by pooling together
data from all the tasks.

2525

5.1 Synthetic Experiment

Synthetic data (syn/) consists of 30 tasks that belong to 3
groups of tasks with 15 training examples per task. We gener-
ate the task parameters as in [Kang et al., 2011]. Each example
consists of 20 features. We randomly select a subset of tasks
and increase their variance to (o = 25), and variances for the
rest of the tasks are set to be low (¢ = 5) in order to simulate
the difference between easy and hard tasks. With this setting,
we expect that our self-paced learning algorithm should be
able to learn the shared knowledge from the easier tasks and
use this knowledge to improve the performance of the harder
tasks.

Synthetic data (syn2) consists of 30 tasks with 15 training
examples per task as before. We randomly generate a 30-
dimensional vector (s1, S2, S3, . . ., S30) such that the parame-
ter for each task ¢ is given as w; = (s1, $2,...¢0,0,...,0)
and each example consists of 30 features. The dataset is con-
structed in such a way that learning the task ¢ is easier than
learning the task ¢ + 1 and so on.

The result for synl and syn2 are shown in Table 1. We report
the RMSE (mean and std) of our methods. All of our self-paced
methods perform better than their baseline methods on average
in both the synthetic datasets. Figure 1 (bottom-left) shows the
7 learned using self-paced task selection (spMTFL) at each
iteration. We can see that the tasks are selected based on their
difficulty and the number of features used in each task. Figure
1 (top-left) shows the task-specific test errors for syn2 dataset
(spMTFL vs. their corresponding baseline methods MTFL and
ITL). Each red point in the plot compares the RMSE of ITL
with spMTFL and each blue point compares the RMSE of
MTEFL vs. spMTFL. Points above the line y = = show that
the self-paced methods does better than ITL or their MTL
baseline methods. From the (MTFL vs. spMTFL) plot, we
can see that our self-paced learning method spMTFL achieves
significant improvement on harder tasks (blue points in top-
right) compared to the easier tasks (blue points in bottom-left).
Based on our learning procedure, these harder tasks must have
been learned at the later part of the learning and thus efficiently
utilize the knowledge learned from the easier tasks to improve
their performances. Similar behaviour can be observed in the
other two plots. Note that some of the points fall slightly below
the y = =z line, but since the decrease in performance of these
tasks are small, it has very little impact on the overall score. We
believe this can be avoided if we tune different regularization
parameter \; for each task. However, this will increase the
number of parameters to tune in addition to the task weight
parameters 7.

5.2 Evaluation on Real Data

We use the following benchmark real datasets for our experi-
ments on self-paced multitask learning.

London School data (school) consists of examination
scores of 15, 362 students from 139 schools in London. Each
school is considered as a task and the feature set includes
year of the examination, four school-specific and three student-
specific features. We replace each categorical feature with one
binary variable for each possible feature value, as suggested
in [Argyriou et al., 2008]. This results in 26 features with
additional feature to account for the bias term. We use the ten

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

error
error

- T Al o MTFL
<L <]

error

0 s g
error spMTFL

o 2
error spMTFL

2 4
error spMTFL

£ (W, 6}

Iteration

——MTFL (RMSE=12.13)
- - -spMTFL (A=50, RMSE=10.96)
SPMTFL (\=25, RMSE=10.97)
---spMTFL (A=10, RMSE=10.98)
——SpMTFL (A=1, RMSE=11.34) > o
- - -spMTFL (A=0.1, RMSE=12.35) =
-spMTFL (1=0.01, RMSE=12.37)

10,
22
s 09
10 08 2
5 . 19
18
2 0s
- 05 4
@ e &
15
4
“ 02
1
s ot
. 12
s 0 5 E) 2 E) o

Tasks

v s o 0 o
Iteration X (log-scale)

100

Figure 1: Error of MTFL and ITL vs. Error of spMTFL calculated for syn2 dataset (Top-left). Error of MTFL and ITL vs. Error of spMTFL
calculated for school dataset (Top-middle). Error of MTFL and ITL vs. Error of spMTFL calculated for c¢s dataset (Top-right). Values of 7 from
spMTFL at each iteration calculated for syn2 dataset (Bottom-left). Convergence of the algorithm with varying threshold A (Bottom-middle)
calculated from spMTFL for school dataset. Convergence of the algorithm with different learning pace 'c’ (Bottom-right) calculated from
spMTFL for cs dataset. The experiment shows ‘¢’ = 1.1 for learning pace yields a stable performance.

20% — 80% train-test splits that came with the dataset for our
experiments.

Computer Survey data (cs) was collected from the ratings
of 190 students on each of the 20 different personal computers.
Each student here is considered as a single task and the rating
ranges from 0 — 10. There are 20 observations in each task.
Each computer is represented by 13 different features such as
RAM, cache-size, CPU speed, etc. We add an additional fea-
ture to account for the bias term. Train-test splits are obtained
by selecting 75% — 25%, thus giving 15 examples for training
and 5 examples for test set.

Sentiment Detection data (sentiment) contains reviews
from 14 domains. The reviews are represented by a bag
of unigram/bigram TF-IDF features from a dictionary of
size 28, 775. Each review is associated with a rating from
{1,2,4,5}. We select 1, 000 reviews for each domain and cre-
ate two tasks (500 reviews per task), based on whether the
rating is 5 or not and whether the rating is 1 or not, in order
to represent the different levels of sentiment. This gives us 28
binary classification tasks. We use 120 reviews per task for
training and the rest of the reviews for test set.

Landmine Detection data (landmine) consists of 19 tasks
collected from different landmine fields. Each task is a binary
classification problem: landmines (4) or clutter (—) and each
example consists of 9 features extracted from radar images.
Landmine data is collected from two different terrains: tasks
1-10 are from highly foliated regions and tasks 11-19 are from
desert regions, therefore tasks naturally form two clusters. We
use 80 examples from each task for training and the rest as the
test data. We repeat the experiments on 10 (stratified) splits to
measure the performance reliably. Since the dataset is highly

2526

skewed, we use AUC' score to compare our results.

Table 1 summarizes the performance of our methods on the
four real datasets. We can see that our proposed self-paced
learning algorithm does well on almost all datasets. As in our
synthetic experiments, we observe that spMTFL performs sig-
nificantly better than MTFL, which is a state-of-the-art method
for multitask problems. It is interesting to see that when the
self-paced learning procedure doesn’t help the original algo-
rithm, it doesn’t perform worse than the baseline results. In
such cases, our self-paced learning algorithm gives equal prob-
ability to all the tasks (7, = +,Vt € [T]) within the first few
iterations. Thus the proposed self-paced methods reduce to
their original methods and the performance of the self-paced
methods are on par with their baselines.

We also notice that if a dataset doesn’t adhere to the assump-
tions of a model, such as task parameters lie on a manifold or
low-dimensional space, then our self-paced methods result in
little improvement, as it can be seen in cs (and also in senti-
ment for spMTASO). It is worth mentioning that our proposed
self-paced multitask learning algorithm does exceptionally
better in school, which is a benchmark dataset for multitask
experiments in the existing literature [Agarwal ef al., 2010;
Kumar and Daume, 2012]. Our proposed methods achieve
as much as 14% improvement over their baselines on some
experiments. Figures (top-middle) and (top-right) show the
task-specific errors for school and cs dataset. We can see sim-
ilar pattern as in syn2. The easier tasks learned at an earlier
stage help the harder tasks at the later stages as it is evident
from these plots.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Models synl syn2 school cs sentiment landmine

STL 1.60 (0.02) | 4.16 (0.09) | 12.13 (0.08) | 2.45(0.13) | 58.49 (0.40) | 74.11 (0.50)
ITL 1.13 (0.07) | 3.25(0.10) | 12.00 (0.04) | 1.99 (0.14) | 68.39 (0.34) | 74.39 (1.11)
MMTL 1.12 (0.07) | 3.24 (0.10) | 12.10(0.08) | 1.99 (0.18) | 68.54 (0.27) | 75.50 (1.86)
spMMTL | 1.03 (0.05) | 3.24 (0.10) | 10.34 (0.06) | 1.89 (0.10) | 68.54 (0.26) | 75.73 (1.29)
MTFL 0.81 (0.06) | 2.82(0.13) | 12.06 (0.08) | 1.91(0.18) | 68.91 (0.31) | 75.67 (1.03)
spMTFL 0.73 (0.05) | 2.34 (0.12) | 10.99 (0.08) | 1.87 (0.15) | 75.60 (0.17) | 76.92 (1.06)
MTASO 0.56 (0.03) | 2.66 (0.16) | 11.14 (0.10) | 1.38 (0.19) | 72.03 (0.18) | 72.58 (1.46)
spMTASO | 0.52 (0.03) | 2.54(0.14) | 11.14(0.11) | 1.12(0.17) | 72.36 (0.19) | 75.73 (1.46)

Table 1: Average performance on six datasets: means and standard errors over 10 random runs. We use RMSE as our performance measure for
synl, syn2, school, and cs and Area under the curve (AUC) for sentiment and landmine. Self-paced methods with the best performance against
their corresponding MTL baselines (paired t-tests at 95% significance level) are shown in boldface.

5.3 Comparing spMTFL with Sequential Learning
Algorithms

Finally, we compare our self-paced multitask learning algo-
rithm against the sequential multitask learning algorithms
(curriculum learning for multiple tasks [Pentina et al., 2015]
and efficient lifelong learning [Ruvolo and Eaton, 2013b;
Ruvolo and Eaton, 2013a] 2. We choose spMTFL for com-
parison based on its overall performance in the previous ex-
periments. We use landmine dataset for evaluation. We use
different variant of ELLA for fair comparison against our pro-
posed approach. The original ELLA algorithm assumes that the
tasks arrive randomly and the lifelong learner has no control
over their order (ELLA-random). Ruvolo and Eaton (2013a)
show that if the learner can choose the next task actively, it
can improve the learning performance using as few tasks as
possible. They proposed two active task selection procedures
for choosing the next best task: 1) Information Maximiza-
tion (ELLA-infomax) chooses the next task to maximize the
expected information gain about the basis L; 2) Diversity
(ELLA-diversity) chooses the next task as the one that the
current basis L is doing the worst performance. Both these
approaches select the tasks that are significantly different from
the previously learned tasks (active task selection), rather than
a progression of tasks that build upon each other. Our proposed
method selects the task based on the training error and its rele-
vance to the shared knowledge learned from the previous tasks
(self-paced task selection).

Figure 2 shows the task-specific test performance results
for this experiment on landmine dataset. We compare our
results from spMTFL against CL and variants of ELLA. We
use (1 — AUC) score for our comparison. As in Figure 1,
points above the line y = x show that the spMTFL does better
than the other sequential learning methods. We can see that
spMTFL outperforms all the baselines on average (76.92).
Compared to spMTFL, CL performs better on easier tasks but
worse on harder tasks. On the other hand, the performance of

http://www.seas.upenn.edu/~eeaton/
software/ELLAv1.0.zip

2527

04 _
%
_
roE
035
o R)
o © 7
g & °ox
o o §r 3
* * w7
s . g B x o
<D(o 00 v
{ . M
T @ o
+ « 5
7z o CL (AUC=75.40)
s L 9 e + ELLA-random (AUC=72.94)
o % ELLA-infomax (AUC=75.92)
8% ° 5 ELLA-diversity (AUC=73.08)
ot s o ELLA-diversity++ (AUC=71.74)
_
7 * MTFL (AUC=75.67)
0.05 /// L L

L L L
0.05 01 015 02 025 03 035 04

1-AUC spMTFL

Figure 2: Average performance on landmine for sequential learning
algorithms and spMTFL: means and standard errors over 10 random
runs. We use (1 — AUC) score as our performance measure for
comparison. Mean AUC score is shown in the bracket.

the variants of ELLA on harder tasks are comparable to that of
our self-paced method, but worse on some easier tasks.

6 Conclusion and Future Work

In this work, we proposed a novel self-paced learning frame-
work for multiple tasks that jointly learns the latent task
weights and shared knowledge from all the tasks. The pro-
posed method iteratively updates the shared knowledge based
on these task weights and thus improves the learning perfor-
mance. By allowing the 7 to take the probabilistic interpreta-
tion, we can easily see which tasks are easier to learn at any
iteration, and prefer those for task selection. In our future work,
we plan to consider a stochastic version of this algorithm to
update the shared knowledge base efficiently and study the
algorithm’s ability to handle the outlier tasks. Effectiveness of
our algorithm is empirically verified over several benchmark
datasets.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Agarwal er al., 2010] Arvind Agarwal, Samuel Gerber, and
Hal Daume. Learning multiple tasks using manifold regu-
larization. In Advances in neural information processing
systems, pages 46-54, 2010.

[Ando and Zhang, 2005] Rie Kubota Ando and Tong Zhang.
A framework for learning predictive structures from multi-
ple tasks and unlabeled data. Journal of Machine Learning
Research, 6(Nov):1817-1853, 2005.

[Argyriou et al., 2008] Andreas Argyriou, Theodoros Evge-
niou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243-272, 2008.

[Baxter and others, 2000] Jonathan Baxter et al. A model of
inductive bias learning. J. Artif. Intell. Res.(JAIR), 12(149-
198):3, 2000.

[Caruana, 1997] Rich Caruana. Multitask learning. Machine
Learning, 1(28):41-75, 1997.

[Evgeniou and Pontil, 2004] Theodoros Evgeniou and Mas-
similiano Pontil. Regularized multi—task learning. In Pro-
ceedings of the tenth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
109-117. ACM, 2004.

[Evgeniou and Pontil, 2007] A Evgeniou and Massimiliano
Pontil. Multi-task feature learning. Advances in neural
information processing systems, 19:41, 2007.

[Jiang et al., 2015] Lu Jiang, Deyu Meng, Qian Zhao,
Shiguang Shan, and Alexander G Hauptmann. Self-paced
curriculum learning. In AAAI, volume 2, page 6, 2015.

[Kang et al., 2011] Zhuoliang Kang, Kristen Grauman, and
Fei Sha. Learning with whom to share in multi-task feature
learning. In Proceedings of the 28th International Con-
ference on Machine Learning (ICML-11), pages 521-528,
2011.

[Kshirsagar ef al., 2013] Meghana Kshirsagar, Jaime Car-
bonell, and Judith Klein-Seetharaman. Multitask learn-
ing for host—pathogen protein interactions. Bioinformatics,
29(13):i217-i226, 2013.

[Kumar and Daume, 2012] Abhishek Kumar and Hal Daume.
Learning task grouping and overlap in multi-task learning.
In Proceedings of the 29th International Conference on
Machine Learning (ICML-12), pages 1383-1390, 2012.

[Kumar et al., 2010] M Pawan Kumar, Benjamin Packer, and
Daphne Koller. Self-paced learning for latent variable mod-
els. In Advances in Neural Information Processing Systems,
pages 1189-1197, 2010.

[Li et al., 2017] Changsheng Li, Fan Wei, Junchi Yan, Weis-
han Dong, Qingshan Liu, and Hongyuan Zha. Self-paced
multi-task learning. In AAAI, pages 2175-2181, 2017.

[Maurer et al., 2013] Andreas Maurer, Massimiliano Pontil,
and Bernardino Romera-Paredes. Sparse coding for mul-
titask and transfer learning. In ICML (2), pages 343-351,
2013.

[Murugesan et al., 2016] Keerthiram Murugesan, Hanxiao
Liu, Jaime Carbonell, and Yiming Yang. Adaptive

2528

smoothed online multi-task learning. In Advances in Neural
Information Processing Systems, pages 4296-4304, 2016.

[Pentina et al., 2015] Anastasia Pentina, Viktoriia Sharman-
ska, and Christoph H Lampert. Curriculum learning of
multiple tasks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5492—
5500, 2015.

[Romera-Paredes et al., 2012] Bernardino Romera-Paredes,
Andreas Argyriou, Nadia Berthouze, and Massimiliano
Pontil. Exploiting unrelated tasks in multi-task learning. In
AISTATS, volume 22, pages 951-959, 2012.

[Ruvolo and Eaton, 2013a] Paul Ruvolo and Eric Eaton. Ac-
tive task selection for lifelong machine learning. In AAAI,
2013.

[Ruvolo and Eaton, 2013b] Paul Ruvolo and Eric Eaton. Ella:
An efficient lifelong learning algorithm. ICML (1), 28:507-
515, 2013.

[Weinberger et al., 2009] Kilian Weinberger, Anirban Das-
gupta, John Langford, Alex Smola, and Josh Attenberg.
Feature hashing for large scale multitask learning. In Pro-

ceedings of the 26th Annual International Conference on
Machine Learning, pages 1113-1120. ACM, 2009.

