
Large-scale Online Kernel Learning
with Random Feature Reparameterization

Tu Dinh Nguyen†, Trung Le†, Hung Bui‡, Dinh Phung†
‡Adobe Research, Adobe Systems, Inc.

†Center for Pattern Recognition and Data Analytics, Deakin University, Australia
{tu.nguyen, trung.l, dinh.phung}@deakin.edu.au, hubui@adobe.com

Abstract
A typical online kernel learning method faces two
fundamental issues: the complexity in dealing with
a huge number of observed data points (a.k.a the
curse of kernelization) and the difficulty in learning
kernel parameters, which often assumed to be fixed.
Random Fourier feature is a recent and effective ap-
proach to address the former by approximating the
shift-invariant kernel function via Bocher’s theo-
rem, and allows the model to be maintained directly
in the random feature space with a fixed dimension,
hence the model size remains constant w.r.t. data
size. We further introduce in this paper the repa-
rameterized random feature (RRF), a random fea-
ture framework for large-scale online kernel learn-
ing to address both aforementioned challenges. Our
initial intuition comes from the so-called ‘reparam-
eterization trick’ [Kingma and Welling, 2014] to
lift the source of randomness of Fourier compo-
nents to another space which can be independently
sampled, so that stochastic gradient of the kernel
parameters can be analytically derived. We develop
a well-founded underlying theory for our method,
including a general way to reparameterize the ker-
nel, and a new tighter error bound on the approxi-
mation quality. This view further inspires a direct
application of stochastic gradient descent for up-
dating our model under an online learning setting.
We then conducted extensive experiments on sev-
eral large-scale datasets where we demonstrate that
our work achieves state-of-the-art performance in
both learning efficacy and efficiency.

1 Introduction
Massive modern datasets require scalable machine learning
methods. Online learning method answers to such call. It
exceedingly attracts research and application interest (e.g.,
[Kivinen et al., 2004; Lu et al., 2015]) due to its seamless ca-
pacity in handling large stream of data. Unlike conventional
learning algorithms that usually require an expensive proce-
dure to retrain the model on the entire dataset when a new data
sample arrives, online learning techniques utilize the ‘infor-
mation’ from the new data instance to incrementally update

the models without retraining from scratch. An early, semi-
nal line of work is online linear learning [Zinkevich, 2003]
whose goal is to learn a linear predictive model in the in-
put space. However, it relies on a rather strong assumption
that the data are well separated with a hyperplane, thus inca-
pable to model nonlinearity, a nature commonly seen in real-
world modern datasets. This motivates the work of online
kernel learning [Kivinen et al., 2004; Crammer et al., 2006;
Le et al., 2016a; Le et al., 2016c] that also uses a linear
model, but in the high-dimensional feature space via a kernel
transformation, hence offer the capacity to capture the non-
linearity in the original data space.

Nonetheless, online kernel learning methods still suf-
fer from two serious problems when applied to large-scale
datasets. First, the model size increases linearly with the data
size grown over time, posing the so-called curse of kerneliza-
tion challenge [Wang et al., 2012]. This leads to very high
computational complexity and memory demand. Various at-
tempts had been proposed to overcome this problem, which
relies on developing effective budget maintenance strategy,
such as: removal [Dekel et al., 2005], projection [Orabona
et al., 2009] or merging [Wang and Vucetic, 2009], to bound
the model size. [Wang et al., 2012] leverage the budgeted
approach with stochastic gradient descent (SGD). Although
these budget maintenance strategies are proven effective for
normal sized datasets, their high computational costs ren-
der them inapplicable for large-scale datasets. Alternative
ways are to use the random Fourier features [Rahimi and
Recht, 2007], or to use Fastfood technique [Le et al., 2013]
to approximate the original kernel function [Lu et al., 2015].
These methods first map data into a random-feature space,
and then perform the SGD directly on this feature space.
However, in order to achieve a good approximation, an ex-
cessive number of random features will be required, hence
still leading to serious computational issue.

The second drawback is that it is often infeasible to learn
kernel parameters (e.g., the width parameter in a Gaussian
kernel), since the feature map in kernel function is not de-
fined explicitly and the Fourier components in random fea-
ture are randomly sampled from a distribution. A common
solution is to search over sets of parameters to choose the
best one using cross-validation and leave-one-out [Nguyen et
al., 2016]. The grid search, however, has two key limitations:
the number of trials grows exponentially with the number of

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2543

10 10
0

20
0

40
0

80
0

12
00

16
00

Random feature dimension (D)

0

5

10

15

20

25

30

M
is

ta
ke

 ra
te

 (%
)

RRF
FOGD

Figure 1: Comparison on the mistake rates of RRF with FOGD on
the cod-rna dataset when D is varied.

parameters, hence still computational demanding; it quickly
becomes intractable under the online learning setting because
the search for parameters will be required after seeing each
single data point; and the parameter searching is typically
sub-optimal due to the discretizing step of the search space.
Another solution, named à la carte [Yang et al., 2015], is to
use gradient descent to maximize the marginal likelihood of a
Gaussian process (GP) that is formalized for kernel learning
via Fastfood basis function expansions. This method, how-
ever, also suffers from three drawbacks. First, it is expensive
to take the derivative of the marginal likelihood containing an
inverse matrix. Second, the GP marginal likelihood renders it
infeasible for online learning. Lastly, it is not straightforward
to extend this work for classification since the GP for classifi-
cation does not result in a closed-form predictive likelihood,
hence requires an approximation such as Laplace or Markov
chain Monte Carlo (MCMC).

In this paper, we propose a novel online learning random
Fourier feature framework, termed reparameterized random
feature (RRF). In retrospect, we independently discovered
that the idea of reparameterization for kernel learning has
been reported in [Băzăvan et al., 2012]; our original intuition,
however, comes from the so-called ‘reparameterization trick’
(recently proposed in the deep learning literature to train a
variational Bayes autoencoder [Kingma and Welling, 2014])
to lift the source of randomness of Fourier components to an-
other space which can be independently sampled, leaving the
original kernel parameters intact so that gradient of these pa-
rameters can analytically be derived. The new kernel repre-
sentation now becomes a deterministic function of the kernel
parameters. Assuming differentiability, we are then able to
incrementally update learn these parameters under a suitable
optimization formulation. As a motivating example, this al-
lows us to, instead of learning a single kernel shared among
the features [Chapelle et al., 2002], efficiently learn a dif-
ferent parameter for each feature, thus achieves better predic-
tion results using a 80-fold smaller random feature dimension
(D=20) than that of FOGD (D=1,600) as shown in Fig. 1. The
much smaller D, as a result, significantly reduces the com-
putational complexity of RRF which will be reported in the
experiment section.

A natural and important question to ask is how good an

approximating kernel via random feature representation is.
To our knowledge, this question has not been properly ad-
dressed in the existing work including [Băzăvan et al., 2012;
Moeller et al., 2016]. To fill in this gap, we provide theo-
retical analysis where we derive the high probability bound
for the gap between the approximated kernel value and the
true kernel one. We show that with a high probability, the
random feature kernel can approximate the original kernel to
within arbitrary ε-precision. Furthermore our new bound is
considerably tighter than that of the standard random feature
[Rahimi and Recht, 2007]. Our work also goes beyond exist-
ing literature to suggest a richer class of solutions for kernel
learning problem across a wide spectrum of reproducing ker-
nel Hilbert spaces (cf. Section 3.2). This can be performed by
applying our framework to transform the optimization prob-
lem into a non-convex objective involving both the kernel and
model parameters. This view further inspires a direct appli-
cation of SGD for updating the model under an online learn-
ing setting. Moreover, in the light of our proposed frame-
work, a class of reparameterized random features for other
kernels (e.g., spectral mixture kernels [Wilson and Adams,
2013] with both parametric and nonparametric [Oliva et al.,
2015] versions) can also be derived as long as an appropriate
mapping can be specified. These points further differentiate
our work from the recent related work [Băzăvan et al., 2012;
Moeller et al., 2016] that uses the inverse of Gaussian error
function to transform the uniform space to the desirable dis-
tribution with no theoretical analysis provided to bound the
approximation error. In addition, those studies are limited to
batch setting due to their single gradient updates.

To demonstrate the practical applications of RRF, we fur-
ther conduct extensive experiments on 7 large-scale real-
world datasets on classification and regression tasks under
online settings. We compare the predictive performance and
running time of our proposed models with those of the state-
of-the-art online learning methods. The experimental results
show that our proposed RRF beats baselines by a large mar-
gin, and achieves state-of-the-art mistake rates and regression
errors in all cases, whilst its execution time is orders of mag-
nitude faster at than the baselines.

2 Random Fourier Features
Let x ∈ RN denote the N-dimensional vector in data do-
main X . The vanilla kernel methods define an implicit lifting
φ (x) from data space to feature space, and the inner product
〈φ (x) ,φ (x′)〉 is evaluated through a positive semi-definite
kernel κ (x,x′) using the so-called kernel trick. To construct
an explicit representation of φ (x), the key idea is to approx-
imate the original kernel κ (x,x′) using a kernel induced by
a random finite-dimensional feature map. The mathemati-
cal tool behind this approximation is the Bochner’s theorem
[Bochner, 1959] which states that every shift-invariant kernel
κ (x,x′) can be represented as an inverse Fourier transform
of a proper distribution p (ω) as below:

κ (x,x′) = k (u) =

ˆ
p (ω) eiω

>udω (1)

where u = x − x′ and i represents the imaginary unit (i.e.,
i2 = −1). In addition, the corresponding proper distribution

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2544

p (ω) can be recovered through Fourier transform as follows:

p (ω) =

(
1

2π

)N ˆ
k (u) e−iu

>ωdu (2)

Well-known shift-invariant kernels include Gaussian,
Laplacian and Cauchy. In this work, we use a single Gaussian
kernel: κσ (x,x′) = exp[− 1

2 (x− x′)
> diag (σ) (x− x′)]

parameterized by a vector σ = [σn]
N
n=1 that denotes the ker-

nel width. From Eq. (2), we obtain the proper distribution:

p (ω) ∝
ˆ

exp

(
−1

2
u>diag (σ)u

)
e−iu

>ωdu (3)

From Eqs.(1, 3), we can derive the kernel κσ (x,x′) as:

κσ (x,x′) ≈ 1

D

∑D

d=1

[
cos
(
ω>d (x− x′)

)]
(4)

where we have sampled ωd
iid∼ N (ω | 0, diag (σ)) to use

Monte Carlo approximation. Eq. (4) sheds light on the con-
struction of a 2D-dimensional random map zσ : X → R2D:

z>σ (x) =
[
cos
(
ω>d x

)
/
√
D, sin

(
ω>d x

)
/
√
D
]D
d=1

(5)

resulting in the induced kernel κ̃ω (x,x′) = zσ (x)
>

zσ (x′)
that can accurately and efficiently approximate the original
kernel: κ̃ω (x,x′) ≈ κσ (x,x′).

3 Online learning with RRF
In this section we present our main contribution of a proposed
framework for large-scale kernel online learning.

3.1 Reparameterized Random Feature
The advantage of using random feature as in Eq. (5) is
twofold. First, the explicit mapping with finite dimension
help to avoid the curse of kernelization problem. Second,
we can control the discrepancy between the original and ap-
proximate kernels by varying D. In principle, a larger D leads
to a more precise approximation, but at the cost of computa-
tional complexity. In addition, since {ωd}Dd=1 in Eq. (4) are
i.i.d drawn from the distribution parameterized by the kernel
parameters σ: ωd

iid∼ N (ω | 0, diag (σ)), it is infeasible to
learn these kernel parameters. To this end, we shift this source
of randomness to an auxiliary space of noise variable e ∈ RN

using the reparameterization trick as: ωd = diag (σ) ed

where ed
iid∼ N (e | 0, I). The mapping ωd now becomes

differentiable function w.r.t σ, and hence allowing to update
σ. The kernel in Eq. (4) now can be approximated as below:

κσ (x,x′) ≈ 1

D

D∑
d=1

{
cos
[
(diag (σ) ed)

>
(x− x′)

]}
Therefore we can construct a new random feature map ẑσ :
X → R2D, termed reparameterized random feature (RRF),
wherein ẑσ (x)

> is given as:[
cos
(
(diag (σ) ed)

>
x
)
, sin

(
(diag (σ) ed)

>
x
)]D

d=1
/
√
D

associated with the induced kernel κ̃e (x,x
′) =

ẑσ (x)
>

ẑσ (x) that approximates original kernel κσ (x,x′).
We now analyze the quality of this approximation.

Lemma 1. Given x,x′ ∈ X , this statement is guaranteed

P (|κ̃e (x,x′)− κσ (x,x′)| ≥ ε) ≤ 2 exp
(
−Dε2/2

)
Proof. Let us denote:

he (x) =
[
cos
(
(diag (σ) ed)

>
x
)
, sin

(
(diag (σ) ed)

>
x
)]>

It is clear that: Ee∼N (0,I)[he (x)
>

he (x
′)] = κσ (x,x′). We

further denote Xd = D−1hed
(x)
>

hed
(x′) , d = 1, ...,D

where hed
is the vector associated with noise vector ed. It fol-

lows that−D−1 ≤ Xd ≤ D−1. Let us define S =
∑D
d=1Xd.

We then have:

E [S] =
D∑
d=1

E [Xd] =
D∑
d=1

D−1κσ (x,x′) = κσ (x,x′)

Using Chernoff-Hoeffding inequality, we arrive:

P (|S − E [S]| ≥ ε) ≤2 exp
(
−Dε2/2

)
P (|κ̃e (x,x′)− κσ (x,x′)| ≥ ε) ≤2 exp

(
−Dε2/2

)
This result guarantees the exponentially fast convergence of
the upper bound of approximation error probability w.r.t the
number of random features D (cf., Fig. 1 in supplement1).

Theorem 2. With a probability at least 1 −
27
(

diam(X)‖σ‖
ε

)2
exp

(
−Dε2
4(N+2)

)
where we assume that

0 < ε ≤ diam (X) ‖σ‖ and diam (X) is the diameter of the
compact set X , we have the following inequality

sup
x,x′∈X

|κ̃e (x,x′)− κσ (x,x′)| < ε

Proof. (cf., Section 2 in supplementary material for
more details of some derivations) Let us denote U =
{u = x− x′ : x,x′ ∈ X}. It is obvious that diam(U) ≤
2diam (X). It is also clear that U is compact. Given r >

0, let C = N (r,U) ≤
(

2diam(U)
r

)N
≤
(

4diam(X)
r

)N
be

the covering number w.r.t the compact set U and the ra-
dius r. We further denote the corresponding covering set by
U = {uc}Cc=1, i.e., X ′ ⊂ ∪cS (uc, r). Here we note that
S (u, r) = {v : ‖v − u‖ ≤ r}.

We define f (x,x′) = κ̃e (x,x
′) − κσ (x,x′) = k̃e (u) −

k (u) = g (u) where u = x − x′ ∈ X ′. We further define
the Lipschitz constant of g (·) by Lg . Since g (·) is smooth,
Lg = maxu∈U ‖∇g (u)‖. Given x,x′, there exists uc ∈ U
such that ‖u− uc‖ ≤ r. We then have:

|f (x,x′)| = |g (u)| ≤ |g (u)− g (uc)|+ |g (uc)|
≤ Lg ‖u− uc‖+ |g (uc)| ≤ Lgr + |g (uc)|

Therefore, if we ensure that Lg < ε
2r and |g (uc)| =

|κ̃e (xc,x′c)− κσ (xc,x
′
c)| < ε

2 , ∀c = 1, ...,C, we then have
|f (x,x′)| < ε. Using Markov inequality, we have:

P
(
Lg ≥

ε

2r

)
= P

(
L2
g ≥

ε2

4r2

)
≤

E
[
L2
g

]
ε2/ (4r2)

≤ 4r2 ‖σ‖2

ε2

1https://tund.github.io/papers/tu etal ijcai17 rrf supp.pdf

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2545

Using Boole’s inequality and Lemma 1, we obtain:

P
(
∪Cc=1 |κ̃e (xc,x′c)− κσ (xc,x

′
c)| ≥

ε

2

)
≤ 2C exp

(
−Dε2

8

)
We finally can bound the probability of interest as:

P
(

sup
x,x′∈X

|κ̃e (x,x′)− κσ (x,x′)| ≥ ε

2

)
≤ 2 [4diam (X) /r]N exp

(
−Dε2/8

)
+ 4r2 ‖σ‖2 /ε2

The RHS has the form of τ1r−N + τ2r
2. Choosing r =

(τ1/τ2)
1

N+2 , the RHS becomes:

2

√
τ1τ2

(
τ1
τ2

)−N+2
N+2

= 2τ
2

N+2

1 τ
N

N+2

2

≤ 27
(

diam (X) ‖σ‖
ε

)2

exp

(
− Dε2

4 (N + 2)

)
(6)

This bound is considerably tighter than what of standard ran-
dom feature (cf. Claim 1 of [Rahimi and Recht, 2007]).

3.2 Online Kernel Parameter Learning
We now view the online kernel parameter learning as an opti-
mization problem across the class of parameterized reproduc-
ing kernel Hilbert spaces (RKHS). Let D = {(xm, ym)}Mm=1
be a set of M training data samples xm and labels ym. Given
a kernel κσ (x,x′) = exp

[
− 1

2 (x− x′)
> diag (σ) (x− x′)

]
parameterized by σ ∈ RN, let us denote the associated fea-
ture map and RKHS by φσ and Hσ , respectively, that is:
φσ : X → Hσ . To learn the kernel parameters, we propose
to solve the following optimization problem:

min
σ

min
w∈Hσ

J (w) ,
λ

2
‖w‖2 + EP

[
`
(
y,w>φσ (x)

)]
(7)

wherein P is either the joint distribution PX×Y in online
setting, or the empirical distribution PD in batch setting;
λ ≥ 0 denotes the regularization parameter; and ` is a con-
vex loss function parameterized by w. For binary classifica-
tion, two typical examples are Hinge loss and logistic loss,
which are then extended to work for multiclass classification
[Crammer and Singer, 2001] with the new objective function:
J (w) , λ

2 ‖w‖
2
+EP

[
`
(
w>y φσ (x)−w>z φσ (x)

)]
where

z = argmaxk 6=y w>k φσ (x). For regression, three widely-
used functions are: `1, `2 and ε-insensitive losses.

According to Theorem 2, each ẑσ : X → R2D is a tight
approximation of φσ whose induced kernels can be arbitrar-
ily close. Therefore we can cast the optimization problem in
Eq. (7) into the following objective function:

min
σ∈RN,w∈R2D

λ

2
‖w‖2 + EP

[
`
(
y,w>ẑσ (x)

)]
(8)

The advantage of the optimization problem in Eq. (8) is that,
together with the model parameter w, the kernel parameter σ
now becomes a learnable variable. More specifically, we first
take the gradient w.r.t parameterσ as: ∇σ`

(
y,w>ẑσ (x)

)
=

D∑
d=1

[
−x sin

(
ω>d x

)
,x cos

(
ω>d x

)]>∇>[ẑσ(x)]d
`� ed (9)

Algorithm 1 RRF for online learning.
Input: N,D, learning rate η

1: γ = 0, w = 0, c = 0, err = 0

2: Σ = [εd]
D
d=1 ∈ RN×D with εd ∼ N (0, I)

3: for t = 1, 2, ...,T do
4: Receive (xt, yt)
5: u = ediag(γ)Σ
6: ẑσ (x) =

[
cos
(
x>t u

)
, sin

(
x>t u

)]>
7: Predict:
8: ŷt = sign

(
w>ẑσ (x)

)
binary

9: ŷt = argmax
(
w>ẑσ (x)

)
multiclass

10: ŷt = w>ẑσ (x) for regression
11: c = c+ I (yt 6= ŷt) for classification
12: err = err + (yt − ŷt)

2 for regression
13: w = w − η∇w`

(
yt,w

>ẑσ (x)
)

14: γ = γ − η
[
∇σ`

(
yt,w

>ẑσ (x)
)
� eγ

]
15: end for

Output: c
T for classification or

√
err
T for regression

The derivative of loss function ` w.r.t [ẑσ (x)]d can be com-
puted similarity to what w.r.t w. We then use SGD to update
their values in online setting. The pseudo-code of RRF is pre-
sented in Alg. 1. Note that as the variance σ is constrained to
be positive, we learn its log-variance γ instead, hence natu-
rally inducing a positive variance.

4 Experiments
We conduct comprehensive experiments on large-scale real-
world datasets to demonstrate the superior performance of
our RRF, compared with recent state-of-the-art online learn-
ing approaches on classification and regression tasks.

4.1 Data statistics and experimental setup
We use 7 datasets (casp, slice, ijcnn1, cod-rna, poker, year,
and airlines) of varied sizes to clearly expose the differ-
ences in scalable capabilities of the models. Three of which
are large-scale datasets (year: 515, 345; poker: 1, 025, 010;
and airlines: 5, 929, 413), whilst the rest are medium-sized
databases (casp: 45, 730; slice: 53, 500; ijcnn1: 141, 691;
and cod-rna: 331, 152). These datasets can be downloaded
from LIBSVM and UCI websites, except the airlines data
which was obtained from American Statistical Association
(ASA2). For the airlines dataset, our aim is to predict whether
a flight will be delayed or not under binary classification set-
ting, and how long (in minutes) the flight will be delayed in
terms of departure time under regression setting. A flight is
considered delayed if its delay time is above 15 minutes, and
non-delayed otherwise. Following the procedure in [Hens-
man et al., 2013], we extract 8 features for flights in the year
of 2008, and then normalize them into the range [0,1].

For each dataset, we perform 10 runs on each algorithm
with different random permutations of the training data sam-
ples. In each run, the model is trained in a single pass through
the data. Its prediction result and time spent are then re-
ported by taking the average together with the standard de-

2http://stat-computing.org/dataexpo/2009/.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2546

10 50 100 150 200 400
Random…Feature…Dimension…(D)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Av
er

ag
e…

ra
te

…
of

…
m

is
ta

ke
s…

(%
)

RRF-Mistake-rate
RRF-Running-time

16

18

20

22

24

26

28

30

32

R
un

ni
ng

…
tim

e

Figure 2: The effect of random feature dimension D on the mistake
rate and running time.

viation over all runs. For comparison, we employ 12 state-of-
the-art online kernel learning methods: perceptron [Freund
and Schapire, 1999], online gradient descent (OGD) [Kivi-
nen et al., 2004], randomized budget perceptron (RBP) [Cav-
allanti et al., 2007], forgetron [Dekel et al., 2005] projec-
tron, projectron++ [Orabona et al., 2009], budgeted passive-
aggressive simple (BPAS) [Wang and Vucetic, 2010], bud-
geted SGD using merging strategy (BSGD-M) [Wang et al.,
2012], bounded OGD (BOGD) [Zhao et al., 2012], Fourier
OGD (FOGD), Nystrom OGD (NOGD) [Lu et al., 2015] and
Dual Space OGD (DualSGD) [Le et al., 2016b]. Their im-
plementations are published as a part of LIBSVM, Budget-
edSVM [Wang et al., 2012] and LSOKL [Lu et al., 2015]
toolboxes. We exclude the comparison with [Băzăvan et al.,
2012; Moeller et al., 2016; Yang et al., 2015] since they were
designed for batch setting.

4.2 Model evaluation on the effect of D
We first investigate the effect of hyperparameters, i.e., ran-
dom feature dimension D on the performance behavior of
RRF. Particularly, we conduct an initial analysis to quanti-
tatively evaluate the sensitivity of this hyperparameter and its
impact on the predictive accuracy and wall-clock time. This
analysis provides an approach to find the best setting of hy-
perparameters. Here the RRF with Hinge loss is trained on
the cod-rna dataset under the online classification setting.

We vary D in the range of {10, 20, 50, 100, 150, 200,
400}. For each setting, we run our models and record the
average mistake rates and running time as shown in Fig. 2.
There is a pattern that the classification error decreases for
larger D whilst the wall-clock time increases. This represents
the trade-off between model discriminative performance and
model computational complexity via the number of random
features. In this analysis, we can choose D = 100 to balance
the performance and computational cost.

4.3 Online classification
We now examine the performances of RRFs in the online
classification task. We use 4 datasets: cod-rna, ijcnn1, poker,
and airlines (delayed and non-delayed labels). We create 2
versions of our approach: RRF with Hinge loss (RRF-Hinge)
and RRF with Logistic loss (RRF-Logit). It is worth men-
tioning that the Hinge loss is not a smooth function, i.e., its
gradient is undefined at the point that the classification confi-
dence yf (x) = 1. Following the sub-gradient definition, in

Dataset cod-rna ijcnn1
[B | D | D̂] [400 | 100 | 1, 600] [1, 000 | 100 | 4, 000]
Algorithm Mistake Rate Time Mistake Rate Time
Perceptron 9.79±0.04 1,393 12.85±0.09 728

OGD 7.81±0.03 2,804 10.39±0.06 960
RBP 26.02±0.39 86 15.54±0.21 54

Forgetron 28.56±2.22 103 16.17±0.26 61
Projectron 11.16±3.61 97 12.98±0.23 59

Projectron++ 17.97±15.60 1,800 9.97±0.09 750
BPAS 11.97±0.09 92 10.68±0.05 55

BSGD-M 5.33±0.04 185 9.14±0.18 1,563
BOGD 38.13±0.11 105 10.87±0.18 56
FOGD 7.15±0.03 53 9.41±0.03 26
NOGD 7.83±0.06 105 10.43±0.08 59

DualSGD 4.83±0.21 32 8.35±0.20 12
RRF-Logit 4.37±0.04 37 4.16±0.28 23

RRF-Hinge 4.33±0.05 21 3.68±0.17 10
Dataset poker airlines

[B | D | D̂] [1, 000 | 200 | 4, 000] [1, 000 | 100 | 4, 000]
Algorithm Mistake Rate Time Mistake Rate Time

FOGD 52.28±0.04 928.89 20.98±0.01 1,270.75
NOGD 44.90±0.16 4,920.33 25.56±0.01 3,553.50

DualSGD 46.65±0.14 133.50 19.28±0.00 472.21
RRF-Logit 43.47±0.12 186.97 18.70±0.00 644.30

RRF-Hinge 43.39±0.12 172.19 18.79±0.00 430.54

Table 1: Mistake rate (%) and execution time (seconds). The no-
tation [B;D; D̂] denotes the budget size B, the number of random
features D and D̂ of RRF and FOGD, respectively. The best perfor-
mance is in bold, and the runner-up in italic.

our experiment, we compute the gradient if yf (x) < 1, and
set it to 0 otherwise.

For each method, we tune its regularization parameter λ
or C, learning rate η, and RBF kernel width γ (our RRF can
learn γ) using grid search on a subset of data. In particular, we
randomly pick 10% of medium-sized datasets, but only 1% of
large-scale datasets, so that the searching can finish within an
acceptable time budget. The hyperparameters are varied in
certain ranges and selected for the best performance (mistake
rate) on these subsets. The ranges are given as follows: λ ∈
{2−4/M, 2−2/M, ..., 216/M}, γ ∈ {2−8, 2−4, 2−2, 20, 22,
24, 28}, and η ∈ {10−5, 3 × 10−5, 10−4, ..., 10−2} where
M is the number of data points. The random feature dimen-
sion D of RRF is selected following the approach described
in Section 4.2. For the budget size B in NOGD and budgeted
algorithms such as RBP, BSGD-M, BOGD, and the feature
dimension D̂ in FOGD for each dataset, we use identical val-
ues to those used in Section 7.1.1 of [Lu et al., 2015]. For
DualSGD, we adopt the results from [Le et al., 2016b].

Table 1 reports the average classification results and execu-
tion time after the methods see all data samples. Note that for
two biggest datasets (poker, airlines) that consist of millions
of data points, we only include the fast algorithms FOGD,
NOGD, DualSGD and RRFs. The other methods would ex-
ceed the time limit, which we set to two hours, when running
on such data as they suffer from serious computation issue.
In general, our proposed model beats all recent advanced on-
line methods by a large margin, thus achieves state-of-the-art
performance in both learning efficacy and efficiency. In par-
ticular, we can draw key observations as follows.

The budgeted online and random feature approaches show
their effectiveness with substantially faster computation than

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2547

the ones without budgets. More specifically, the execution
time of our proposed models is several orders of magnitude
(150x) lower than that of regular online algorithms (e.g., 21
and 10 seconds compared with 2, 804 and 1, 563 seconds for
cod-rna and ijcnn1 datasets). Moreover, our models are twice
as fast as the recent fast algorithm FOGD for cod-rna and
ijcnn1 datasets, and approximately 8 and 3 times for vast-
sized data poker and airlines. This is because the FOGD
must maintain a very high random feature space, whose di-
mensionality is 20 or 40 times larger than that of RRFs, to
achieve respectable results.

Second, in terms of classification, the RRF-Hinge and
RRF-Logit significantly outperform other methods for all
datasets. RRF-based methods achieve the best mistake rates
4.33, 3.68 and 18.70 for the cod-rna, ijcnn1 and airlines data,
that are, respectively, 10%, 56% and 3% lower than the error
rates of the runner-up, up-to-date model DualSGD. For poker
dataset, our methods obtain slightly better results than that
of the NOGD, but still surpass DualSGD and FOGD with a
large margin. The underlying reason is that the RRF can up-
date the kernel width parameters to reflect the information of
incoming data samples. This would help the model adapt to
the growth of data, allowing for more accurate predictions.

Finally, two versions of RRFs demonstrate similar dis-
criminative performances and computational complexities
wherein the RRF-Logit is slightly slower due to the additional
exponential operators. All of these observations validate the
state-of-the-art effectiveness and efficiency of our proposed
method. Thus, we believe that the RRF is a very competitive
technique for building scalable online kernel learning algo-
rithms for large-scale classification tasks.

4.4 Online regression
The last experiment addresses the online regression problem
to evaluate the capabilities of our approach with 3 proposed
loss functions: `1, `2 and ε-insensitive losses. Incorporating
these loss functions creates three versions: RRF-ε, RRF-`1
and RRF-`2. We use four datasets: casp, slice, year and air-
lines (delay minutes), and 7 baselines: RBP, Forgetron, Pro-
jectron, BOGD, FOGD, NOGD and DualSGD. We adopt the
same hyperparameter searching procedure as in Section 4.3.

Table 2 reports the average regression errors and compu-
tation costs after the methods see all data samples. Our
proposed method, once again, outperforms all baselines
to achieve state-of-the-art prediction results within much
smaller computational time budget. In particular, our mod-
els enjoy a significant advantage in computational efficacy
whilst achieve better regression results than those of other
methods in almost all datasets. Among the baselines, the Du-
alSGD is the fastest, that is, its time costs can be considered to
compare with those of our methods, but its regression perfor-
mances are worse. The remaining algorithms usually obtain
better results, but at the cost of scalability. Exceptionally in
the slice data, the prediction performance of Projectron is sur-
prisingly high, thus we sacrifice the running speed to improve
our prediction result using a fivefold increase of D from 100
to 500. Our method now surpasses the Projectron and reduces
the prediction error of FOGD by 50%.

Finally, comparing the capability of three RRF’s variants,

Dataset casp slice
[B | D | D̂] [400 | 100 | 2, 000] [1, 000 | 500 | 3, 000]
Algorithm RMSE Time RMSE Time

RBP 0.320 7.15 0.115 810.14
Forgetron 0.317 10.14 0.113 1,069.15

Projectron 0.269 8.48 0.077 814.37
BOGD 0.286 6.20 0.172 816.16
FOGD 0.378 5.83 0.144 20.65
NOGD 0.251 6.99 0.087 812.69

DualSGD 0.320 5.81 0.240 26.00
RRF-ε 0.246 3.82 0.081 94.86

RRF-`1 0.250 4.13 0.084 377.78
RRF-`2 0.241 3.78 0.076 319.23
Dataset year airlines

[B | D | D̂] [400 | 20 | 1, 600] [1, 000 | 50 | 2, 000]
Algorithm RMSE Time RMSE Time

RBP 0.189 605.42 36.507 3,418.89
Forgetron 0.188 904.09 36.507 5,774.47

Projectron 0.139 605.19 36.137 3,834.19
BOGD 0.201 596.10 35.735 3,058.96
FOGD 0.158 76.70 53.164 646.15
NOGD 0.138 607.37 34.742 3,324.38

DualSGD 0.124 47.29 36.200 443.39
RRF-ε 0.122 33.66 35.390 438.81

RRF-`1 0.127 54.21 35.384 493.91
RRF-`2 0.122 52.29 33.316 470.51

Table 2: Root mean squared error (RMSE) and execution time (sec-
onds) of 6 baselines and 3 versions of our RRFs. [B | D | D̂] denotes
the same meanings as those in Table 1. The best performance is in
bold, and the runner-up in italic.

all models demonstrate similar regression capabilities and
computational complexities wherein the RRF-`2 achieves the
best prediction results due to the agreement of its objective
function and the evaluation criteria (RMSE). The RRF-ε is
faster than others since the indicator function I {·} reduces a
large number of operations in computing the gradient. These
observations, once again, verify the state-of-the-art effective-
ness and efficiency of our proposed techniques. Therefore the
RRF is also a strong candidate to perform online regression
task for large-scale datasets.

5 Conclusion
We have introduced a novel random Fourier feature frame-
work – reparameterized random feature (RRF) that addresses
the two most pressing problems in online kernel learning:
curse of kernelization and learning kernel parameters. More
specifically, we have reparameterized the Fourier components
to lift the source of randomness to another space, enabling
to incrementally update the kernel parameters under an on-
line learning setting. We provide a well-founded underlying
theory for our method where we offer a principled way to
reparameterize the kernel with a newly tight error bound un-
der a different optimization view. Experiments on large-scale
datasets demonstrate that our proposed model achieves state-
of-the-art results in both learning efficacy and efficiency.
Acknowledgments. This work was partially supported by
the Australian Research Council (ARC) and the CoE in Ma-
chine Learning and Big Data.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2548

References
[Băzăvan et al., 2012] Eduard Gabriel Băzăvan, Fuxin Li,

and Cristian Sminchisescu. Fourier kernel learning. In
European Conference on Computer Vision (ECCV), pages
459–473. Springer, 2012.

[Bochner, 1959] Salomon Bochner. Lectures on Fourier In-
tegrals, volume 42. Princeton University Press, 1959.

[Cavallanti et al., 2007] Giovanni Cavallanti, Nicolo Cesa-
Bianchi, and Claudio Gentile. Tracking the best hyper-
plane with a simple budget perceptron. Machine Learning,
69(2-3):143–167, 2007.

[Chapelle et al., 2002] Olivier Chapelle, Vladimir Vapnik,
Olivier Bousquet, and Sayan Mukherjee. Choosing mul-
tiple parameters for support vector machines. Machine
learning, 46(1-3):131–159, 2002.

[Crammer and Singer, 2001] Koby Crammer and Yoram
Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learn-
ing Research (JMLR), 2:265–292, December 2001.

[Crammer et al., 2006] Koby Crammer, Ofer Dekel, Joseph
Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. Journal of Machine Learn-
ing Research (JMLR), 7:551–585, 2006.

[Dekel et al., 2005] Ofer Dekel, Shai Shalev-Shwartz, and
Yoram Singer. The forgetron: A kernel-based perceptron
on a fixed budget. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 259–266, 2005.

[Freund and Schapire, 1999] Yoav Freund and Robert E
Schapire. Large margin classification using the perceptron
algorithm. Machine learning, 37(3):277–296, 1999.

[Hensman et al., 2013] James Hensman, Nicolo Fusi, and
Neil D Lawrence. Gaussian processes for big data. In Un-
certainty in Artificial Intelligence (UAI), pages 1–9, 2013.

[Kingma and Welling, 2014] Diederik P Kingma and Max
Welling. Auto-encoding variational bayes. In The Inter.
Conf. on Learning Representations (ICLR), 2014.

[Kivinen et al., 2004] Jyrki Kivinen, Alexander J Smola, and
Robert C Williamson. Online learning with kernels.
IEEE Transactions on Signal Processing, 52(8):2165–
2176, Aug 2004.

[Le et al., 2013] Quoc Le, Tamás Sarlós, and Alex Smola.
Fastfood - approximating kernel expansions in loglinear
time. In Proceedings of the international conference on
machine learning (ICML), pages 1281–1289, 2013.

[Le et al., 2016a] Trung Le, Phuong Duong, Mi Dinh, Tu D
Nguyen, Vu Nguyen, and Dinh Phung. Budgeted semi-
supervised support vector machine. In Uncertainty in Ar-
tificial Intelligence (UAI), pages 377–386, 2016.

[Le et al., 2016b] Trung Le, Tu D Nguyen, Vu Nguyen, and
Dinh Phung. Dual space gradient descent for online learn-
ing. In Advances in Neural Information Processing Sys-
tems 29 (NIPS), pages 4583–4591. 2016.

[Le et al., 2016c] Trung Le, Vu Nguyen, Tu D Nguyen, and
Dinh Phung. Nonparametric budgeted stochastic gradient

descent. In 19th International Conference on Artificial In-
telligence and Statistics (AISTATS), pages 654–572, 2016.

[Lu et al., 2015] Jing Lu, Steven CH Hoi, Jialei Wang, Peilin
Zhao, and Zhi-Yong Liu. Large scale online kernel learn-
ing. Journal of Machine Learning Research (JMLR), 2015.

[Moeller et al., 2016] John Moeller, Vivek Srikumar,
Sarathkrishna Swaminathan, Suresh Venkatasubramanian,
and Dustin Webb. Continuous kernel learning. In Euro-
pean Conference on Machine Learning (ECML), pages
657–673. Springer, 2016.

[Nguyen et al., 2016] Khanh Nguyen, Trung Le,
Vu Nguyen, Tu D Nguyen, and Dinh Phung. Mul-
tiple kernel learning with data augmentation. In the
8th Asian Conference on Machine Learning (ACML),
volume 63, pages 49–64, 16–18 Nov 2016.

[Oliva et al., 2015] Junier Oliva, Avinava Dubey, Barn-
abas Poczos, Jeff Schneider, and Eric P Xing.
Bayesian nonparametric kernel-learning. arXiv preprint
arXiv:1506.08776, 2015.

[Orabona et al., 2009] Francesco Orabona, Joseph Keshet,
and Barbara Caputo. Bounded kernel-based online learn-
ing. Journal of Machine Learning Research (JMLR),
10:2643–2666, 2009.

[Rahimi and Recht, 2007] Ali Rahimi and Benjamin Recht.
Random features for large-scale kernel machines. In Neu-
ral Information Processing Systems, volume 3, 2007.

[Wang and Vucetic, 2009] Zhuang Wang and Slobodan
Vucetic. Twin vector machines for online learning on a
budget. In SDM, pages 906–917. SIAM, 2009.

[Wang and Vucetic, 2010] Zhuang Wang and Slobodan
Vucetic. Online passive-aggressive algorithms on a
budget. In AISTATS, volume 9, pages 908–915, 2010.

[Wang et al., 2012] Zhuang Wang, Koby Crammer, and Slo-
bodan Vucetic. Breaking the curse of kernelization: Bud-
geted stochastic gradient descent for large-scale svm train-
ing. JMLR, 13(1):3103–3131, 2012.

[Wilson and Adams, 2013] Andrew Gordon Wilson and
Ryan Prescott Adams. Gaussian process kernels for pat-
tern discovery and extrapolation. In International Confer-
ence in Machine Learning (ICML) 2013, volume 28, pages
1067–1075, 2013.

[Yang et al., 2015] Zichao Yang, Alexander J Smola,
Le Song, and Andrew Gordon Wilson. A la carte-learning
fast kernels. In 18th International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 38, pages
1098–1106, San Diego, USA, 9–12 May 2015.

[Zhao et al., 2012] Peilin Zhao, Jialei Wang, Pengcheng Wu,
Rong Jin, and Steven CH Hoi. Fast bounded online gra-
dient descent algorithms for scalable kernel-based online
learning. arXiv preprint arXiv:1206.4633, 2012.

[Zinkevich, 2003] Martin Zinkevich. Online convex pro-
gramming and generalized infinitesimal gradient ascent. In
International Conference on Machine Learning (ICML).
Carnegie Mellon University, 2003.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2549

