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Abstract

Hierarchical Pitman-Yor Process priors are com-
pelling for learning language models, outperform-
ing point-estimate based methods. However, these
models remain unpopular due to computational and
statistical inference issues, such as memory and
time usage, as well as poor mixing of sampler. In
this work we propose a novel framework which
represents the HPYP model compactly using com-
pressed suffix trees. Then, we develop an efficient
approximate inference scheme in this framework
that has a much lower memory footprint compared
to full HPYP and is fast in the inference time. The
experimental results illustrate that our model can
be built on significantly larger datasets compared
to previous HPYP models, while being several or-
ders of magnitudes smaller, fast for training and
inference, and outperforming the perplexity of the
state-of-the-art Modified Kneser-Ney count-based
LM smoothing by up to 15%.

1 Introduction
Statistical Language Models (LM) are the key components
of many tasks in Natural Language Processing, such as Sta-
tistical Machine Translation, and Speech Recognition. Con-
ventional LMs are n-gram models which apply the Markov
assumption to approximate the probability of a sequence wN1
as,

P (wN1 ) =
N∏
i=1

P (wi|wi−11 ) ≈
N∏
i=1

P (wi|wi−1i−n+1). (1)

Several smoothing techniques have been proposed to address
the statistical sparsity issue in computation of each condi-
tional probability term. The widely used smoothing tech-
niques for LM are Kneser-Ney (KN) [Kneser and Ney, 1995],
and its extension Modified Kneser-Ney (MKN) [Chen and
Goodman, 1999]. The intuition behind KN, MKN and their
extensions [Shareghi et al., 2016a] is to adjust the original
distribution to assign non-zero probability to unseen or rare
events. This is achieved by re-allocating the probability mass
in an interpolative procedure via absolute discounting.

It turns out that the Bayesian generalisation of KN family
of smoothing is the Hierarchical Pitman-Yor Process (HPYP)
LM [Teh, 2006a], which was originally developed for finite-
order LM [Teh, 2006b], and was extended as the Sequence
Memoizer (SM) [Wood et al., 2011] to model infinite-order
LMs. While capturing the long range dependency via HPYP
improves the estimation of conditional probabilities, these
types of models remain impractical due to several computa-
tional and learning challenges, namely large model size (data
structure representing the model, and the number of parame-
ters), long training and test time, and poor sampler mixing.

In this paper we address aforementioned issues; inspired
by the recent advances in using compressed data structures in
LM [Shareghi et al., 2015; 2016b] our model is built on top
of a compressed suffix tree (CST) [Ohlebusch et al., 2010].
In the training step, only the CST representation of text is
constructed, allowing for a very fast training, while proposing
an efficient approximate inference algorithm for the test time.
Mixing issue is avoided via careful sampler initialisation and
design.

The empirical results show that our proposed approxima-
tion of HPYP is richer than KN and MKN, and is much more
efficient in learning and inference phase compared to full
HPYP. Compared with 10-gram KN and MKN models, our
∞-gram model consistently improves the perplexity by up to
15%. Our compressed framework allows us to train on large
collection of text, i.e. 100× larger than the largest dataset
used in HPYP LMs [Wood et al., 2011] while having several
orders of magnitudes smaller memory footprint and support-
ing fast and efficient inference.

2 Interpolative Language Models
Conventional interpolative smoothing techniques in LM fol-
low a general form,

P (wi|u) =
c(uwi)− d

c(u)
+
γ(u, d)

c(u)
P̄ (wi|π(u)),

where, u = wi−1i−n+1 is called the context, π(u) is u with its
least recent symbol dropped, and c and d are the count and
absolute discount, while γ is the mass allocated to the lower
level of the interpolation. Interpolative smoothing assumes
that P (w|u), the conditional distribution of a word w in the
context u, is similar to and hence smoothed by that of suffix
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k u P kKN(wi|u, dk) P kHPYP(wi|u, ηu)

n u1
c(uwi)−dk

c(u)
+
dkN1+(u·)

c(u)
P k−1KN (wi|π(u), dk−1)

nu
wi−d

utuwi
nu
. + θu

+
θu+ dutu.
nu
. +θu

P k−1HPYP(wi|π(u), η
π(u))

n-1 π(u1)
N1+(·uwi)−dk
N1+(·u·) +

dkN1+(u·)
N1+(·u·) P k−1KN (wi|π(u), dk−1)

nu
wi−d

utuwi
nu
. +θu

+
θu+dutu.
nu
. +θu

P k−1HPYP(wi|π(u), η
π(u))

... ... ... ...

1 ε
N1+(·uwi)−dk
N1+(·u·) +

dkN1+(u·)
N1+(·u·)

1

|σ|
nu
wi−d

utuwi
nu
.+θu

+
θu+dutu.
nu
. +θu

1

|σ|

Table 1: One-to-One mapping of interpolative smoothing under KN and HPYP. In P kKN column : N1+(u·) = |{w : c(uw) > 0}|, and
similarly N1+(·u) and N1+(·u·) are defined. In P kHPYP column : nu

wi = (uwi) and nu
. = c(u) when k = n. Also nu

. =
∑
w∈σu n

u
w,

and tu. is defined similarly, and ηu = {du, θu, {nu
w, t

u
w}w∈σu}.

k = 1,u = ε

k = 2,u = π(π(u1))

k = 3,u = π(u1)

k = 4,u = u1 u2 u3

π2

...

µ2

...

Figure 1: An example of a interpolative LM of depth 3. Moving
from leaf node u1 towards the root, corresponds to moving from
the top row towards the bottom row in Table 1. Nodes sharing a
parent correspond to identical sequences except for their least recent
symbol, for example a partial sequence assignment to the nodes is
π(π(u1)) = c, π1(u1) = bc, u1 = abc, u2 = bbc, u3 = dbc.

of the context P (w|π(u)). This recursive smoothing stops at
the unigram level where the conditioning context is empty,
u = ε (see the left panel of Table 1). In what follows, we
provide a brief overview of hierarchical Pitmon-Yor Process
LM and its relationship with KN.

2.1 Hierarchical Pitman-Yor Process (HPYP) LM
We start by describing the Pitman-Yor process (PYP; [Pit-
man and Yor, 1997]), used as a prior over LM parameters.
PYP(d, θ,H) is a distribution over the space of probabil-
ity distributions with three parameters: a base distribution H
which is the expected value of a draw from a PYP, the con-
centration parameter −d < θ which controls the variation
of draws from PYP around H , and the discount parameter
0 ≤ d < 1 which controls the heavy-tailness of the sampled
distributions. PYP is an appropriate prior for LMs to capture
power-law behaviour prevalent in the natural language [Gold-
water et al., 2011].

To illustate the use of the PYP prior, we conside as the like-
lihood a simple unigram LM G, from which the words of a
text are generated. The Chinese restaurant process (CRP) is
a metaphor that allows generating words from a PYP without
directly dealing with the LM G itself by integrating it out.
Consider a restaurant where customers are seated on differ-
ent tables, and each table is served one dish. To make the
analogy, the restaurant corresponds to the LM, the customers
are the text token needed to be generated, and the dishes are

the words. Let tw denote the number of tables serving the
same dish w in the restaurant, nw denote the total number
of customers seated on these tables, and t. =

∑
w tw and

n. =
∑
w nw to be the total number of tables and customers,

respectively. Generating the next word from the LM is done
by sending a customer to the restaurant which either (i) sits on
an existing table serving the dish w with probability propor-
tional to nw − dtw, or (2) sits on a new table with probability
proportional to θ+ dt. and orders a dish from the base distri-
bution H . The probability of the next word w is thus

P (w|η) =
nw − dtw
n. + θ

+
θ + dt.
n. + θ

P (w|H).

where η = {d, θ, {nw, tw}w∈σ}, and σ is the vocabulary.
Note that {nw, tw}w∈σ form the sufficient statistics for gen-
erating the next word.

In a HPYP LM, the distribution Gu of words following a
context u has a PYP(du, θu, Gπ(u)) prior,

Gu | du, θu, Gπ(u) ∼ PYP(du, θu, Gπ(u)).

where the base distribution Gπ(u) itself has a PYP prior. This
induces a hierarchy among these context-conditioned distri-
butions (see Figure 1) tying the base distribution of each node
of the hierarchy to the distribution of its parent. Note that u
refers to both a context (a sequence of words) and its corre-
sponding node in the HPYP tree. The distribution at the root
of the hierarchy Gε corresponds to the empty context ε:

Gε | dε, θε,U ∼ PYP(dε, θε,U)

where the base distribution U is the uniform distribution over
the vocabulary σ.

Having a HPYP LM, the next word is generated by inte-
grating out all of the distributions corresponding to the nodes
of the tree. This is achieved by hierarchical Chinese restau-
rant process (HCRP), whereby a customer is sent to a restau-
rant of a context from which a word needs to be generated. In
case the customer is seated on a new table, a new customer is
sent to the parent restaurant for ordering the dish. The number
of customers sent to the parent is orchestrated via the concen-
tration and discount parameters. The following constraints
hold for {nuw, tuw}w∈σu across the tree nodes:

∀w ∈ σu : 0 <tuw ≤ nuw (2)

∀w ∈ σu : nuw =
∑

ψψψ∈children(u)

tψψψw (3)
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Figure 2: (top) Suffix Tree, (bottom) Suffix Array and Burrows-
Wheeler Transformation for “#abc#bbc#$”. In (top), labels cor-
respond to concatenation of edge labels from the root to each node
and digits stored on leaves and in SA, (bottom), correspond to the
starting index of the suffixes in text.

where σu is the subset of σ observed after the context u. Ty-
ing the distributions as a hierarchy simulates the smoothing
process by adjusting the base distributions of each level re-
cursively. Given {ηu}u∈HPYP, u ∈ HPYP denoting all nodes
in HPYP, the predictive probability of a word w in a context
u is computed recursively as PHPYP(w|u) in Table 1.

Note the close similarity in formulation of KN smoothing
and the HPYP as illustrated in Table 1; indeed we recover KN
smoothing from HPYP by assuming {θu = 0}u∈HPYP and
{tuw = 1}u∈HPYP

w∈σu
. In what follows, we exploit this property to

compactly represent the HPYP LM.

3 Compressed HPYP LM
The child-parent relationship between distributions in HPYP
forms a context tree which can be represented as a suffix
trie, or more compactly as a suffix tree [Wood et al., 2011].
In practice suffix trees require at best 20|T | bytes of space,
where T denotes the text, making them impractical for any-
thing but small data.

Hence, even storing the structure of the HPYP model with-
out storing parameters {ηu}u∈HPYP is impractical for large
datasets. This was possibly the case given that the largest
dataset that HPYP LMs were built on small corpora including
only a few million words [Teh, 2006b; Gasthaus et al., 2010;
Wood et al., 2011]. However, with the availability of datasets
of orders of magnitudes larger size [Buck et al., 2014;
Parker et al., 2011], it is crucial to improve the scalability
of HPYP LMs. In the following, we briefly introduce a set of
compressed data structures and operations, and then illustrate
how a HPYP LM can be made scalable using these tools.

3.1 Compressed Suffix Tree
A Suffix Tree (ST) [Weiner, 1973] of a string T with alphabet
σ is a tree of |T | + 1 leaves, where a path from the root to a
leaf corresponds to a suffix of T . Each leaf holds a number
indicating the staring position of the suffix in T while leaves
are lexicographically ordered, see Figure 2(top). The search
for any sequence u in T corresponds to finding the node v in
ST such that u is a prefix of the concatenation of the path la-
bels from the root to v. While suffix trees offerO(|u|) search

DEFINITION OPERATION COMPLEXITY

search(u) bw-search O(|u| log |σ|)
c(u) size O(1)

N1+(u·) deg O(1)
N1+(·u) int-sym O(N1+(·u) log |σ|)
N1+(·u·) deg+int-sym N1+(·u)O(1)+O(N1+(·u) log |σ|)

Table 2: Key CST operations, definitions, and time complexities.
The four operations at the bottom assume the node matching u is
given via a backward-search (bw-search).

complexity, in practice they require 20|T | bytes.
A Suffix Array (SA) [Manber and Myers, 1993] of T is

an array of sorted suffixes of T , where SA[i] holds a same
number as i-th leaf in ST, see Figure 2(bottom). Search in
SA translates to binary search to find the corresponding range
that spans over all substrings that have u as their prefix, and is
O(|u| log |T |). Constructing SA takes 4-8|T | bytes in prac-
tice, which compared to |T | log |σ| bits required to store T
makes both ST and SA impractical to use for large data.

A Compressed Suffix Array (CSA) exploits text compress-
ibility and provides the same functionality as SA but in
space equal to bzip2 compressed T in practice. We use
the FM-Index [Ferragina et al., 2008] that utilizes the text
compressibility by using the Burrows-Wheeler transforma-
tion (BWT) [Burrows and Wheeler, 1994] of the text, which
is defined as BWT[i] = [SA[i] − 1 mod |T |] as illustrated
in Figure 2(bottom). Searching for a sequence in BWT is
done in reverse order (called backward-search) and requires
O(|u| log |σ|). Similarly, a Compressed Suffix Tree (CST)
simulates ST and is built on CSA by storing extra bits to store
the shape of the tree and path labels [Ohlebusch et al., 2010].
For details see [Shareghi et al., 2015].

Table 2 illustrates the key operations on CSA and CST
along with their complexities. The backward-search looks-
up the CSA span covering the given sequence and returns the
[lb, rb] of the node v matching it, and the size operation counts
the number of leaves of the CST subtree rooted at v using the
length of the returned range. The degree operation returns the
number of types completing a sequence to its right. The most
expensive operation is the interval-symbols, which for a con-
text π(u) returns its corresponding set of children and each
child’s corresponding node’s range using the BWT [Schnat-
tinger et al., 2010]. Figure 2(bottom) shows the interval sym-
bol procedure for finding the children of “π(u) = bc”: First a
search is done to find the corresponding range for “bc” in SA,
highlighted in gray, then the corresponding cells on BWT are
looked up to find {b, a} as the two possible completions of
“bc” to its left, and then their corresponding nodes are located
efficiently, as illustrated by dashed arrows.

3.2 Compressed HPYP LM
We make use of a CST to represent HPYP LM compactly,
resulting in a model which is less than the size of the
text itself. This is inspired by the use of CSTs to repre-
sent KN family of smoothing, and the fact that the struc-
ture of the hierarchy representing both models are exactly
the same. The basic idea for compressed KN-smoothed
LMs is to extract the required counts directly from a CST
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representation of the text on-the-fly [Shareghi et al., 2015;
2016b]; Table 2 covers the required quantities together with
the CST operations and their time complexities.

The avid readers might notice that the key difference be-
tween KN and HPYP is in the {nu

w, t
u
w}u∈HPYP

w∈σu
. While it is

possible to store vectors {nuw, tuw}w∈σu for each node u of
HPYP, it adds a significant load to the memory usage. This is
one of the key computational issues of the inference approach
taken in sequence memoizer [Wood et al., 2011], which sam-
ples these vectors in the training time and stores them before
using them in testing. We address the issue by moving the
sampling to the test time, hence skipping the need to store
these samples.

To complete our model description, we need to cover the
discount and concentration parameters. In our model, the dis-
count parameters are set to Kneser-Ney discounts and tied
based on the context size |u|, while each distribution uses its
own separate concentration parameter. Our decision for fix-
ing the discount parameters was to avoid the cost of sampling
them during the inference. Also, the range for the discount
parameters are very fine-grained making the gain in sampling
them very negligible1. We show in the inference section how
fixing the discounts allows us to develop an efficient sampler.

4 Fast Approximate Inference for HPYP LM
The inference in a HPYP LM translates into computing the
predictive probability of a word w, in the context u. This
corresponds to integrating out all the latent prior distributions
and is defined as the following intractable integral,

P (w|u) =

∫
P (w|u, η)P (η)d(η) (4)

and is approximated using samples for η. Here η =
{ηu}u∈HPYP, and P (w|u, η) is defined as in Table 1 (right
panel). While there are different approaches to generate sam-
ples, they are designed to run in the training phase and require
explicit storage of sampled quantities. This amounts to a sig-
nificant memory load which we avoid by skipping it. Con-
sequently, it is required to generate the samples in the test
phase, but the existing sampling algorithms [Gasthaus and
Teh, 2010] generate samples across all nodes in HPYP which
is too slow to fit our purpose. Instead, we present a novel
sampler, designed for the query phase of LM, which results
in a much lower memory usage, is fast, and avoids mixing
issues inherited in the full samplers.

Let us assume the path from the root to the node matching
the context u of a given query “uwi” and denote the set of
distributions along the path by γ+, and all the other nodes of
the HPYP by γ−. For example, for the query P (w = c|u =
ab), γ+ = {Gab, Gb, Gε} and γ− = {Gu|u ∈ HPYP∧Gu /∈
γ+}. Then, the three computational solutions involved in our
proposed approximate inference scheme are:

Branch Sampling While a full HPYP sampler, i.e. in
SM [Wood et al., 2011], samples on γ+∪γ−, in here only the
γ+ distributions and only the type matching the query word

1Our analysis shows no improvements of perplexities when dis-
counts were sampled, while it made the inference step slower.

wi are selected for sampling, fixing γ− at their initialization
which is KN. This means at any given state of sampling, we
have {tuw = 1}u∈γ

−

w∈σu
and allows for a fast inference in the test

time while reducing the size of the sampling space exponen-
tially hence reducing the risk of poor mixing.

Forgetting Samples Samples on γ+ are generated during
the test phase, used for approximating the predictive prob-
ability and then forgotten immediately. In this process, for
any given query the state of HPYP will be set to KN at the
beginning of the sampling process. This keeps the memory
usage of the training and inference phase close, and roughly
matching the size of the compressed text.

Range Shrinking The key quantities in the sampling phase
are tuw. In practice, the range 0 < tuw ≤ nuw can poten-
tially be very large, making the sampling very slow. Instead,
we follow a non-uniform sampling by shrinking the range to
1 ≤ tuw ≤ min{M,nu

w} (Here M = 10). The motivation
here is based on the key difference between KN and MKN
which is mainly in the discount range. In MKN, which typ-
ically outperforms KN, discounts are larger than 1 and our
empirical analysis on several datasizes and languages illus-
trate the range in practice is [0, 3].2 This effect to some de-
gree is replicated in HPYP when the discounts 0 ≤ du < 1
are multiplied by tuw. Shrinking the sampling range keeps the
HPYP distributions at each level of HPYP close to their cor-
responding KN (and MKN) counterparts, while the concen-
tration parameter allows the distributions to have more flexi-
bility in capturing the desired distribution.

The first two components allow fast inference while keep-
ing the memory usage of our approach to be several orders of
magnitudes smaller than the SM, hence making our approach
computationally practical for large data regime. The third
component seeks to take advantage of the best component of
MKN smoothing, while avoiding the mixing issue that occurs
for the infinite HPYP case. In the following two subsections,
we provide the statistical underpinning of the sampling, and
show how it can be done under CST mechanics.

4.1 Sampling
We sample using the joint distribution P({ηu}u∈HPYP),∏

w

H(.)t
ε
w

∏
u

(
(θu|du)tu.
(θu|1)nu

.

∏
w

Sdu(nu
w, t

u
w)

)
(5)

where (a|b)c is the Pochhammer3 symbol, and Sd(n, t) is
the generalized Stirling number of kind (−1,−d, 0) [Hsu and
Shiue, 1998].

The joint distribution in eqn. 5 allows efficient sampling for
tuw and nuw in the hierarchy, starting from the data level and
going up in the hierarchy. The only expensive computation
is for the Stirling numbers which are cached as KN discounts
are used. We use the exact recursive formulation of Stirling
numbers [Buntine and Hutter, 2012] and switch to asymptotic
approximation4 when t or n are large, i.e. ≥ 8000.

2In theory, the MKN discounts can be as large as c(uwi).
3(a|b)c = a(a+ 1× b)...(a+ (c− 1)× b)
4Using the Stirling’s approximation for factorials.
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Algorithm 1 Gibbs Sampler for η ∈ γ+

1: function SAMPLER(w, k, n, γ+, ~S,M )
2: u∗ ← γ+k , π(u∗)← γ+k−1
3: tu

∗

w ← 0, nu∗

w ← n

4: ~Q← null
5: if nu

∗

w 6= 1 then
6: while tu

∗

w ≤ min{M,nu∗

w } do
7: if u∗ 6= ε then
8: F ∝ P (tu

∗

w |...) . eqn.7
9: else

10: F ∝ P (tεw|...) . eqn.8
11: ~Q← (F, tu

∗

w )
12: tu

∗

w ← tu
∗

w + 1

13: tu
∗

w ← sample from( ~Q)
14: else
15: tu

∗

w ← 1

16: θu
∗ ← sample θu

17: ~S ← (u∗, nu∗

w , tu
∗

w , θu
∗
)

18: if u∗ 6= ε then
19: n

π(u∗)
w ← update(n

π(u∗)
w , tu

∗

w ) . eqn.6
20: SAMPLER(w, k − 1, n

π(u∗)
w , γ+, ~S,M)

21: return(~S)

For each Gu ∈ γ+, except the leaf level5, the nuw’s will
be sampled jointly as tψ(u)w ’s are sampled, where ψ(u) ∈
children(u). Starting from the leaf level of the hierarchy, the
nuw’s are read from the data, hence fixed and tuw’s are sampled
while satisfying the constraints in eqn.2, and eqn.3. Given a
sampled tu

∗

w at the leaf level u∗, the nπ(u
∗)

w is updated as,

nπ(u
∗)

w = tu
∗

w +
∑

ψ∈children(π(u∗))∧ψ 6=u∗

tψw. (6)

The conditional probability of the sampled tu∗w from eqn. 5
for the non-root levels while fixing all the independent vari-
ables, P (tu

∗

w |...), is proportional to,

(θu
∗ |du∗

)tu∗
.

(θπ(u∗)|1)∑
ψ∈children(π(u∗))

tψ.

Sdu∗ (nu∗

w , tu
∗

w )Sdπ(u∗)(nπ(u
∗)

w , tπ(u
∗)

w ) (7)

where tu
∗

. = tu
∗

w +
∑
v 6=w t

u∗

v , and for the root level,

P (tεw|...) ∝ H(.)t
ε
w(θε|dε)tε. Sdε(n

ε
w, t

ε
w). (8)

Given sampled tu
∗

w , nu∗

w for a context u, the concentration
parameter θu

∗
is sampled via auxiliary variables [Teh et al.,

2012] using a Gamma(a,b) prior. Algorithm 1 illustrates the
sampling procedure for collecting a single set of samples
along γ+. The algorithm starts from the leaf level and moves
up on the γ+ branch, sampling tuw and nπ(u)w jointly. The in-
dex k denotes the level on the extracted branch, and matches
the k in Table1. Given a query, this process is repeated mul-
tiple times along the γ+ branch.

5The leaf level is where the data is observed (first row of Table 1).

context

ε

b

ab

full

c

bc

abc

backward-search 
direction on CST

interpolation & sampling 
direction on HPYP

Figure 3: Direction of search, interpolation, and sampling for “abc”.

QUANTITY COMPLEXITY

tu
∗

. O(1)∑
ψ∈children(π(u∗))

tψ. N1+(·π(u∗))O(1)+O(N1+(·π(u∗)) log |σ|)

n
π(u∗)
w N1+(·π(u∗)w)+O(N1+(·π(u∗)w) log |σ|)

Table 3: Complexities of computing critical sampling quantities.

4.2 Sampling under CST mechanics
Sampling under CST involves two passes in the opposite di-
rections, see Figure 3. Given a query, one pass starts from
the last word of the query and grows the pattern to its left
one word at a time. This pass collects all the required nodes
in γ+, and identifies the required fragmentations, while al-
lowing to reuse spans during the backward-search, instead of
operating a fresh search over the full CST span. Once all the
required nodes are extracted, a second pass in the opposite
direction on the γ+ branch, samples t, n, and θ. The core of
sampler relies on eqn. 7 and eqn. 8, which we describe in be-
low. Given a sampled tu

∗

w for a context u∗ and word w, tu
∗

.

is defined as (N1+(u∗ ·)− 1) + (tu
∗

w ) which assumes a table
per word type for all the words occurring after u except for
the word w for which tu

∗

w is sampled. This translates into a
degree(u) call to computeN1+(u∗ ·) and is done in constant
time. Computing the other main quantities is more expensive
and involves interval-symbols operation. The children nodes
of u∗, and π(u∗)w are extracted via interval-symbols. Then,
their table and count statistics are computed,∑

ψ∈children(π(u∗))

tψ. = tu
∗

. +
∑

ψ∈children(π(u∗))∧ψ 6=u∗

tψ.

nπ(u
∗)

w = tu
∗

w +
∑

ψ∈children(π(u∗)w)∧ψ 6=u∗

tψw ,

where for each ψ, except for u∗, a degree operation is called,
and tu

∗

. is computed as mentioned before. Table 3 illustrates
the complexity of these computations.

5 Experiments
We report the perplexity of KN, MKN, SM, and our approach
CN using the Finnish (FI), Spanish (ES), German (DE), En-
glish (EN), French (FR), portions of the Europarl v7 [Koehn,
2005] corpus, as well as 250MiB, 500MiB, 1,2,4, and 8GiB
chunks of English Common Crawl corpus [Buck et al., 2014].
The data was tokenized, sentence split, and the XML markup
discarded. As test sets, we used newstest-2014 for all lan-
guages except Spanish, for which we used newstest-2013. To
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PERPLEXITY

tokens (M) n=10 n=∞

TRAIN TEST KN MKN SM CN
EU-DE 54.93 0.06 1810 1694 1598 1543
EU-FI 40.47 0.02 5570 5344 4833 4756
EU-FR 66.79 0.08 1328 1191 1090 1048
EU-ES 62.06 0.07 444 416 440 377
EU-EN 61.30 0.07 921 844 806 725

125MiB 32.52 0.07 333 329 328 289
250MiB 65.01 0.07 299 295 300 283
1GiB 201.52 0.07 246 242 251 224
2GiB 403.47 0.07 223 219 — 209
4GiB 807.71 0.07 204 200 — 190
8GiB 1617.27 0.07 184 181 — 174

Table 4: Data statistics, and perplexities of Kneser-Ney (KN), Mod-
ified Kneser-Ney (MKN), Sequence Memoizer (SM), and Com-
pressed Nonparametric (CN) on different datasets. The empty cells
for 2,4,8 GiB are due to SM exceeding the 180GiB memory budget.

avoid the effect of differences in handling Out-of-Vocabulary
words in measuring the perplexities, we used a closed vo-
cabulary setup. To measure the KN and MKN perplexities
we used the SRILM [Stolcke, 2002] toolkit. And to ver-
ify the comparability, we forced the KN assumptions on our
model and closely matched (difference ≤ 1) the perplexity
numbers reported by SRILM. For benchmarking the memory
and time usage of CN against SM, we used the English lan-
guage datasets varying in size, from 125MiB to 8GiB chunks
of Common Crawl. All experiments are done on a single core
on Intel Xeon E5-2667 3.2GHz and 180GiB of RAM.

Perplexity As illustrated in Table 4, our approach (CN)
consistently outperforms MKN perplexities by a margin of
up to 15%. To test against full HPYP inference, we com-
pared against the available implementation of SM.6 Although
CN is initialised by KN and samples from the conditional
P (γ+|γ−), it is consistently better than SM. We speculate
this is due to poor mixing of SM over the full sampling space
involving HPYP tree nodes, and proper mixing of our fast
inference method over the smaller sampling space involving
only nodes on a single branch γ+. The difference between
perplexities across multiple runs of our model were negligi-
ble. Comparing SM with KN and MKN reveals a surprising
result on some datasets: SM does worse, or is only marginally
better regardless of the number of burn-in, or samples.7

Memory and Time As demonstrated in Figure 4, the mem-
ory used by SM is several orders of magnitudes larger than
the size of the text and the size of our model in both train-
ing and test (query). For instance, on 250MiB dataset CN
used (297MiB,108MiB) in training and test, compared with

6https://github.com/jgasthaus/libPLUMP
7This doesn’t verify the comparison reported in [Wood et al.,

2011]. We noticed a critical decision in their experimental setup:
while setting a threshold to replace low frequency words with a sin-
gle token is a popular approach in text processing, in the KN and
MKN LM this will cause a range of discount parameters to be zero,
eliminating the effect of smoothing and making KN and MKN per-
form worse than their full potential.
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SM
CN

Memory
Time

Figure 4: Time (right Y-axis) and Memory (left Y-axis) usage of SM
and CN in training and query phases on various data sizes (X-axis).
SM could not be run on 2 ≤ GiB due to our memory budget.

(16GiB,16GiB) of SM when it stores only 1 set of HPYP
samples. This made it impossible for us to run SM on larger
(≥ 2GiB) datasets, or with more samples. In terms of time
usage in the training step, our approach is several times faster,
i.e., (40×,67×) on (125MiB,250MiB) datasets. Noting that
SM tends to get slower on larger datasizes, taking more than
14 days to train on 1GiB dataset, while we only required less
than 2 hours. In the test time we are on average around 24×
slower noting that SM tends to get slower on larger datasizes,
i.e. from 27× faster on 125MiB to 21× on 250MiB. Infer-
ence only with 5 samples along each branch and no burn-
in, affected the perplexities of our approach up to 2% while
making the average test speed only 4× slower than SM. Our
approach on ”load+query” carries roughly a similar pattern
excluding the load time. On 1GiB, our query is only 1.8×
slower than SM, and we are 2.3× faster on load+query. A
significant result which is due to smaller model size, and ef-
ficient inference mechanism of our CST-based framework.

6 Conclusion
In this paper we proposed a framework based on compressed
suffix trees to represent infinite-order hierarchical Bayesian
language models compactly, while developing a fast and
memory-efficient approximate inference scheme. Compared
with the existing HPYP LMs our approach has several orders
of magnitudes lower memory footprint allowing us to apply
it on (100×) larger data sizes than the largest data used by
HPYP LM. This is achieved by avoiding potential mixing is-
sues, while consistently outperforming the Kneser-Ney fam-
ily of smoothings by a significant margin.

As our future work, we would like to speedup the inference
via approximating Stirling numbers using a separate model to
avoid its expensive recursion cost during sampling, as well as
exploring continuous space approximations of HPYP.
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