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Abstract
Multi-View Clustering (MVC) aims to find the
cluster structure shared by multiple views of a par-
ticular dataset. Existing MVC methods mainly in-
tegrate the raw data from different views, while
ignoring the high-level information. Thus, their
performance may degrade due to the conflict be-
tween heterogeneous features and the noises ex-
isting in each individual view. To overcome this
problem, we propose a novel Multi-View Ensem-
ble Clustering (MVEC) framework to solve MVC
in an Ensemble Clustering (EC) way, which gener-
ates Basic Partitions (BPs) for each view individu-
ally and seeks for a consensus partition among all
the BPs. By this means, we naturally leverage the
complementary information of multi-view data in
the same partition space. Instead of directly fusing
BPs, we employ the low-rank and sparse decom-
position to explicitly consider the connection be-
tween different views and detect the noises in each
view. Moreover, the spectral ensemble clustering
task is also involved by our framework with a care-
fully designed constraint, making MVEC a unified
optimization framework to achieve the final con-
sensus partition. Experimental results on six real-
world datasets show the efficacy of our approach
compared with both MVC and EC methods.

1 Introduction
Multi-View learning benefits from leveraging the comple-
mentary information from multiple views of a particular
dataset, where these views can be obtained by various sen-
sors or represented with different descriptors. For exam-
ple, we may capture human activity from RGB video cam-
eras, depth cameras, and on-body sensors [Li et al., 2016];
for vision tasks, images could be encoded by host of hand-
crafted and deep features. Some interesting multi-view prob-
lems include subspace learning [Ding and Fu, 2014], out-
lier detection [Li et al., 2015a; Zhao and Fu, 2015], cross-
domain learning [Wang et al., 2017], and incomplete multi-
view case [Zhao et al., 2016]. In this paper, we focus on
the Multi-View Clustering (MVC) problem. Considerable re-
search efforts have been made to solve the MVC problem,

such as optimizing certain loss function with concatenated
multi-view features [Bickel and Scheffer, 2004; Kumar and
III, 2011], conducting traditional clustering on a common
low-dimensional latent subspace [Chaudhuri et al., 2009;
Xia et al., 2014; Wang et al., 2016; Zhao et al., 2017],
and late fusion approaches [Greene and Cunningham, 2009;
Bruno and Marchand-Maillet, 2009].

The key problem for MVC is how to integrate the com-
plementary information from multiple views. For instance,
[Kumar et al., 2011] enhanced the similarity of eigenvec-
tors learnt from different views and integrated it within a
spectral clustering framework; [Liu et al., 2013b] designed
a joint matrix factorization method and sought for a com-
patible solution of multi-view data. However, the noises
of each single-view data can seriously degrade the perfor-
mance of these pioneering works. In light of this, [Xia et
al., 2014] learned a consensus affinity graph among multiple
views and handled the view-specific noises via a low-rank and
sparse decomposition framework. Along this line, [Wang et
al., 2016] captured the local manifold structure in each view
and achieved the clustering agreement by minimizing the dif-
ference across views. All these MVC methods directly in-
tegrate the raw multi-view data, which, however, is not an
easy task due to the distinct gap among heterogeneous fea-
ture spaces. Thus, one promising way (i.e. late fusion meth-
ods) for solving MVC is to first transform multi-view data
into the same partition space [Greene and Cunningham, 2009;
Bruno and Marchand-Maillet, 2009], and then obtain the
clustering result in an ensemble clustering manner.

Ensemble Clustering (EC) [Strehl and Ghosh, 2003; Fred
and Jain, 2005] methods take as input a set of Basic Partitions
(BPs) and integrate multiple BPs into a consensus one. Thus,
it naturally has the ability of leveraging complementary infor-
mation from heterogeneous sources [Wu et al., 2015]. Never-
theless, ensemble clustering draws little attention in the field
of multi-view clustering, and it neglects to explore the con-
nection among different views. Moreover, most existing EC
methods also suffer from the noises in the multi-view BPs,
which could be caused by the intra-view or inter-view dis-
agreement among all the BPs [Tao et al., 2016].

To address the above challenges, we propose a novel Multi-
View Ensemble Clustering (MVEC) algorithm in this paper.
Specifically, we first generate a group of BPs for each sin-
gle view, and summarize each group as a view-specific co-
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association matrix [Fred and Jain, 2005], which works as
a pairwise affinity matrix upon the categorical data. Af-
ter that, we employ low-rank and sparse decomposition to
seek for the consensus affinity matrix shared by all the views
and compensate the disagreement among all the BPs. Mean-
while, the spectral ensemble clustering task [Liu et al., 2015;
2017] is also involved by our MVEC framework with a care-
fully designed constraint, leading to a unified optimization
framework to jointly integrate multi-view information and
find the consensus partition.

MVEC is inspired by two previous works [Xia et al., 2014;
Tao et al., 2016]. Compared with [Xia et al., 2014], we solve
MVC in a partition space rather than using raw features, since
it is more reasonable to uncover the cluster structure shared
by multi-view co-association matrices. Moreover, different
from [Xia et al., 2014] that only learns a low-rank matrix, our
approach simultaneously performs the tasks of low-rank rep-
resentation learning and spectral graph partitioning. On the
other side, [Tao et al., 2016] focuses on the single-view case
and thus cannot make full use of the multi-view data. In con-
trast, our MVEC explicitly utilizes the connection between
different views and employs the learned consensus partition
to iteratively enhance the cluster structure of each view.

The contributions of this work are summarized as follows:
(1) A general Multi-View Ensemble Clustering (MVEC)
framework is proposed, which effectively exploits the multi-
view basic partitions to solve the MVC problem. (2) We
jointly learn the view-consensus affinity matrix and find the
consensus partition within a unified optimization framework.
(3) A novel self-boost constraint is designed to iteratively im-
prove the clustering performance.

2 Multi-View Ensemble Clustering
2.1 Problem Formulation
Given a set of n data points with m views (i.e., feature rep-
resentations or modalities), we denote the dataset of each
view as X (v) = {x(v)1 , . . . , x

(v)
n }, 1 ≤ v ≤ m. For ∀v,

we assume X (v) is sampled from K crispy clusters, de-
noted as C = {C1, . . . , CK}. Let Π(v) = {π(v)

1 , . . . , π
(v)
r }

be a group of r basic partitions (BPs) for X (v), where
each BP π

(v)
i partitions X (v) into Ki clusters, i.e., π(v)

i =

{π(v)
i (x

(v)
1 ), . . . , π

(v)
i (x

(v)
n )} is a set of categorical data, 1 ≤

π
(v)
i (x

(v)
j ) ≤ Ki, 1 ≤ i ≤ r, and 1 ≤ j ≤ n. For each

view, we obtain Π(v) by using the Random Parameter Selec-
tion (RPS) strategy [Fred and Jain, 2005; Wu et al., 2015],
which performs K-means algorithm on X (v) r times with
varying cluster number from K to

√
n. It has been shown

that, RPS can capture various cluster structures existing in
the real-world datasets [Fred and Jain, 2005].

In this paper, we aim to solve multi-view clustering in an
ensemble clustering way. By following [Fred and Jain, 2005;
Liu et al., 2015], each Π(v) is summarized as a co-association
matrix S(v) ∈ Rn×n:

S(v)(x(v)p , x(v)q ) =
1

r

r∑
i=1

δ(π
(v)
i (x(v)p ), π

(v)
i (x(v)q )), (1)

where x(v)p , x
(v)
q ∈ X (v) and δ(a, b) = 1 if a = b; 0 other-

wise. By this means, we actually compute a pairwise affinity
graph for each view upon the partition space, and thus, we can
naturally conduct graph partitioning on S(v) to find a consen-
sus clustering result. In particular, each view could be solved
by spectral ensemble clustering [Liu et al., 2015]:

min
H

tr(HTL(v)
s H) s.t. HTH = I, (2)

where H ∈ Rn×K is the scaled partition matrix that repre-
sents the cluster membership of all the data points: Hjk =

1/
√
|Ck| if xj ∈ Ck; 0 otherwise, and L

(v)
s is the normal-

ized Laplacian matrix [Ng et al., 2001] of the co-association
matrix in the v-th view.

However, Eq. (2) only tackles each view individually, yet
without utilizing the complementary information between
different views. There are still two challenging problems of
employing the co-association matrices from multiple views
for the clustering aim: (1) How do we seek a consensus co-
association matrix to identify the underlying cluster structure
shared by multi-view data? (2) How can we capture the dis-
agreements among multiple BPs of intra-view or inter-view?

To address the above challenges, we propose to learn a
common representation shared by multi-view co-association
matrices via low-rank and sparse matrix decomposition [Ye et
al., 2012; Xia et al., 2014]. Moreover, we jointly perform the
tasks of spectral graph partitioning and low-rank representa-
tion learning. Our Multi-View Ensemble Clustering (MVEC)
algorithm is formulated as:

min
H,Z,E(v)

tr(HTLzH) + λ1‖Z‖∗ + λ2

m∑
v=1

‖E(v)‖1

s.t. HTH = I, ∀v,S(v) + HHT = S(v)Z + E(v),

Z ≥ 0,Z1 = 1,

(3)

where H ∈ Rn×K represents the consensus partition, Z ∈
Rn×n is the low-rank representation, E(v) ∈ Rn×n captures
noises for the vth view, 1 ∈ Rn is the vector of all ones, and
λ1, λ2 > 0 are two balancing parameters. Lz = Dz − Z
is the Laplacian matrix [Ng et al., 2001] of Z, and Dz is a
diagonal matrix consisting of the sum of each row in Z. By
following [Liu et al., 2013a], we employ the nuclear norm
‖Z‖∗ to measure the matrix rank, and the `1 norm ‖E(v)‖1 to
characterize the sparseness.

Considering that, the co-association matrices of all the
views share with the same cluster structure, and the rank of
S(v) ideally equals to the cluster number K (K � n), we
seek for a low-rank representation Z to reveal the member-
ship between data points through all the views. Meanwhile, to
alleviate the “conflict” among different views and handle the
outliers existing in co-association matrix, we learn a sparse
error matrix E(v) for each single view. Hence, we may take
Z as a consensus pairwise affinity matrix, and find the con-
sensus partition H on Z by spectral clustering.

Taking a close look at Eq. (3), we develop a self-boost con-
straint to iteratively enhance the original co-association ma-
trix of each view, i.e., S(v) + HHT = S(v)Z + E(v), where
HHT enjoys a clear cluster structure. By using this care-
fully designed constraint, we first find a high quality consen-
sus partition H from Z, and then in return, H is leveraged
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to better guide the learning of Z. Besides, we also add the
probabilistic simplex constraint (Z ≥ 0, Z1 = 1) [Duchi et
al., 2008] to guarantee the probability property of Z.

2.2 Optimization
A unified optimization framework of three variable groups is
provided by Eq. (3), which is convex with respect to each
variable by keeping the others fixed. Thus, we can divide
it into several subproblems, and solve them in an iterative
way. In details, we apply the Augmented Lagrange Multiplier
(ALM) algorithm [Lin et al., 2011] to address our MVEC
problem. To facilitate the optimization process, we introduce
an auxiliary variable J ∈ Rn×n with Z = J to make Eq. (3)
separable. Then, our problem could be equivalently converted
as:

min
HTH=I,J,Z,E(v)

tr(HTLzH) + λ1‖J‖∗ + λ2

m∑
v=1

‖E(v)‖1

s.t. ∀v,S(v) + HHT = S(v)Z + E(v),Z = J,

Z ≥ 0,Z1 = 1.

(4)

The augmented Lagrange function of Eq. (4) is written as:

L =tr(HTLzH) + λ1‖J‖∗ + λ2

m∑
v=1

‖E(v)‖1

+

m∑
v=1

Φ(S(v) + HHT − S(v)Z−E(v),Y(v))

+ Φ(Z− J,Λ) + 〈Z1− 1,w〉+
µ

2
‖Z1− 1‖22,

(5)

where Z ≥ 0, ∀v Y(v) ∈ Rn×n, Λ ∈ Rn×n, and w ∈ Rn
are Lagrange multipliers, Φ(A,B) ≡ 〈A,B〉+ µ

2 ‖A‖
2
F, and

µ > 0 is a penalty parameter. In the next, we will give the
details of iteratively solving J, Z, E(v) and H in sequence.
Subproblem of J. Solving L w.r.t J is equivalent to:

min
J

λ1

µ(t)

‖J‖∗ +
1

2
‖J− (Z(t) +

Λ(t)

µ(t)

)‖2F . (6)

Following the previous work [Liu et al., 2013a], Eq. (6) could
be effectively solved by a closed-form solution:

J(t+1) = S λ1
µ(t)

(Z(t) +
Λ(t)

µ(t)

), (7)

where S(·) is the Singular Value Threshold (SVT) opera-
tor [Cai et al., 2010].
Subproblem of Z. Generally, we obtain the solution of
Z(t+1) by taking derivate of L w.r.t. Z and setting it as zero.
However, it is not straightforward to solve tr(HTLzH) in a
matrix form, since Lz = Dz−Z and Dz is the degree matrix
of Z. Thus, to simplify this term, we introduce an auxiliary
matrix P ∈ Rn×n as:

P =
[
P1 . . .Pj . . .Pn

]
, Pj =

‖H1 −Hj‖22
...

‖Hn −Hj‖22

 , (8)

where Hj is the jth row vector in H. By utilizing the property
of Laplacian matrix and Eq. (8), we have the following simple
deduction:

tr(HTLzH) =
1

2

n∑
i,j

‖Hi −Hj‖2Zij =
1

2
tr(PTZ).

Algorithm 1. Multi-View Ensemble Clustering by ALM

Input: Basic partitions sets of m views Π(1), . . . ,Π(m),
cluster number K, two parameters λ1, λ2 > 0.

Initial: J(0) = Z(0) = Λ(0) = 0 ∈ Rn×n,
E

(v)
(0) = Y

(v)
(0) = 0 ∈ Rn×n, v = 1, . . . ,m,

H(0) = 0 ∈ Rn×K , w(0) = 0 ∈ Rn×1, ρ > 1
µ(0) = 10−3, µmax = 1010, ε = 10−4, t = 0.

1: Derive S(v) from Π(v) via Eq. (1) for each view;
2: while not converged do
3: Update J(t+1) via Eq. (7);
4: Update Z(t+1) via Eq. (11);
5: Update E(t+1) via Eq. (13);
6: Update Lz and Dz by Z(t+1);
7: Set H(t+1) as the K smallest eigenvectors of Lz;
8: Update the Lagrangian multipliers via Eq. (15);
9: Check the convergence condition:
(max{‖∆(t+ 1)

(1)‖∞, . . . , ‖∆(t+ 1)
(m)‖∞} < ε) ∧

(‖J(t+1) − Z(t+1)‖∞ < ε) ∧ (‖Z(t+1)1− 1‖∞ < ε);
10: µ(t+1) = min{ρµ(t), µmax}, t = t+ 1;
11: end while
12: Find the final partition π by running K-means on H

or spectral clustering on Z.
Output: The final clustering result π.

Then, we can solve Z(t+1) via the following equivalent for-
mulation as:

min
Z≥0

1

2µ(t)

tr(PT
(t)Z) +

1

2

m∑
v=1

‖S(v) + H(t)H
T
(t) − S(v)Z

−E
(v)

(t) + Y
(v)

(t) /µ(t)‖2F +
1

2
‖Z− J(t) + Λ(t)/µ(t)‖2F

+
1

2
‖Z1− 1 + w(t)/µ(t)‖22.

(9)

Inspired by [Zhuang et al., 2016; Lin et al., 2011], we lin-
earize the Eq. (9) at Z(t) as:

min
Z≥0

〈Z− Z(t),F(t)〉+
1

η(t)
‖Z− Z(t)‖2F , (10)

where η(t) = ‖P(t)‖22 +
∑
v ‖S(v)‖22 + 1 + ‖1‖22, and F(t)

equals:

P(t)

2µ(t)

+

m∑
v=1

S(v)T(S(v)Z(t) + E
(v)

(t) − S(v) −H(t)H
T
(t)−

Y
(v)

(t)

µ(t)

) + (Z(t) − J(t+1) +
Λ(t)

µ(t)

) + (Z(t)1− 1 +
w(t)

µ(t)

)1T.

Then, the solution of Z(t+1) is given by:

Z(t+1) = argmin
Z≥0

‖Z− (Z(t) −
1

η(t)
F(t))‖2F

= (Z(t) − η−1
(t) F(t))+.

(11)

Subproblem of E(v). For each view v, we update E
(v)
(t+1) by:

min
E(v)

λ2

µ(t)

‖E(v)‖1 +
1

2
‖E(v) − (S(v) + H(t)H

T
(t)

− S(v)Z(t+1) + Y
(v)

(t) /µ(t))‖2F .
(12)

Following [Lin et al., 2011], we have:

E
(v)

(t+1) = D λ2
µ(t)

(S(v) + H(t)H
T
(t) − S(v)Z(t+1) + Y

(v)

(t) /µ(t)),

(13)
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where D(·) denotes the element-wise soft-thresholding
shrinkage operator [Lin et al., 2011].
Subproblem of H. Clearly, there are two parts w.r.t H in
Eq. (5), which are corresponding to spectral ensemble cluster-
ing and our self-boost constraint, respectively. Recall that, we
devise this constraint to involve an interaction between learn-
ing Z and finding H. As shown by Eq. (11), the term of HHT

can effectively hold the cluster structure of Z(t+1). However,
when computing H from Z, considering this term will take
some unnecessary “noises” induced by E(v) and Y(v) into
the clustering process. Hence, we omit the part of L that con-
tains HHT, and recast the subproblem of H as:

H(t+1) = argmin
HTH=I

tr(HTLzH), (14)

where Lz is updated by Z(t+1). As suggested by [Zha et
al., 2002; Dhillon et al., 2004], Eq. (14) is solved by directly
setting H(t+1) as the K smallest eigenvectors of Lz .
Multipliers. Totally, we have m + 2 multipliers, which can
be updated by:

∆
(v)

(t+1) = S(v) + H(t+1)H
T
(t+1) − S(v)Z(t+1) −E

(v)

(t+1),

Y
(v)

(t+1) = Y
(v)

(t) + µ(t)∆
(v), ∀v = 1, . . . ,m.

Λ(t+1) = Λ(t) + µ(t)(Z(t+1) − J(t+1)),

w(t+1) = w(t) + µ(t)(Z(t+1)1− 1),

(15)

where ∆(v) is introduced for the conciseness. The entire so-
lution for MVEC is summarized in Algorithm 1.

2.3 Discussion
Convergence Analysis. As shown by Algorithm 1, the pro-
posed MVEC can be divided into four subproblems, each of
which is convex w.r.t one variable and solved with a closed-
form solution. Thus, by finding the optimal solution for each
subproblem alternatively, our algorithm at least converges to
a local minimum solution.

Complexity Analysis. The major computation of Algorithm
1 lies at step 3-5 and step 7. In details, step 3 costs O(n3)
due to the SVD operation. Step 4 involves several matrix
multiplications, leading to a complexity ofO(ln3), where l is
the number of multiplications. For each view, Eq. (13) takes
O(n2), thus the complexity of step 5 is O(mn2). The eigen-
value decomposition in step 7 costs O(n3). Hence, the total
cost of Algorithm 1 is O(T (mn2 + (l + 2)n3)), where T
is the iteration number. To make our algorithm scalable for
large-scale datasets, several off-the-shell acceleration meth-
ods could be used, such as divide-and-conquer [Talwalkar et
al., 2013] and the skinny SVD based ones [Zhang et al., 2014;
Xiao et al., 2015].

3 Experiment
3.1 Experimental Setting
Datasets. Six real-world datasets are used in the experi-
ment, which cover three text-type ones, i.e., the 3-Source1

dataset, the 4-Areas2 dataset, and the BBCSport dataset pro-
vided by [Xia et al., 2014]; and three image-type ones, i.e.,

1http://mlg.ucd.ie/datasets
2http://web.cs.ucla.edu/~yzsun/data/four area.zip

Table 1: Dataset Details

Dataset #Instance #View #Class Type
3-Sources 169 3 6 text
4-Areas 4236 2 4 text

BBCSport 544 2 5 text
Caltech101-20 2386 6 20 image

Digit 2000 2 10 image
Notting-Hill 550 3 5 image

a 20-class subset [Li et al., 2015b] of the Caltech1013 im-
age dataset, the UCI Digit4 dataset, and the Notting-Hill
dataset [Zhang et al., 2009] provided by [Cao et al., 2015].
We summarize these datasets in Table 1.

Compared Methods. Multi-View Clustering Methods. By
following [Xia et al., 2014], we generate affinity matrix with
Gaussian kernels, and conduct spectral clustering [Ng et al.,
2001] under different setting to obtain three baseline meth-
ods: (1) SpectralBSV returns the clustering result of the Best
Single View (BSV); (2) SpectralCON concatenates the fea-
ture of each individual view and performs spectral cluster-
ing on the affinity graph built with the concatenated fea-
tures; (3) SpectralSUM sums the affinity matrices of all the
views and does spectral clustering on the averaged one. Be-
sides, several effective multi-view clustering methods are
also employed in the experiment, including Co-Regularized
Spectral Clustering (CRSC) [Kumar et al., 2011], Multi-
View Nonnegative Matrix Factorization (MultiNMF) [Liu
et al., 2013b] and Robust Multi-View Spectral Clustering
(RMVSC) [Xia et al., 2014]. Ensemble Clustering Meth-
ods. Since our approach actually takes as input existing basic
partitions (BPs), we also compare the proposed MVEC with
three state-of-the-art ensemble clustering algorithms, includ-
ing K-means based Consensus Clustering (KCC) [Wu et al.,
2015], Spectral Ensemble Clustering (SEC) [Liu et al., 2015;
2017], and Robust SEC (RSEC) [Tao et al., 2016]. SECBSV
(RSECBSV) represents the best ensemble clustering result of
each single view, whilst SECSUM (RSECSUM) denotes the
result with the averaged co-association matrices of all the
views. Note that, since KCC directly finds consensus clus-
tering among multiple BPs, we only report the KCCBSV.

Clustering Tools. Following [Wu et al., 2015; Liu et al.,
2016; Tao et al., 2017], we generate a set of r = 100 basic
partitions for each individual view by using the Random Pa-
rameter Selection (RPS) strategy, which performs K-means
algorithm with cosine distance and various cluster numbers.
We feed these basic partitions sets as the default input to all
the EC methods. For traditional clustering methods, we di-
rectly take the raw data as input and follow their preprocess-
ing steps. Two widely-used clustering validation criteria are
used to evaluate the clustering performance of all the meth-
ods, which are Normalized Mutual Information (NMI) and
Normalized Rand Index (Rn) [Wu et al., 2009]. Both these
two metrics are positive measures and ranged from 0 to 1,
where NMI will drop to zero for the random partition and Rn
might be negative to the extremely poor clustering result.

3http://www.vision.caltech.edu/Image Datasets/Caltech101/
4http://archive.ics.uci.edu/ml/datasets.html
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Table 2: Clustering performance on six real-world datasets by NMI (%)

Datasets 3-Sources∗ 4-Areas∗ BBCSport∗ Caltech101-20 Digit Notting-Hill∗ score
SpectralBSV 47.14±2.45 43.27±8.53 71.76±0.32 59.65±1.35 63.92±2.40 71.58±2.90 4.49
SpectralCON 51.66±2.22 0.87±0.09 54.77±1.52 38.19±0.84 65.09±2.37 64.28±5.66 3.41
SpectralSUM 46.40±4.09 37.06±10.45 60.56±2.48 52.65±1.58 76.60±3.07 77.59±4.68 4.38

CRSC 51.55±2.93 32.97±2.39 63.71±2.48 56.29±1.36 72.23±3.05 75.20±4.74 4.38
MultiNMF 39.69±3.95 9.55±1.92 22.60±3.43 59.23±1.43 72.81±2.55 78.53±2.90 3.60
RMVSC 37.66±4.20 50.81±0.04 80.26±2.91 54.52±1.47 76.71±1.95 67.17±4.93 4.57
KCCBSV 60.42±2.81 49.03±6.18 84.25±2.33 60.67±1.10 74.59±2.78 77.08±7.10 5.08
SECBSV 55.23±1.87 55.22±5.09 87.26±2.08 61.91±1.07 76.73±1.09 73.80±1.42 5.13
SECSUM 59.21±3.50 74.06±0.00 86.86±4.47 59.56±1.28 66.90±2.89 69.73±0.04 5.22

RSECBSV 63.60±0.00 43.09±4.42 64.95±0.00 62.13±1.27 88.20±1.68 78.61±0.00 5.03
RSECSUM 41.65±0.00 46.67±0.00 62.24±0.00 57.92±1.24 85.72±1.68 80.50±0.20 4.69

MVEC 75.69±0.00 77.66±0.00 90.83±0.00 62.87±0.94 86.66±0.99 84.17±0.91 5.98
The top NMI value is highlighted by red bold font and the second best by blue italic.
* indicates the difference between MVEC and runner-up is statistically significant on this dataset.
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Figure 1: Discussions to MVEC on the 3-Sources dataset. (a) Convergence (blue line) and NMI (orange line) curves with respect to iteration.
(b) Parameter analysis to λ1 and λ2. (c) Exploration to the number of Basic Partitions (BPs).

For all the compared methods, we use the true cluster num-
ber for fair comparison, and run the codes provided by au-
thors with the parameters as suggested in their work. We test
each method 20 times, and report the average result as well
as the standard deviation (std). To validate the statistic sig-
nificance of comparison results, the p-value is also calculated
with t-test. In the experiment, we set λ1 = 1 and λ2 = 0.01
as the default setting for our MVEC method.

3.2 Clustering Performance
Table 2 and Table 3 summarize the clustering results of the
proposed MVEC and other methods in terms of NMI and Rn,
respectively. As can be seen, our approach generally per-
forms best on all the datasets by both metrics. In details, we
improve around 12% NMI (8% Rn) and 4% NMI (6% Rn)
over the runner-up on 3-Sources and 4-Areas, which clearly
shows the effectiveness of our approach. To further evalu-
ate the performance, we compute a measurement score by
following [Wu et al., 2015]: score(Ai) =

∑
j

f(Ai,Dj)
maxi f(Ai,Dj)

,
where f(Ai, Dj) indicates the NMI or Rn value ofAi method
on the Dj dataset. This score gives an overall evaluation on
all the datasets, which shows our approach outperforms the
other methods substantially. Besides, according to p-value,
our model outperforms the second best method with a statis-
tically significant level in most cases.

Ensemble Clustering vs Multi-View Clustering. Based on
the input data, we may divide all the methods in Table 2

and Table 3 as two categories, such as ensemble clustering
(EC) methods (e.g., KCCBSV, SECBSV and KCCSUM) that em-
ploy basic partitions, and multi-view clustering methods (e.g.,
SpectralSUM, CRSC and RMVC) that directly use the multi-
view data. As can be seen, EC methods generally outperform
the multi-view clustering ones, and even the EC method of
single-view performs much better than the traditional ones.
This demonstrates the significant superiority and great po-
tentiality of using ensemble clustering methods to solve the
multi-view clustering problem.

Single-View vs Multi-View. As shown by Table 2 and 3, tra-
ditional multi-view clustering methods perform slightly bet-
ter than the single-view ones. For example, RMVSC only
improves 0.08 (0.04) overall score over SpectralBSV by NMI
(Rn). The similar observation appears at the ensemble clus-
tering case, where the EC methods integrating BPs from all
the views generally outperform the BSV ones with a little im-
provement. Specifically, SECSUM is only 0.09 (0.21) higher
than SECBSV in Table 2 (3). These two observations indicate
that: (i) Traditional multi-view clustering methods sometimes
cannot improve the performance compared with the single-
view ones, since they may suffer from the conflict among dif-
ferent views; (ii) Existing EC methods neglect to fully exploit
the multi-view information. In contrast, our MVEC method
not only improves the robustness of co-association matrix to
the multi-view BPs, but also explicitly considers the connec-
tion between different views. Thus, we achieve better perfor-
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Table 3: Clustering performance on six real-world datasets by Rn (%)

Datasets 3-Sources∗ 4-Areas∗ BBCSport∗ Caltech101-20∗ Digit Notting-Hill∗ score
SpectralBSV 35.53±3.30 30.66±12.59 69.57±0.14 30.79±3.22 53.77±3.80 71.78±5.82 3.91
SpectralCON 33.77±4.01 -0.02±0.00 46.67±3.71 16.51±1.05 55.30±3.54 62.85±8.11 2.84
SpectralSUM 34.60±4.92 21.53±14.84 55.19±2.31 26.69±2.46 69.50±5.50 74.17±7.65 3.75

CRSC 35.78±5.12 17.73±4.16 61.92±0.83 29.43±2.43 66.79±5.05 69.61±7.94 3.77
MultiNMF 17.20±5.58 0.37±0.54 13.58±2.75 34.15±4.92 64.59±4.79 77.43±6.84 2.92
RMVSC 25.05±4.94 46.21±0.05 78.65±8.40 26.06±2.18 70.73±3.73 58.63±8.10 3.95
KCCBSV 47.24±6.84 33.57±10.23 86.18±2.38 29.46±2.84 60.98±6.25 73.38±11.33 4.39
SECBSV 37.09±2.89 44.47±7.98 89.73±3.12 30.43±1.68 66.33±2.03 65.64±2.03 4.38
SECSUM 43.24±6.53 77.35±0.00 86.96±8.20 29.24±2.70 55.09±3.82 57.81±0.11 4.59

RSECBSV 54.52±0.00 25.42±8.85 40.74±0.00 33.65±2.18 87.35±0.00 73.20±0.00 4.31
RSECSUM 16.39±0.00 41.56±0.00 36.93±0.00 36.54±2.11 77.00±3.82 76.95±0.75 3.85

MVEC 62.21±0.00 83.25±0.00 92.06±0.00 43.06±3.63 81.55±4.12 80.76±1.19 5.93
The top Rn value is highlighted by red bold font and the second best by blue italic.
* indicates the difference between MVEC and runner-up is statistically significant on this dataset.
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Figure 2: The performance of MVEC to noisy data on the BBCSport
dataset.

mance than multi-view and ensemble clustering methods.

3.3 Discussion
Convergence. To show the convergence property of our
method, we compute the relative error of the stop criterion by
max{‖∆(v)‖F/‖S(v)‖F}mv=1. Fig. 1(a) shows the relative er-
ror curve of our approach. As can be seen, MVEC converges
steadily within 60 iterations. Moreover, we also plot the NMI
curve during the optimization process. Along with iterations,
the clustering performance of MVEC generally goes up, and
achieves stable within several reasonable fluctuations, which
indicates our approach has a strong convergence behavior. It
is worthy to note that, the similar convergence behavior of
MVEC can be observed on the other datasets.

Parameter Analysis. Recall the Eq. (3), λ1 and λ2 are
two major parameters in our model, where λ1 controls
the rankness of the low-rank representation and λ2 bal-
ances the sparseness of error matrices for all the views.
We report the clustering performance of MVEC by rang-
ing λ1 and λ2 within the set of {10−4, 5 × 10−4, 10−3, 5 ×
10−3, 0.01, 0.05, 0.1, 0.5, 1}. As shown by Fig. 1(b), our ap-
proach is quite insensitive to these two parameters. Consider-
ing that, the error matrices can compensate the disagreement
between different views, we suggest to set λ2 as a relatively
small value.

Impact of Basic Partitions Number. We employ r = 100
basic partitions (BPs) for each view v (denoted by Π(v)) in
all the above experiments. Here, we will explore the impact
of different BPs number to the clustering performance of our
approach. In details, for ∀v, we randomly sample r BPs from

Π(v), and conduct MVEC with the sampled BPs sets of all
the views. This process is repeated 100 times for a certain
BPs number r. Fig. 1(c) shows the boxplots of NMI on the
3-Sources dataset, where r is increased from 10 to 90 with a
step size of 10. One may note that, as r increases, the NMI
generally goes up and its variance tends to be reduced. This is
mainly because a larger BPs number can enrich the diversity
of basic partitions and also improve the stableness of ensem-
ble clustering [Wu et al., 2015]. In summary, our method is
robust to a large BPs number, such as r ≥ 50.

Impact of Noisy Data. We consider noisy data under two
scenarios: (1) noisy basic partitions (BPs) and (2) noisy fea-
tures, where the first one randomly corrupts BPs for each
view according to a certain missing ratio, and the second
randomly “dropouts” some feature dimensions for the multi-
view data and then generates BPs upon the noisy features.
As shown by Fig. 2, for both these two cases, we range the
missing ratio from 10% to 50% along each view, and report
the clustering performance of MVEC by NMI. Generally, our
method is quite stable to the noises among basic partitions,
due to the robustness inherited from ensemble clustering. On
the other side, the performance of MVEC mainly degrades
along with the diagonal direction of Fig. 2(b), showing that
our method is robust to the noises of an individual view.

4 Conclusion
In this paper, we presented a novel Multi-View Ensem-
ble Clustering (MVEC) framework, which employed co-
association matrix to characterize the pairwise affinity of each
sing-view data upon multiple basic partitions. A unified op-
timization framework with the self-boost constraint was pro-
vided to jointly learn a consensus affinity matrix shared by
multiple views and find the final clustering result. Exper-
iments on six real-world datasets showed the effectiveness
of the proposed method compared with both ensemble and
multi-view clustering methods.
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