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Abstract

The positive and unlabeled (PU) learning problem
focuses on learning a classifier from positive and
unlabeled data. Some methods have been develope-
d to solve the PU learning problem. However, they
are often limited in practical applications, since on-
ly binary classes are involved and cannot easily be
adapted to multi-class data. Here we propose a one-
step method that directly enables multi-class model
to be trained using the given input multi-class da-
ta and that predicts the label based on the model
decision. Specifically, we construct different con-
vex loss functions for labeled and unlabeled data
to learn a discriminant function F'. The theoretical
analysis on the generalization error bound shows
that it is no worse than kv/k times of the fully
supervised multi-class classification methods when
the size of the data in k classes is of the same or-
der. Finally, our experimental results demonstrate
the significance and effectiveness of the proposed
algorithm in synthetic and real-world datasets.

1 Introduction

Training examples are labeled as positive or negative in the
conventional binary classification problem. In contrast, the
positive and unlabeled (PU) learning problem aims to learn a
classifier from positive and unlabeled data, where unlabeled
data contain both positive and negative examples. Many real-
world applications can be generalized as PU learning prob-
lems. For example, when distinguishing urban areas and non-
urban areas using remote-sensing data [Li et al., 2011], ur-
ban examples can easily be labeled whereas non-urban ex-
amples are too diverse to be fully labeled. In gene associ-
ation studies [Yang et al., 2014], confirmed causative genes
of various human diseases are considered positive while all
other unknown genes are treated as unlabeled data. In secu-
rity systems, authorised user upload a series of photograph-
s of his own face while any picture of a person in front of
the camera is regarded as unlabeled. Some classical applica-
tions such as text classification [Fung er al., 2006; Kanoun
et al., 2011] and information retrieval [Latulippe et al., 2013;
Schwenker and Trentin, 2014; Yu, 2003; Nguyen et al., 2011;
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Li et al., 2014; Liu et al., 2017] can also be regarded as PU
learning problems.

Some effective algorithms have been developed to solve
the PU learning problem. Biased support vector machine (Bi-
ased SVM) solves the PU problem by treating unlabeled data
as negative data with noise [Liu and Tao, 2016] and using
a cost-sensitive SVM to generate the classifier [Liu ef al.,
2003]. [Elkan and Noto, 2008] showed that the probabili-
ty predicted by a classifier trained on positive and unlabeled
examples has a constant difference from the true conditional
probability. The resulting classifier can thus be constructed
by first training an initial classifier using traditional super-
vised learning methods on positive and unlabeled data and
then estimating the constant difference based on positive da-
ta. [du Plessis er al., 2014] proved that convex loss functions
are inapplicable to learning PU problem classifiers, due to the
systematic estimation bias, and instead recommended non-
convex loss functions, e.g. ramp loss, for PU learning. [P-
lessis et al., 2015] then demonstrated that employing different
convex loss functions over positive examples and unlabeled
examples overcomes the difficulty in optimizing non-convex
loss functions in [du Plessis ef al., 2014] while guaranteeing
learning performance.

Although existing PU learning algorithms are effective and
show promising performance in a number of different appli-
cations, they share the limitation that only binary classes are
involved. Hence, they are not easy to adapt to the multi-class
data which is common in real-world applications. For exam-
ple, more than one person might be authorized by the security
system, thus their face images are grouped into distinct pos-
itive classes. A personalized email filter should allow some
spam to pass through the system in addition to non-spam e-
mails, which are also organized into several positive classes.

Here we study the Multi-Positive and Unlabeled learning
(MPU) problem, in which labeled data from multiple posi-
tive classes and unlabeled data from either the positive class-
es or an unknown negative class are provided for learning.
We aim to construct different convex loss functions for la-
beled and unlabeled data to eliminate the systematic estima-
tion bias. We achieve this by learning a discriminant function
F : X x Z — R over the input and the encoded output
pairs (x1,21), - -, (Xn,2n) € X X Z, with the new output
space Z generated by encoding the original output space ) .
We provide a theoretical analysis of the generalization error
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bound of MPU, which is no worse than kv/k times of the ful-
ly supervised multi-class classification methods when the size
of the data in different classes is of the same order. Finally,
our experiments over synthetic and real-world MPU datasets
demonstrate the practical significance of studying classifica-
tion problems involving multiple positive data from different
classes and unlabeled data.

2 Problem Formulation

Supposing the data are from k classes, the first £ — 1 classes
are regarded as positive while the k-th class is negative. In
the MPU problem of interest, we assume that the labeled data
are sampled from k£ — 1 positive classes and the unlabeled
data could be from either positive classes or a negative class.
Given a training set:

T = {(x, y) ity U{(xa) e, )

where n; and n, represent the number of labeled and un-
labeled samples respectively, and x; € X C RY, Yy; €
Y = {1,2,...,k}, MPU aims to learn a decision function
f+ X — Y based on the training data.

2.1 Multi-Positive and Unlabeled Learning

In classical multi-class classification, given the class prior
m = ply = i), 4 = 1,2,...,k, we can learn the classifier
based on the decision function f(x) by minimizing the ex-
pected misclassification rate:

k
R(f) =Y _ mRi(f), @
i=1

where Zle m = 1. Ri(f) = Pi(f(x) # i) denotes the
expected misclassification rate on the ¢-th class, and P; is
the marginal probability. By learning a discriminant func-
tion F' : X x Y — R which can be treated as the reliability
or the score of the prediction over input/output pairs, we can
derive the prediction by maximizing F' given some input x [T-
sochantaridis et al., 2004]. Therefore, the decision function
f can be expressed as:

fx; W) = argmaagcl"(x,y;W), 3)
ye

where W is the parameter matrix. For simplicity, we define
F(x,y) = F(x,y; W) in the following paragraph.

In the MPU problem, the unlabeled samples is a mixture of
samples in k classes, therefore the distribution of unlabeled
data can be denoted by a linear combination of the distribu-
tion of the samples in k classes. Defining Py as the marginal
probability of unlabeled data:

k—1

k k—1
Px :Z‘ﬂ'qu‘, = Zﬂipi+(1— Z‘M)Pk, (C))
i=1 i=1 =1
where 7; is the unknown class prior which can be estimated

with the method in [Blanchard et al., 2010]. Note that we
have assumed that the k-th class is negative, then there are

no labeled data in the k-th class. R(f) must, therefore, be
reformulated to exclude Ry (f). We introduce Rx (f) to de-
note the probability that the unlabeled sample has not been
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classified as the k-th class:
Rx(f) = Px(f(x) #k)

k—1 k—1
=D mP(f(x) £ k) + (1= > m)Pu(f(x) # k)
i=1 i=1
k—1 k—1
=D mPi(f(x) £ k) + (1= > m)Re(f) ®)
i=1 i=1
Note that R (f) can be expressed with Rx (f), and the dis-
tribution of the unlabeled data can be easily obtained from
the input data. Hence, applying Eq.(5) to Eq.(2) and note that

Zle m; = 1, the expected misclassification rate R(f) can
be written as:

k—1 k—1
R(f) =D miBi(f) + Rx () = Do mPi(f(x) #k), (6
i=1 i=1
in which P;(f(X) # k) represents the probability that the
sample in the i-th class has not been classified as the k-th
class. Note that R;(f) (Rx(f)) can be treated as the proba-
bility that the sample in the ¢-th class (in the unlabeled data)
has not been classified as the ¢-th (k-th) class. Therefore,
each term of the expected misclassification rate R(f) can be
expressed as:

k
Pi(f(x)#) = > Pi(f(x)=m), ™
m=1,m#j

in which ¢ is the true label of the sample (which is unknown
for unlabeled data). The left hand side of Eq.(7) is the rate
that the sample in the ¢-th class has not been classified as the
j-th class, which can be decomposed as the summation of
k — 1 terms, each of which represents the rate of classifying
the sample in the ¢-th class to the m-th class.

Based on the analysis above, denoting F/(x("), f(x) = §)
as the prediction score of the sample in the i-th class which
is classified as the j-th class, the empirical loss of the sample
can be defined as:

k

LFEED, fx) £ 1) = —— 3O

(i) _
1 WP, f(x) =m)), (8

m=1,m#j

in which F (x| f(x) # j) means the empirical loss that
the sample in the ¢-th class has not been classified as the j-th
class. And [(F (x| f(x) = m)) is the loss of misclassifying
a sample from the i-th class into the m-th class. Note that the
loss in Eq.(8) is computed on k£ — 1 classes since each term of
the expected misclassification rate R( f) is computed on k—1
classes according to Eq.(7).

Therefore, given Eq.(8), the loss function can be expressed
based on Eq.(6):

k—1
J(F) = > mB[LF(x, f(x) # )] + Ex[L(F(x7, f(x) # k))]
i=1

k—1
=Y mEL(FED, f(x) # k)]
=1

k

|
-

= Zj m B[ L(F(x", f(x) # 1)) = LIF(x, f(x) # k)]
b Ex [L(F(x'P), f(x) # k)]
- X:h B 160 = ) — UF G 560 = )]
N [L(P(x), f(x) # k). ©)
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in which ¢ is some unknown label of the unlabeled data, and
the last equation is derived from Eq.(8) since there are & — 2
same terms between two L(-)’s and only two [(-)’s are re-

mained after subtraction. ) )
Since adopting the same convex loss function for posi-

tive and unlabeled data can lead to systematic estimation bias
which causes an incorrect classification boundary [du Plessis
et al., 2014], it is appropriate to use distinct loss functions
over labeled and unlabeled data. For efficiency, it is better
that both loss functions are convex. Therefore, we define:

WF (Y, £(x) = )
= 5 max(0,1— (Fx", f(0) = ) = F, 1) = ). (10)

Since I(F(x™, f(x ): i)) = 3, Eq.(9) becomes:
J(F) = Z’”

+ BEx[LFT, f(x) # k)] an
It is worth noting that the hinge loss is appropriate here to
get a convex model because when the sample is correct-
ly labeled, the loss proposed in Eq.(10) is a fixed value
(l( (x| f(x) = i)) = 1/2). Therefore, both I(-) and L()
in Eq.(11) and the model (Eq.(11)) are convex.

CBHFY, £ = R) — )

2.2 Discriminant Function Construction

To specify Eq.(11), we need to construct the discriminant
function F'(x, f(x); W).

To handle multiple classes effectively, we encode class la-
bels using vectors (z1, 2o, ...,z;) € R", where r indicates
the length of the code and z; is the codeword of the ¢-th class.
Given the parameter matrix W,y 4 (in which d is the dimen-
sion of the input space), we define:

FY, f(x) = 5: W) = (Wx, 25) =
In Eq.(12), the original input space X is mapped into Z, and
the geometric result of the inner product is the projection val-
ue of the input data to the codeword z;, which can be treated
as the score on the j-th class. The decision function can be
expressed as Eq.(3).

Note that in order to achieve an effective result, the pre-
diction score of x(*) on the i-th class should be the largest
one, and the margins between the scores of x(*) on different
classes should be large enough. The following optimization
problem is a possible approach to encode y by maximizing
the margins between the codewords:

(Wx)Tz;. 12)

. 2
pemax [min|lz; — 2] o)
s.t. ||ZiH:1,Zi ERTV77;:1727-..,]<;.
in which the length of the codewords is fixed as r = k — 1.
It has been proved in [Saberian and Vasconcelos, 2011] that
the vertices of a k — 1 dimensional regular simplex centered
at the origin are the solutions of Eq.(13).

Assuming that there are n; labeled samples belonging to
the i-th class, s = 1,2, - -,k — 1, and n,, samples are unla-
beled. Applying Eq.(12) to Eq.(11), the empirical loss func-
tion can be written as:

*HWIIF+ P Z

(F:0) T
T (w1 = 7g,)) 4 (14)

J(W,9) =

Zk - Z%)]-%—

Z [(Wx( N T

2”‘1]‘ 1

+—Z Z[1+(w

2nu
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where X;-i) denotes the j-th sample in the ¢-th class and x;l,}j )

denotes the j'-th sample which is unlabeled, whose true label
is ¢;» which is unknown. The first term is the regularization
term, and [z]4+ = max(x,0).

Note that the parameter matrix W is the only parameter
needing to be optimized in the first term on the right hand
side of Eq.(14). In the second term, however, since the input
data are unlabeled, we also need to optimize Zj,, which is the
encoded result of the true class of the unlabeled data. There-
fore, defining ¥ = (91, U2, ..., Un, ) (Where g; € {1,2,...,k}),
there are two parameters W and y needing to be optimized.

2.3 Optimization of Problem (Eq.(14))

Giving the empirical loss function Eq.(14), there are two pa-
rameter matrices in the loss function that need to be opti-
mized, where W is the parameter matrix in the discriminant
function Eq.(12) and ¥y denotes the true labels of the unla-
beled samples. The proposed optimization function Eq.(14)
is non-convex. However, fixing one of the variables, and the
problem becomes convex w.r.t. the other one. Thus, we pro-
pose an optimization algorithm by fixing one of the variables
alternatively until the optimization function converges. The
details are given by the pseudo-code in Algorithm 1.

Algorithm 1 Multi-positive and unlabeled learning
{&ny) b, U

Input: Number of classes k, dataset T' =
{(x4)}o,, encoded matrix Z.
Initialization: set W < W,y + y,.
repeat
e Fixed W, update ¥ that minimize .J (W,¥y)
for : = 1ton, do
forc=1tokdo
Compute J (W, ¥|9; = ¢)
end for A
j = argmin J(W, 7[5 = o)
Yi=1J
end for X
o Fixed y, update W that minimize J(W,y)
until converge
Output: parameter matrix W

3 Theoretical Analysis

In this section, we provide the theoretical analysis of the gen-
eralization error bounds of the proposed method. The proofs
are shown in Appendix A~Appendix C.

Firstly, substitute a generalized form for Eq.(10):

Lp(F(x", f(x) = 4))

= gmax(0.1 = ~(F, 760 = 1) = P £0) = 7).
For a given dataset, there is an upper bound D, that makes
0 <1, < D. Without loss of generality, scaling I, which
makes [, € [0, 1], the normalized loss [, is defined as:

Lo (P, f(x) = 4))

=S max(0, & — = (F(, 760 = 1) = F, ) =), (19
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and Eq.(8) becomes:

k
Lo(FGD f0) #0) = oy S

m=1,m#j
so Eq.(11) can be rewritten as:

k—1

J(F) = Zm pOly=i) Lo (F(x, f(x) = k) — f]
+ Epo Lo (F(xP | f(x) # )], an

where the first term represents the loss of the labeled positive
data and the second term represents the loss of the unlabeled
data.

Define o = sup, ¢ pa \/k(z, x) where k(-,
nel and 8 = sup(||w||) for some 5 > 0.

In the following paragraph, we show the generalization er-
ror bounds of the two terms in Eq.(17) in Theorem 2 and 3
respectively. We begin with the first term, and the constant %
is ignored for simplicity.

Theorem 1. Let h;(xV) = F(x¥, f(x) = j) € H; C
RY*Y where H; is a hypothesis set with Y = 1,2, ..., k. Fix
p > 0. Forany 0 < § < 1, with probability at least 1 — ¢, the
generalization bound holds for all h; € H;:

-) is a PDS ker-

; 5 1 2 . )
Bypty=iy o (ha (D), i (D)) = — 37 1 (s (), b ()
P

2k2 k—1 af )Jr log%.
RVaL2 AVALZ 2774

18)

Theorem 2 presents the error bound for labeled data from
each positive class, so we can summarize them to get the error
bound of the first term in Eq.(17).

Note that it is difficult to get the error bound of the second
term in Eq.(17), so we aim to decompose it into two terms
using the following lemma.

Lemma 1. Define

LL(FEY, fx) # j5) = Ly(F", f(x) # ),

2k —

the last term of Eq.(17) can be decomposed as follows:

B (Lo (F(x7), f(x) # k)]
k=l op—
=i

c=1

+ me,w[L;,(F(xW),f(x) # k)] (19)

) By xymey [LL (F(x(), f(x) # k)]

where 7% := p(y = c) is the true class prior of the c-th class.

Based on the decomposition result from Lemma 1, the gen-
eralization error bound of the second term in Eq.(17) can be
obtained by bounding each term in Eq.(19) (see Appendix C
for detail). The result is shown in the following theorem:

Theorem 2. Fix p > 0. For any 0 < § < 1, with probability
at least 1 — § over the samplesin N = Ny U---UNg_1 UN,,
the generalization bound holds for all h; € H;:

L(F(xY, f(x) =m)), (16)

Epoo [Lp(F(xT, f(x) # B))] — — Z Ly, (F(x7), f(x;0) # k)

e S LR, () # K))
j=1

c=1
k—1 2 k—1 2 k—1
« 2k af 2k af
+ om0 + 7# Z )
=1 P =1V Mt Uzn —1 VN
k—1 1 1
« 2k —c log 5 logs
20
+2 () B o, 0)

Summarizing the inequality in Theorem 2 and 3, we get
the generalization error bound of Eq.(17), and the order of
the error bound is shown below:

Theorem 3. As n; — o0,i = 1,2,....k— 1, n, = o
and k — oo, the generalization error bound of the proposed
method is of order:

1 1

K2 + + . 21
( = N = ) @b
Note that for fully labeled data, the samples are i.i.d.,
and the generalization error bound would be of order
O(k*/\/ni ¥~ F ng_1 + ny). The proposed method is,
therefore, no worse than kv/k times of the fully supervised
multi-class classification methods when the size of the data

in different classes is of the same order.

4 Experiments

We conducted two sets of experiments: a toy experiment to
qualitatively show the properties of the proposed algorithm,
and a quantitative evaluation of the algorithm on real-world
datasets. The new MPU algorithm was compared with the bi-
nary PU learning methods (BPU) such as BPU(DH) method
in [Plessis ef al., 2015] which created a double hinge loss
function for the unlabeled data, BPU(ramp) method in [du P-
lessis et al., 2014] where the non-convex ramp loss was used,
and biased SVM method [Liu et al., 2003]. All binary meth-
ods were generalized to solve the multi-class problem with
one-versus-all method.

4.1 Experiment on Toy Data

We first conducted an experiment on the IRIS dataset from
the UCI repository. There are 3 classes in the dataset with
50 samples for each. The first two classes were treated as
positive and the third class as negative. For the simplicity of
illustration, we reduced the dimensionality to 2 via principal
component analysis, with 50 labeled data samples (25 in class
1 and 25 in class 2) and 100 unlabeled data samples drawn
(Fig.1 (a)). The examples were projected into space Z and
the classification result is shown in Fig.1 (b).

The three lines represent the codeword z;, while the three
classes of mapped input data are shown in different colors
(the misclassified points are in green). Each point was pro-
jected to the three codewords (only one projection is drawn
for simplicity). The projection value of input data to z; rep-
resents the score on the i-th class. The label of the class with
the maximum score was assigned to the input data. Nearly all
of the data was classified correctly.
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Figure 1: (a) Sample distribution with the dimensionality reduced to
2. Class 1,2 and 3 are drawn in blue, red and orange respectively.
(b) The classification results in space Z.

Table 1: Datasets statistics

Dataset examples variables classes
Image Segment 2310 19 7
Letter 20000 16 26
USPS 11000 256 10
MNIST 70000 784 10

4.2 Real-world Data Set

Experiments were conducted on four different datasets, and
the relevant metadata for each dataset are shown in Table 1.

The conventional methods for the binary PU learning prob-
lem were generalized to solve the MPU learning problem
with one-versus-all method and were compared with the new
MPU algorithm in terms of classification accuracy and train-
ing time. All datasets were preprocessed, with half of the
samples in each positive class regarded as labeled, while the
other half together with all the samples in the negative class
regarded as unlabeled. The class priors were assumed to be
known at the time of training'. Furthermore, the fully labeled
datasets trained with linear SVM were compared with all the
methods mentioned above.

Classification accuracies are shown in Table 2 (All method-
s use linear kernal). The proposed MPU algorithm achieves
the best result of all the PU learning methods and is compa-
rable to the linear SVM method trained on fully labeled data,
since our one-step method allows direct model to be trained
using the given input data and obtains the label based on al-
1 the model decisions, while the generalized BPU methods
share the disadvantage such as error accumulation that one-
versus-all method has.

The binary PU learning results are shown in Table 3. The
seventh class was fixed as the negative class, while the oth-

!The class priors can be estimated with the methods in [Blan-
chard et al., 2010] in practice.

Table 2: Classification accuracy(with 20% test data).

Method Image Segment  Letter USPS MNIST
Linear SVM 93.51 84.05 96.32 93.61
MPU 90.26 70.12 92.86 90.78
BPU(DH) 88.31 62.98 89.13 86.92
BPU(Ramp) 88.74 63.18 89.94 87.04
Biased-SVM 85.93 45.27 87.14 84.98
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Table 3: Classification error rate on ‘Image Segment’.

Dataset MPU BPU(DH) BPU(Ramp) Biased SVM
Class 1vs7  0.15 0.61 0.45 0.30
Class 2vs7  2.73 3.18 3.18 2.88
Class 3vs7  3.64 3.79 3.48 4.55
Class 4vs7  1.06 1.66 1.67 1.97
Class 5vs7  0.45 0.76 0.61 0.61
Class 6vs7  0.61 0.76 0.61 0.45

er classes were treated as positive class. One of the positive
class was chosen at a time, and half of the examples in the
chosen positive class were labeled while the other half to-
gether with the negative examples were unlabeled. Our pro-
posed method shows comparable performance on the binary
PU learning problem with other BPU methods in terms of
classification accuracy.

Next, we illustrate the robustness of our proposed methods
on the choice of the negative class. Fig.2 shows the classifica-
tion accuracies for choosing different classes as the negative
class. The black line represents the accuracy of the method
training on a fully labeled dataset. It is shown that the fluc-
tuate of the classification accuracy is small when choosing
different classes as the negative class. Thus our proposed
methods is robust on the choice of the negative class.

The training time on six datasets given in Fig.3 show that
the MPU algorithm is faster than other generalized binary PU
methods on large datasets, since the one-versus-all method
needs to train k classifiers with all samples in the datasets.

5 Conclusion

This paper presents the MPU algorithm for solving the multi-
positive and unlabeled learning problem. We show that the
MPU algorithm allows direct model to be trained with re-
spect to the multi-class input data rather than via a two-step
approach which often leads to a high classification error rate.
The theoretical analysis shows that the generalization error
bounds of the MPU algorithm are comparable to k+v/k times
of fully supervised multi-class classification methods when
the size of the data in different classes is of the same order.
Experimentally, the proposed MPU algorithm outperforms
current state-of-the-art methods in the MPU problem and is
as accurate in the BPU problem with a less computational
burden. Moreover, our method is comparable to the method-
s training using fully labeled data and robustly chooses the
negative class.

100 -

©
S

80

70

Accuracy Rate(%)

60
1 2 3 4 5 6 7

Negative Class
Figure 2: The classification accuracies with different classes as the
negative class.
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Figure 3: Average training time of different methods on four dataset-
s.

A Proof of Theorem 1

Based on the definitions 3.1 and 3.2 in [Mohri et al., 2012],
given N; = (= x), i = 1,2,k — LN, =
(X1, .-y Xn, ); N = N1U---UNj_1 UN,, define the empirical
Rademacher complexity of H; with respect to the sample N;:

Ry, (Hi) = E[hi‘% % Zolh =], (22)
where ¢ = (01,...,0,,)" and 0; € {—1,+1}. Denote
by R, (H, ) the Rademacher complexity w.r.t. p(x|y = 1),

and R, (H) the Rademacher complexity w.r.t. p(x, then we
have: X
Rn;(Hi) = E [Rn,(H:)] (23)
xEN;
We then have (Proposition 8.1 in [Mohri e al., 2012]):
R, (Hy) < O‘B_ i=1,2,.. k-1
' 4
R, () < 22,
N

where o = sup,¢cpa /k(z, ) with k(-

and 8 = sup(||w]]|) for some 3 > 0.
Define ¢ = max{hy,hsa,...,h;}, then the empirical

Rademacher complexity of G can be upper bounded by (Lem-

ma 8.1 in [Mohri ef al., 2012])'

-) be a PDS kernel

R (9) <Z\/77 \;‘nﬂ, 25)

Applying Eq.(25) to Theorem 8.1 in [Mohrl etal.,2012], and
note that the Lipschitz constant of [, is —. We then finish

the proof.
B Proof of Lemma 1

Assuming that 7% := p(y = c¢) is the true class prior of the
c-th class. Subsequently,

By Lo (P 100 # )] = [ Lp(P® f0) # Bp(x)ax

= [ PP ) # e )
Y

(26)
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Given
LD f0) £ D) = g e S £ ),
Eq.(26) then become:

B [Lo (F(x7), £(x) # k)]
—/ >, (PP, fx) 2 k) (2

)p( x, y)dx

= [, S e, 00 £ ayi>s a2
Y c=1

—)p(x,y = o)]dx

k—1
=> %) [ ELE 160 # Wplxly = i
c=1

+ [, > LL(FD), £(x) # k)p(x, y)dx
k—1

:gﬁ

2k7c

) Ep(xly—c) (L, (F(x'V, f(x) # k)]

+ By, (L (F(xT, f(x) # K))).

This decomposition is important to the following proof of the
error bound.

C Proof of Theorem 2

In this appendix, we first give the error bound of each term in
the right hand side of Eq.(19) using Lemma 2 and 3.

Lemma 2. Fix p > 0. Forany 0 < ¢ < 1, with probability

at least 1 — & over the samples in N,, = (x1,...,Xp,,), the
generalization bound holds for all h; € H;:
Epean [L(F&D, 1) # )] = == 3 LGP sty £ )
< 2 > ﬁ @7

(er

Lemma 3. Fix p > 0. Forany 0 < ¢ < 1, with probability

at least 1 — § over the samples in N; = (xgz), . xgi)) the
generalization bound holds for all h; € H;:

Byt L (F D, 160 # B)] = - S L (RGeS, £0x5) # )
i

2 k—1 1
2k logs

_2kfch \/”77&)4_ 2n;

(28)

Note that L, maps to [O 1], and the Lipschitz constant of

L’ in Lemma 2 and 3 is D and % D respectively, so the
cp
proof is analogous to the one in Theorem 1.
Now the generalization error bound of the second term in
Eq.(17) can easily be proved by applying the inequalities in
Lemma 2 and 3 into the equality in Lemma 1.
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