Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Link Prediction with Spatial and Temporal Consistency in Dynamic Networks

Wenchao Yu', Wei Cheng?*, Charu C. Aggarwal®, Haifeng Chen?, and Wei Wang'*
'Department of Computer Science, University of California Los Angeles
2NEC Laboratories America, Inc.
3IBM T.J. Watson Research Center
{wenchaoyu, weiwang} @cs.ucla.edu, {weicheng, haifeng} @nec-labs.com, charu@us.ibm.com

Abstract

Dynamic networks are ubiquitous. Link prediction
in dynamic networks has attracted tremendous re-
search interests. Many models have been devel-
oped to predict links that may emerge in the imme-
diate future from the past evolution of the networks.
There are two key factors: 1) a node is more likely
to form a link in the near future with another node
within its close proximity, rather than with a ran-
dom node; 2) a dynamic network usually evolves
smoothly. Existing approaches seldom unify these
two factors to strive for the spatial and temporal
consistency in a dynamic network. To address this
limitation, in this paper, we propose a link predic-
tion model with spatial and temporal consistency
(LIST), to predict links in a sequence of networks
over time. LIST characterizes the network dynam-
ics as a function of time, which integrates the spa-
tial topology of network at each timestamp and the
temporal network evolution. Comparing to exist-
ing approaches, LIST has two advantages: 1) LIST
uses a generic model to express the network struc-
ture as a function of time, which makes it also suit-
able for a wide variety of temporal network anal-
ysis problems beyond the focus of this paper; 2)
by retaining the spatial and temporal consistency,
LIST yields better prediction performance. Exten-
sive experiments on four real datasets demonstrate
the effectiveness of the LIST model.

1 Introduction

Evolutionary network analysis [Aggarwal and Subbian,
2014] has become increasingly important in recent years.
One of the major tasks is temporal link prediction which is
to predict the future network structure based on a sequence
of observed networks. Formally, in this paper, the problem
of temporal link prediction is defined as: given a sequence of
networks from timestamps 1 through 7, the task is to predict
the link weights at timestamp 7" 4 «, where o > 1. Note that
a special case of this definition is to predict whether a new
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Figure 1: Illustration of the LIST model.

link will emerge or not (when we restrict the link weight to
be either O or 1).

Extensive research efforts have been devoted to the tem-
poral link prediction task including nonparametric [Sarkar et
al., 2012] and parametric [Tylenda e al., 2009; Oyama et al.,
2011] models. The key factors to link prediction task in tem-
poral networks are spatial and temporal consistencies, which
mean: 1) a node has higher probability to form a link with a
nearby node than with a remote node in the near future; 2) a
network usually evolves smoothly over time. The first factor
is akin to that in static network link prediction [Lii and Zhou,
2011; Hasan and Zaki, 2011]. It encodes the local network
propagation constraints from the network topology at each
timestamp. The second one globally enforces the smooth-
ness of network evolution over time [Aggarwal and Subbian,
2014; Yu et al., 2017].

Existing approaches, however, seldom unify these two fac-
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tors to strive for the spatial and temporal consistency in the
dynamic network. Their prediction performance thus de-
grades. Moreover, most link prediction algorithms focus on
the very next timestamp (i.e., « = 1), and are unable to pre-
dict when o > 1. To address the limitation, we propose
LIST, a model for link prediction with spatial and temporal
consistency. We leverage the time-dependent matrix factor-
ization technique, which has shown to be a powerful means
to characterizing dynamic structural data [Koren, 2010; Yu
et al., 20171, to decompose the network adjacency matrices
into time-dependent matrices that capture the features of ver-
tices in the dynamic networks. At the same time, we intro-
duce the network propagation constraint [Zhou et al., 2003;
Kashima et al., 2009; Cheng et al., 2016] which ensures ver-
tices to be within close proximity to their neighbors in the
hidden feature space to be learned by the time-dependent
matrix factorization. As depicted in Figure 1, we learn the
feature vector of each vertex by simultaneously optimizing
the temporal fitting constraint and network propagation con-
straint. The temporal fitting constraint can be expressed as
time-dependent matrix factorization with network adjacency
matrix, while the propagation constraint preserves similarities
between the connected pairs of vertices in the feature space.
The learned feature matrices are parameterized with time and
can be used to reconstruct the network structure at any given
timestamp ¢. This allows us to make far more general pre-
dictions. Additionally, this feature matrix can be viewed as
a complete profile of the network dynamics over time, which
may also find its utility in other application settings of evolu-
tionary network analysis.
Our contributions are as follows:

e Spatial and temporal consistency in link prediction: We
propose a novel temporal link prediction model in dy-
namic networks which simultaneously consider the net-
work structure at each timestamp and the evolutionary
pattern across all timestamps. We leverage network
propagation constraint which ensures that the connected
vertices will have similar feature vectors. This “locality-
preserving” property captures the spatial structure of
networks at each timestamp. The feature vector of each
vertex can be learned via time-dependent matrix factor-
ization across all recent timestamps, which reveals the
temporal structure of networks.

e Computational speed-up: We develop an efficient algo-
rithm to learn the LIST model which reduces the time
complexity from O(n?) to O(mn + n?), where n is the
number of vertices in the dynamic network, and m is
the number of nonzero entries in the network adjacency
matrix. This makes the LIST model applicable for large-
scale datasets.

e Empirical improvements over previous work: We evalu-
ate the LIST model on four real datasets, and show that
LIST outperforms all competitors, which demonstrates
the effectiveness of our model.

The rest of the paper is organized as follows. Section 2
introduces the link prediction model with spatial and tempo-
ral consistency. Section 3 presents the experimental results
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of link weight prediction with four real-world dynamic net-
works. The related work is described in Section 4, followed
by the conclusions in Section 5.

2 The LIST Model

Let the observed sequence of temporal networks be G(t) =
(N, A(t)), where \ is a set of vertices, and A (t) is the adja-
cency matrix of the network at timestamp ¢ € [1, T, which is
defined as a function of time. We assume that the size of ver-
tex set |[N| = n, therefore A(t) € R"*"™. The elements a;j;
of A(¢) is the link weight between vertices 4 and j at times-
tamp t. Our goal is to predict the links at timestamp 7" + «
given A(1), A(2),..., A(T).

We adopt the label propagation principle [Zhou et al.,
2003; Cheng et al., 2016] which states that two vertices simi-
lar to each other are likely to have the same label. We consider
a practical assumption that two vertices that are connected
are likely to have similar features. Under this assumption,
each vertex adjusts its feature vector based on its neighbors.
Suppose that the initial feature vector of vertex i is v;(¢) and
the final state is f;(¢) at timestamp ¢. Then the propagation
process from v;(t) to f;(¢) can be modeled by the following
optimization problem.

£ (03 (1)

. 1 1
Iﬁgl )\%:Aw(t)n \/]T(t)fz(t) a \/m
+(1-2) Z £ (1) — vi(t)]|?

where D(t) € R™*™ is the degree matrix of A(t). A € (0,1)
is the regularization weight. The first term is the smoothness
constraint, which enforces the neighboring vertices to have
similar feature vectors. The second term is the fitting con-
straint, which penalizes large deviation from the initial fea-
ture vectors. The analytical solution of Eq. (1) is:

£;(t) = (1 — NI = AA(t) " tvy(t) 2)

where T € R™*" is the identity matrix. A (t) is the normal-
ized version of A (t) which is defined as \/D(t)A(t)/D(t).
This explicit solution shows that the final feature vector is a
transformation of the initial one based on the network struc-
ture at timestamp ¢.

Then how do we determine f;(¢)? In this paper we leverage
the time-dependent matrix factorization method which natu-
rally expresses the evolving network by learning a low rank
representation of the underlying adjacency matrix. Let’s fo-
cus on undirected networks for now. In this case, the symmet-
ric adjacency matrix A (¢) can be reconstructed by the feature
vectors {f;(¢)}7,

A(t)=F()F(t)" 3)

Here F(t) = [f17 fQ,
matrix.

We then follow a standard approach to set up a least squares
optimization problem so that A(t) and F(t)F(t)" are as

,£,] € R"** is a time-depend feature
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close as possible. This can be achieved by minimizing the Eu-
clidean distance between all entries in A(t) and F(¢t)F(¢)T.
Therefore, the optimization problem can be written as,

o~ ()
. T2
min Y C|AM-FOF®E @
t=max(1,T—w)

Here, h(t) = e~?(T=" is an exponential decay function with
time ¢ that regulates the importance of the current timestamp
of the network with respect to the past timestamps. w is the
sliding window size which only takes the recent w timestamps
into consideration. This is pragmatic because there is no need
to store all network timestamps.

As it can be seen from Eq.(4), in order to learn F(¢), one
has to regulate the time-dependent form of this matrix. Let
P(t) = (1 — A\)(I— MA(t))"!, we have F(¢t) = P(t)V(¢)
based on Eq.(2). Then the optimization problem described by
Eq.(4) has the following form,

T

min 3 "Dyaw) - peyveve RO
t=max(1,T—w)

&)

Here V() € R™** is a time-dependent matrix including all
initial states of vertex feature vectors. It characterizes the net-
work dynamics by modeling the changes in the vertex feature
space. The function V (¢) can take on any canonical form,
such as linear models, polynomial models etc. based on the
specific tasks. We choose polynomial function for V() be-
cause we are trying to fit the network dynamics within a small
sliding window of length w [Montgomery et al., 2015]. Thus
V(t) can be represented as follows:

d

V() =W + Wt 4+ WD =3 "Wt (6)

i=0
Here (W4 c R™*F d € N,. V(t) is the simple linear
function if d = 1.

The challenge of optimizing the objective function defined
in Eq.(5) is that the network A(¢) could be very large and
sparse, and the optimization of a O(n?) objective function is
often too computationally expensive. Generally, the existence
of a link provides more information than the absence of a link
which conveys far more noises. Therefore, Eq.(5) should be
tuned up to focus on the nonzero entries in the adjacency ma-
trix A(t). Let m be the number of nonzero entries in A(t).
However we still need a sample of zero entries to properly
train the model. In this paper, the sample size is set to be
equal to the size of nonzero entries m. Let S(t) be the sam-
ple indices at timestamp ¢ such that a;;; = 0,V(i, j) € S(t).
Let E(t) be the set of indices that need to be optimize in
Eq.(5), then we have E(t) = {(i,j)|ai;s > 0} U S(¢). Note
that the size of E(t) is much smaller than O(n?) because the
networks are often very sparse in practice. Then the afore-
mentioned objective function can be presented as follows,

d h(t)
>

t=max(1,T—w)

Y. (e = POVEV(E) P )i)
(i,9)€E(t)
@)
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For directed networks, A (¢) can be decomposed into two
matrices: a constant matrix U and a time-dependent matrix
V(t), both are n x k matrices. In this case, the optimization
problem comes to be,

T
>
2

t=max(1,T—w)

> (g — (UVEH)TP))))?
(i,7)€E(t)
3

Note that one can choose both U and V(¢) to be time-
dependent, but it will double the parameter space and increase
the model complexity. Similar results can be achieved if one
choose to make U time-dependent rather than V(¢). In the
empirical study section, we focus on the undirected networks.

2.1 Model Learning

In this section, we describe the algorithm to learn the LIST
model. The aforementioned objective function depends on
the number of links in the networks which is easy to com-
pute. We also need to add weight-decay terms to reduce the
variance of our model. Consider the objective function .J (W)
for undirected networks with weight-decay terms,

> @Hlm)(A(t) —POVHVEH) PMH)T)E

t=max(1,T—w)
d ﬂ .

+>_ S IWOE )
=0

M;; i (i,5) € E(?)
where L) = {0 0002 E
weights of the weight-decay terms. In order to infer the pa-
rameter W, we leverage the symmetric matrix factorization
technique [Kuang et al., 2012] to compute the derivatives of
Eq.(9). We introduce an “error term” ¢ (t) for each timestamp
t of undirected networks as follows:

P(t) = 1pu (Al —PEOVHV(E) ' P@H)T)  (10)

Note that the error matrix in 1 (¢) has already projected to
indices set defined by E/(¢). Consider the derivative calcula-
tion of a simplified loss function J = 1|[A — PVV P T3
without timestamp ¢, then

% =—P'APV-PTA"PV+2P"PVV PPV
=— P (A-PVV'P )+ (A-PVV' PPV
Here we extract the common factor A — PVV TPT for each

term in .J. The reason is that we can apply projection 1) (-)
on this common factor. So that,

8J(W)  0J(W) dV(1)
OW@ gV (t) oW
T
t=max(1,T—w)
+ BW® (11)

We now have the derivative over W needed to run gradi-
ent descent. The pseudocode for LIST model is presented in
Algorithm 1.

,{Bi}4, are the

WP (=) —o(t) ") POV(H)E
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Algorithm 1: Algorithm for LIST model

Input: temporal adjacency matrices
{A(t)}_max(1,7—o)» the order d of V(t) and
latent dimension &

Output: factor matrices { W }¢_, and the prediction

A(T+1).

Set k, d and w.

Randomly initialize {W®}¢_ .

while not stopping criterion do

Compute “error term” 1(t) for each time stamp t.

Compute partial derivatives %‘ésm) using ¥(t) by

Eq.(11).

Determine the step size A by line search.

foreach i in {1,...,d} do

| Update W = W) — \ZZW).

Compute prediction result A(T' + 1) =
(o WOT + 1)) (S WOT + 1)) T

2.2 Computational Speed-up

Observe that the update of W () in Algorithm 1 has to com-
pute the inverse of an n x n matrix I — AA(¢) which runs
in time O(n?). In this section, an iterative method is used to
approximate the matrix inverse calculation.

Theorem 1 Given that the eigenvalues of Q € R"™ ™ in
[-1,1], 0 < v < 1, and the iteration number B, the inverse
of matrix I —~Q can be approximated by summing up (vQ)"
across all iterations [Zhou et al., 2003], which is

B

_ -1 _ b—1
(I-7Q)~" = lim ;wcz) (12)

Given A € (0,1) and A(t) (normalized by degree matrix
D(t)), the approximate solution for P(¢) is,

B
P(t) = (1- NI - A1) = (1- 1) S (@)

b=1

(13)

Assume that the number of nonzero entries in the sparse

matrix A(t) is m. The complexity upper-bound of sparse

matrix multiplication is O(mn) [Yuster and Zwick, 2005].

Therefore the above solution takes O((b — 1)mn) in time for

each iteration, b € [1, B], which results in an overall com-

plexity O(B?*mn) for the calculation of P(t). If we cache the

computed results in previously iteration, then the time com-
plexity is reduced to O(Bmn).

2.3 Complexity Analysis

We assume that the gradient-descent method in Algorithm 1
is implemented for M iterations, and the rank of the factor-
ization is k. The bottleneck step is to update all parameters
for d 4+ 1 matrices in each of these iterations. It can be seen
from Eq.(11) that there are w timestamps within each sliding
window, and in each timestamp the complexity for matrix ma-
nipulation is O(Bmn) + O(n?k). Thus, the asymptotic run-
ning time is O(Mw(d+1)(Bmn+n2k)). In empirical study

Table 1: Dynamic network data description

Dataset #Vertex #Edge Max Weight 7T #Link Distribution
Infectious 410 2,765 191 8 IIIII
UCI Msg 1,899 20,296 98 7 I

Digg 30,308 86,404 25 14 jllllllllllll[

DBLP 315,159 743,709 159 34 ‘

settings, M, w, d, B and k are much smaller than n and m,
therefore the time complexity is approximately O(mn+n?).

3 Empirical Study

The ability to predict link weights at a specific time is al-
most trivial using the LIST model. Once we obtain the factor
matrices {W()}9_, | the predicted structure of the network
can be effectively reconstruct by V(T + o)V (T + «) ' for
any > 1. Of course, as the value of o becomes larger
and larger, one can expect the reconstruction to become in-
creasingly challenging. In this section, we will compare
with the baselines on single-timestamp link weight predic-
tion (o = 1), and show the advantages of the LIST model on
multiple-timestamp link weight prediction (a > 1).

3.1 Datasets and Baselines

Datasets: To verify the performance of the LIST model, we
conduct experiments on four dynamic networks, namely In-
fectious [Isella et al., 2011], UCI Msg [Opsahl and Panzarasa,
20091, Digg1 and DBLP?, as shown in Table 1. The vertices
in these networks represent users, and edge weights represent
the strength of the interactions such as number of messages
and co-authorships, among them. Table 1 also shows the dis-
tribution of number of edges over time.

Baselines: For comparison, we consider the canoni-
cal link prediction method Weighted Common Neighbors
(WCN) [Murata and Moriyasu, 2007; Zhao er al., 2015],
as well as recent algorithms High-performance Link Predic-
tion (HPLP) [Lichtenwalter et al., 20101, CP Tensor Model
(CPTM) [Dunlavy er al., 2011] and Temporal Matrix Factor-
ization (TMF) [Yu et al., 2017]. Note that the HPLP algo-
rithm used here is a modified version that trains a regression
model to predict the link weights. We analyze all algorithms
by measuring the accuracy of link weight prediction based on
root mean-squared error (RMSE).

3.2 Single-timestamp Link Weight Prediction

To compare the performance of single-timestamp link weight
prediction (o = 1), we utilize the network timestamps from
T — wto T — 1 as the training set, and the T*" timestamp as
the test set, T € [2, T, where T is the total number of times-
tamps in each dataset. We set the order d of time-dependent
matrix V(t) to 1. As reported in [Yu et al., 20171, hight order
of d may slightly improve the performance, but not always.

"http://konect.uni-koblenz.de/networks
“http://dblp.uni-trier.de/xml
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Figure 2: Prediction RMSE at timestamp 7" while training with pre-
vious w timestamps start at 7' — w

Table 2: Average RMSE across all timestamps

Method | Infectious UCI Msg Digg DBLP

WCN 0.9719+0.8300 0.271940.2064 0.0161£0.0048 0.0160£0.0104
HPLP 0.5883+0.6767 0.270240.2034 0.006440.0012 0.00560.0147
CPTM 0.88471+0.9367 0.219640.2469 0.0133£0.0136  0.0128+0.0099
TMF 0.5309+0.1185 0.184040.1311 0.0032£0.0011 0.0017+£0.0028
LIST 0.3824+0.1114  0.13454-0.0930  0.0026+0.0005 0.0009-0.0009

The other parameter settings are as follows: iteration num-
ber B = 100 for the computation of P(t), latent dimension
k = 20, exponential decay § = 0.3, sliding window size
w = b, propagation balancing weight A = 0.3, regularizer
weights 3; = 0.01. The maximum number of iterations of
the LIST model is set to 200. We analyze the algorithms by
measuring the prediction RMSE at different timestamps as
shown in Figure 2.

We have several key observations from Figure 2. Firstly,
the proposed LIST model outperforms all baselines, which
are consistent across all four dynamic networks. It demon-
strates the advantages of leveraging network propagation in
predicting link weights, and shows that the LIST model can
capture the underlying structure of the network evolution. We
also notice that the LIST model achieves a higher accuracy
margin against the TMF model at early timestamps. It is be-
cause there is no enough data to train the TMF model, but the
LIST model makes full use of the network structure through
the propagation constraint.

Table 2 displays the average prediction RMSE across all
timestamps of each dataset. It is evident that the LIST model
has a better average RMSE than all four competing methods.
Note that the performance of the LIST model is about 18x
better than WCN on the DBLP dataset.

3.3 Multiple-timestamp Link Weight Prediction

Notably, the LIST model has the capability to effectively re-
construct the structure of the network at any given time. In
this section, we run experiments to measure the prediction

[ —@— single Timestamp Prediction by TMP_—@— Single Timestamp Prediction by LIST —(— Prediction at T+a
UCI Msg

Infectious
0.7 0.35

0.65¢
0.3

0.25

Figure 3: The dots on dash lines represent RMSE of multiple-
timestamp link prediction at timestamp 7' + «. The blue and red
dots on solid lines represent the single-timestamp prediction RMSE
of LIST and the baseline TMF, respectively.

accuracy in predicting link weights for multiple timestamps.
The task is to predict the link weights at timestamp 7" + «,
where o = {1, 2,3} in the experiments. That is, we are us-
ing the LIST model to predict the next three timestamps. The
rest of the parameters are set as Section 3.2. The multiple-
timestamp prediction RMSE is presented in Figure 3.

Since we are predicting the link weight of the upcoming
three timestamps, each short dash line has three dots (or fewer
than three at the last two timestamps) which plot the RMSE of
link prediction at timestamp 7'+ 1, T'+2 and T+ 3. There are
T —2 dash lines in total for each dataset (7 is the total number
of timestamps). The dots on solid lines indicate the single-
timestamp prediction RMSE of LIST and TMF, which are
used as references. It can be seen that, even when o > 1, the
LIST prediction accuracy is still better than the baseline TMF
most time. It is also worth mentioning that several predictions
made by multiple-timestamp link prediction are better than
single-timestamp predictions.

3.4 Parameter Analysis

Propagation Balancing Parameter )\: The parameter \ de-
fined by Eq.(1) specifies the relative amount of the informa-
tion from its neighbors (propagation constraint) and its initial
feature vectors (fitting constraint). By varying the parame-
ter A, we want to examine the relative importance of network
structure in single-timestamp link weight prediction task. The
special case of A = 0 indicates that no network structure in-
formation will be considered. We choose different values of
A which varies from 0 to 1 with step size 0.1, and compute the
prediction RMSE at timestamp 7" on Infections and UCI Msg
datasets. All the remaining parameter settings are the same
as Section 3.2. The results are summarized in Figure 4. The
RMSE curves of both datasets follow a broad “U” shape. This
means that as A increases from 0 to 1, the prediction accuracy
increases till an optimal value, after which it starts to decline.
It is evident that the propagation constraint can help improve
the performance of link prediction in dynamic networks. We
also observe that A € [0.1,0.4] gives the optimal prediction
RMSE.
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Figure 4: Prediction RMSE of Infectious and UCI Msg at timestamp
T with different values of A

Infectious

UCI Msg

20

0.8

0.6

0.4

0.2

02 04 06 08 10
0 0

Figure 5: Prediction RMSE of Infectious and UCI Msg at timestamp
T with different parameter pairs 6 and k.

Exponential Decay 6 and Factorization Rank k: In this
section, we conduct the parameter analysis on 6 and k. 6
regulates the exponential decay function h(t). A larger 6 rep-
resents that less weights are assigned to the previous times-
tamps. k is the latent dimension of the feature matrix F(¢).
We choose different values of 6 varies from 0 to 1 with in-
terval 0.1, and k varies from 20 to 100. We show the results
on datasets Infectious and UCI Msg. The prediction RMSE
is presented as a heat-map in Figure 5. It depicts that § has a
significant impact on prediction accuracy, and it is sensitive to
the dataset. For the Infectious dataset, as 6 increases, the pro-
posed model has a better RMSE. This means a better predic-
tion can be achieved when less weights are assigned to early
timestamps. For the UCI Msg dataset, we observe a totally
opposite trend. It also can be seen that RMSE improves with
the increase of k. This is because larger &k preserves more in-
formation when performs the matrix factorization. But from
the complexity analysis in Section 2.3 we can see that a rel-
atively small £ takes less running time. Taking both running
time and prediction accuracy into consideration, we choose a
relative small k£ ranged from 20 to 100.

4 Related Work

Link prediction problem can be generally divided into two
distinct categories: structural and temporal link predic-
tion [Menon and Elkan, 2011]. The structural link predic-
tion problem, which only considers a single network struc-
ture as the input, predicts the possible unobserved links
within the same network [Liben-Nowell and Kleinberg, 2007
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Lichtenwalter et al., 2010]. Temporal link prediction mod-
els, on the other hand, analyze the evolution pattern of
a sequence of networks over time [Sarkar et al., 2012;
Dunlavy et al., 2011; Li et al, 2014; Zhu et al., 2016;
Rahman and Al Hasan, 2016]. The probabilistic nonpara-
metric link prediction model can be used to predict the link-
age possibility of two nodes only based on the similarity of
their local neighborhoods [Sarkar er al., 2012]. One can
also extend a local probabilistic model [Wang et al., 2007]
based on maximum entropy with temporal information of
the past interactions [Tylenda et al., 2009]. Other than the
aforementioned statistical approaches, we can also lever-
age tensor decomposition technique to address the tempo-
ral link prediction problem effectively [Dunlavy er al., 2011;
Ermig et al., 2015]. The global network structure has also
been considered in the temporal link prediction task [Gao et
al., 2011]. Tt aggregates weighted link matrices, and learns
the model with graph regularization. Recently, some interest
has been focused on the use of temporal matrix factorization
technique for expressing dynamic networks [Yu et al., 2017].
However, it only explores the network evolving pattern across
the dynamic network, but ignores the network propagation
within each single timestamp.

5 Conclusions

In this paper, we developed a novel link prediction model,
LIST, for dynamic networks which simultaneously incorpo-
rates network propagation and temporal matrix factorization
techniques. This is guaranteed by the joint minimization of
the network propagation loss and the temporal network recon-
struction error. The proposed model utilizes a user-defined
sliding window to learn the parameters, thus supports stream-
ing link prediction as well. Extensive experiments show that
the LIST model outperforms the state-of-the-art techniques.
One interesting aspect of this model is its ability to explic-
itly express the network as a function of time, which takes
into account both local (spatial) network structure and globe
evolving (temporal) patterns. Therefore it has the advan-
tage of generality in addressing various temporal applications
like temporal network compression and expanding commu-
nity detection. We plan to further investigate the utility of
LIST in these applications.
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