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Abstract
Most of the existing scene parsing methods suf-
fer from the serious problems of both inconsistent
parsing results and object boundary shift. To tackle
these issues, we first propose a Global-residual Re-
finement Network (GRN) through exploiting global
contextual information to predict the parsing resid-
uals and iteratively smoothen the inconsistent pars-
ing labels. Furthermore, we propose a Local-
boundary Refinement Network (LRN) to learn the
position-adaptive propagation coefficients so that
local contextual information from neighbors can be
optimally captured for refining object boundaries.
Finally, we cascade the proposed two refinement
networks after a fully residual convolutional neu-
ral network within a uniform framework. Extensive
experiments on ADE20K and Cityscapes datasets
well demonstrate the effectiveness of the two re-
finement methods for refining scene parsing predic-
tions.

1 Introduction
Semantic scene parsing aims to associate one of the seman-
tic classes to each pixel in a scene image. As an impor-
tant step towards better scene understanding, accurate scene
parsing is a significant and challenging task in computer vi-
sion. Recently, the most successful approaches of scene pars-
ing are based on Convolutional Neural Networks (CNNs)
[Krizhevsky et al., 2012], especially the variants of Fully
Convolution Networks (FCNs) [Long et al., 2015] including
[Chen et al., 2015a] [Noh et al., 2015] [Badrinarayanan et
al., 2015]. Nevertheless, the predictions of existing meth-
ods have two critical drawbacks: (1) the typical inconsistent
parsing results on stuff (e.g. sky, wall) and large objects as
shown in Figure 1 (b); (2) imprecise and discontinuous ob-
ject boundaries as presented in Figure 1 (e).

To mitigate these issues, in this paper we propose two re-
finement networks to rectify scene parsing predictions. Recti-
fication is usually regarded as a crucial or even indispensable
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(a) Input (b) FCN Based Model (c) GRN 

(d) Input (f) LRN (e) FCN Based Model 

Figure 1: Result of FCN based model (b) has inconsistent labels in
wall, curtain and bedside table, which can be refined by the proposed
GRN (c). Result of FCN based model (e) has imprecise and discon-
tinuous object boundaries of cabinet, table and chairs, which can be
refined by the proposed LRN (f).

step in many practical frameworks. For example, in object
detection, bounding-box refinement [Gidaris and Komodakis,
2015] is widely used in [He et al., 2016] [Bell et al., 2016]
[Shrivastava et al., 2016], bringing significant improvement
of bounding-box localization and scoring. Inspired by its
success, we design two new refinement networks particularly
for rectifying the parsing predictions, from both global and
local views respectively. Each of the two networks can be
employed after the existing parsing frameworks individually.
Moreover, cascading them together for refinement can gain
more precise parsing results.

Firstly, we consider performing refinement from the global
view. Inconsistent parsing results are very common in pre-
dictions of existing scene parsing frameworks, as shown
in Figure 1 (b). To address this problem, we design the
Global-residual Refinement Network (GRN) through exploit-
ing global contextual information and spatial layout relation-
ships during refining. This network takes the original images
and the K confidence maps (i.e., the output of the last layer
before SoftMax layer, each for one of theK semantic classes)
as input. Then outputs the global parsing residual, which will
be added to the input confidence maps to obtain the global
rectifying results. This network effectively captures global
contextual information by iteratively using a deep neural net-
work with large receptive fields. After global refinement by
GRN, some mislabeling can be corrected and some inconsis-
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tent parsing results can be smoothed, as shown in Figure 1
(c).

Secondly, we also perform refinement from the local view.
Most of the existing scene parsing frameworks focus on learn-
ing semantic-level features and predict low-resolution pars-
ing results, followed by the deconvolutional layers [Zeiler et
al., 2011] to upsample the predictions to original size. This
implementation easily leads to losing many details, hence
producing imprecise and discontinuous object boundaries, as
shown in Figure 1 (e). To tackle this problem, we propose
a Local-boundary Refinement Network (LRN) to rectify ob-
ject boundaries and details by capturing local contextual in-
formation. The LRN also takes the original images and theK
confidence maps as input, like GRN. It learns m×m coeffi-
cient maps which indicate how each of the m×m neighbors
propagates to the center point. The propagation coefficients
are position-aware for each pixel, so as to capture the local
contextual information of m×m neighbors adaptively. LRN
works in a similar spirit as bounding-box refinement in ob-
ject detection task, but it learns local coefficients to refine the
object boundaries instead of the bounding-box coordinates.
After local refinement by LRN, the object boundaries will be
more precise and smooth, as shown in Figure 1 (f).

To verify the effectiveness of our methods, we employ a
fully convolutional neural network as the front model and
cascade the two refinement networks accordingly. We report
experimental results on two scene parsing benchmarks in-
cluding ADE20K dataset [Zhou et al., 2016] and Cityscapes
dataset [Cordts et al., 2016]. Our main contributions can be
summarized as follows:

• We propose an iterative Global-residual Refinement
Network to predict the global parsing residuals and it-
eratively boost the parsing results by exploiting global
contextual information.

• We design a Local-boundary Refinement Network to re-
fine object boundaries. This network learns position-
adaptive local propagation coefficients to exploit local
contextual information from neighbors.

• We cascade the proposed two refinement networks after
a fully residual convolutional neural network within a
uniform framework for scene parsing. We achieve state-
of-the-art performance on two challenging scene parsing
benchmarks, including ADE20K dataset and Cityscapes
dataset.

2 Related Work
Recently, many approaches for scene parsing are based on
CNNs [Krizhevsky et al., 2012] and achieve remarkable suc-
cess. Among them, FCNs [Long et al., 2015] are the most
popular framework. Following this framework, lots of ap-
proaches are proposed for better parsing results by employing
the hole algorithm [Chen et al., 2015a], multiple deconvolu-
tion layers and uppooling operators [Noh et al., 2015] [Badri-
narayanan et al., 2015], and middle layer features [Hariharan
et al., 2015] [Liang et al., 2015] [Mostajabi et al., 2015].
Most of these methods mainly design reasonable networks
to predict the parsing results from original images. Their pre-

dictions are confronted with the problems of both inconsistent
parsing results and object boundary shift.

Different from above approaches, some methods that fo-
cus on refinement are proposed to improve the parsing re-
sults. Fully connected CRFs [Krähenbühl and Koltun, 2011]
[Chen et al., 2015a] is an effective refinement method which
precisely localizes segment boundaries. It is based on energy
functions to integrate score maps automatically. However, it
only considers low-level information to optimize the energy
functions. MS-Dilation [Yu and Koltun, 2016] is another re-
finement method which employs dilated convolutional oper-
ators to capture contextual information and aggregate parsing
predictions. However, this method only considers global con-
textual information.

Some recent approaches are also proposed by taking ad-
vantage of contextual information and spatial dependencies
for scene parsing. Different topological structures of multi-
dimensional RNNs are proposed to model the contextual
dependencies of image units, such as diagonal structure
[Shuai et al., 2016], eight-neighboring structure [Byeon et
al., 2015][Liang et al., 2016b] and arbitrary graph topological
structure [Liang et al., 2016a]. In order to reduce the length
of RNN sequences, most of these methods perform RNN lay-
ers on the low-resolution predictions, which may lose lots of
details. In addition, graphical models are also widely used
in scene parsing to capture the spatial relationships between
semantic patches in images [Liu et al., 2015] [Zheng et al.,
2015] [Lin et al., 2016] [Vemulapalli et al., 2016]. Graph-
ical models are formulated as special layers and then jointly
trained with CNNs. These approaches only employ semantic-
level features from CNNs to learn unary and pairwise poten-
tial functions and model semantic dependencies between im-
age units.

Unlike these above methods, the proposed two refinement
networks exploit both global and local contextual informa-
tion. Both pixel-level and semantic-level information can be
captured from the input which concatenated by the raw RGB
values and the confidence maps from the front model. We fo-
cus on modeling contextual dependency on high-resolution
predictions (the confidence maps have the same size with
those of original images) to preserve more details. The two
networks are synergistic and complementary to FCNs based
methods thus can be employed together.

3 Proposed Refinement Networks
In this section, we first detailedly introduce the proposed two
refinement networks that rectify parsing predictions globally
and locally. Then we describe how to cascade them together
for refinement.

3.1 Global-residual Refinement Network
For stuff and large objects, predictions may be affected by
their patterns and textures, and confused with the visually
similar categories, leading to misclassification and inconsis-
tent parsing results. To tackle this issue, we propose the
Global-residual Refinement Network (GRN) to rectify the
confidence maps of the front model globally.
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Figure 2: Architecture of the proposed GRN

In order to capture the global contextual information from
confidence maps and spatial dependencies from original im-
ages together, the GRN takes the confidence maps from the
front model and the original images as input. Since the in-
put RGB values of original images are initialized by dividing
255, the input confidence scores should also be normalized to
match the same amplitudes with the initialized RGB values,
according to the equation:

vki =
exp(uki )∑K
t=1 exp(uti)

, k ∈ 1, 2, . . . ,K, (1)

where uki is the confidence value produced by the front model
at position i for category k, andK is the number of categories
in the dataset. GRN outputs global parsing residuals, which
will be added to the confidence maps of the front model to
obtain the global refined results.

The GRN exploits deep CNNs to incorporate global con-
textual information. During the forward propagation proce-
dure, each position is influenced by the hidden cells in the
previous layer at neighboring positions, so that the receptive
fields expand with the increasing depth of CNNs, which can
be formulated as:

Tl = [Tl−1 + (kl − 1)]× sl, l = 1, 2, . . . , L, (2)

where Tl is the size of receptive fields of layer l, kl is the ker-
nel size of layer l, sl is the stride of layer l. In the beginning,
T0 = 1. With a deep CNN with many 3×3 convolutional
layers and several downsampling with stride= 2, GRN can
obtain very large receptive fields and capture global contex-
tual information. In this work, we implement GRN in the
same architecture with the front model (described in Section
3.3). Thus, the parameters of pre-trained classification model
can be adopted for initialization. Moreover, it is worth noting
that the global refined results can be concatenated with the
original images and fed into GRN again, thereby forming the
iterative refinement. The receptive fields will linearly expand
with the number of iteration increases, formulated as:

Tn = (TL − 1)× n+ 1, n = 1, 2, . . . , N, (3)

where Tn is the size of receptive fields after n iteration.
As shown in Figure 2, suppose for N iterations, the GRN
model Vg of N iterations can be unfolded to N models
V1, V2, · · · , VN , which share the same parameters. With the
iterative processing, the receptive fields can expand quickly to
cover the whole image and incorporate global contextual in-
formation. Different from the iterative methods [Pinheiro and
Collobert, 2014] [Li et al., 2016], GRN focuses on how to ob-
tain large receptive fields to capture global contextual infor-
mation for refinement. Consequently, GRN generates parsing
residuals instead of direct results.

Specifically, GRN is initialized with the parameters from
the pre-trained classification model. Particularly, the pre-
trained model only takes original images as input. Thus, the
parameters associated with confidence maps in the first con-
volution layer are initialized randomly. During training stage,
the loss function is the cross-entropy terms for the summa-
tion of the front confidences and global residuals. However,
most of the loss values are often small since the parsing re-
sults from the front model are good enough to approximate
the groundtruth, which inevitably causes small gradients for
updating GRN. Therefore, we add an auxiliary loss function
of the cross-entropy terms for global residuals, in order to ob-
tain larger gradients and speed up convergence. This auxiliary
loss branch will be ignored during test stage.

3.2 Local-boundary Refinement Network
Most existing scene parsing approaches based on CNNs fo-
cus on learning semantic-level information while ignoring
low-level information, resulting in discontinuous and impre-
cise parsing boundaries. To solve this problem, we propose
a Local-boundary Refinement Network (LRN) to refine the
parsing predictions locally and adaptively.

Figure 3 shows the details of LRN. It concatenates the con-
fidence maps from the front model and original images as in-
put, in order to take advantage of local contextual information
of confidence maps and the low-level information of original
images simultaneously. The confidence maps should also be
initialized as Equation (1). This network outputs the normal-
ized m × m local propagation coefficient maps for all the
positions, formulated as:

wp
i =

exp(hpi )∑m×m
t=1 exp(hti)

, p ∈ 1, 2, . . . ,m×m, (4)

where hpi is the confidence value learned by LRN at position
i for its neighbor p, and m × m is the size of propagation
neighbors. The propagation coefficient vector at position i
will flat to a square at first, then multiply by the confidence
maps of its m × m neighbors, and finally aggregate to the
center point to generate the refinement results, denoted as:

gi =
m×m∑
p=1

wp
i · f

p
i , (5)

where fpi is the confidence vector of the neighbor p of posi-
tion i from the front model, and gi is the refined vector of
position i. Note that wp

i is shared across all the channels
of fpi . Most importantly, since the propagation coefficients
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Figure 3: Architecture of the proposed LRN

Layer Channel Kernel size Bias size
1 256 (K + 3)× 256× 3× 3 256
2 256 256× 256× 3× 3 256
3 256 256× 256× 3× 3 256
4 512 256× 512× 3× 3 512
5 512 512× 512× 3× 3 512
6 512 512× 512× 3× 3 512
7 m×m 512× (m×m)× 3× 3 m×m

Table 1: The detailed configuration of LRN. K is the number of
semantic classes; m×m is the size of propagation neighbors.

are automatically learned from LRN and each position has its
own refinement coefficients, the propagation coefficients are
position-adaptive to capture the local contextual information
optimally.

In order to learn the unknown ideal propagation coeffi-
cients, we propose an implicit learning method through multi-
plying the propagation coefficients by confidence maps from
the previous model so that we can end-to-end learn the coeffi-
cients implicitly with the loss between the products and pars-
ing groundtruth. Therefore, we can avoid explicit supervised
learning of the propagation coefficients whose groundtruth
cannot be easily acquired. As for implementation, we design
a small network including 7 convolutional layers with 3×3
kernels for LRN, since large reception fields are unnecessary
for LRN to capture local contextual information. The detailed
configuration of LRN is designed as shown in Table 1. We
adopt batch normalization (BN) [Ioffe and Szegedy, 2015]
right after each convolution and before activation. Pooling
and large stride are not used in LRN in order to keep the same
resolution between input and output. As the number of lay-
ers increases, the receptive field expands and the contextual
information increases, which requires more channels for stor-
age in the following layers.

In particular, it is crucial to train a network with appro-
priate initialization. According to the purpose of LRN, the
confidence maps before and after local refinement should be
similar. Thus, we propose an intuitive and reasonable method
for initialization, formulated as:

kl(a, c) = ε,

bl(c) =

{
1 l = L, c = (m×m+ 1)/2
0 others ,

(l = 1, 2, . . . , L)

(6)

where L is the number of layers in LRN, kl is the initialized
convolutional kernels of layer l, bl is the initialized bias of
layer l, c is the channel of a layer, a is the position in ker-
nels, ε ∼ N (0, σ2) and σ � 1. In this initialization method,
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Figure 4: The cascaded architecture: (1) fully residual convolutional
neural network as the front model; (2) iterative Global-residual Re-
finement Network to rectify globally; (3) Local-boundary Refine-
ment Network to rectify locally.

kernels are set to small values while all the biases in the for-
mer L − 1 layers are set to 0. In the last layer, biases are
set to 0 except the value at position (m ×m + 1)/2 (i.e. the
center position in the neighborhood) is set to 1. By this ini-
tialization, the confidence at the center position has a large
influence while the other neighbors have little influence dur-
ing propagation, thus the confidence maps after refinement
can approximate identity mapping results. Consequently, the
local contextual information will be captured from neighbors
during back-propagation learning.

3.3 Cascaded Architecture
As shown in Figure 4, we cascade the GRN and LRN follow-
ing a front model. The whole pipeline consists of three indis-
pensable stages. First, we implement the widely used fully
residual convolutional neural network as the front model,
which adapts the ResNet [He et al., 2016] to the convolution-
deconvolution framework [Long et al., 2015]. Second, we
utilize the GRN to improve the confidence maps from the
front model globally. Finally, we perform the LRN to rectify
the object boundaries locally. We adopt the cascaded pipeline
in order to rectify the predictions step by step, from global to
local. If the GRN is applied after LRN, the boundary may be
shifted and over-smoothed during global refinement, damag-
ing the improvement of LRN. Thus we implement LRN after
GRN to gain more precise boundaries. Additionally, since the
GRN and LRN are complementary, cascading them together
will collaboratively refine the predictions, outperforming the
parallel pipeline which combines the two refinement results
by average fusion.

In this architecture, the front model employs a fully con-
volutional residual network following the design of the FCN
framework [Long et al., 2015] but with separate implementa-
tions. The convolutional parameters of residual models [He
et al., 2016] pre-trained on large scale classification datasets
[Deng et al., 2009] are utilized to obtain the low-resolution
predictions, followed by the deconvolution layers [Zeiler et
al., 2011] to upsample the predictions to the original size.
Note that there is a global average pooling of 7×7 before

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3430



Input Before GRN After GRN Groundtruth 

Figure 5: Results of GRN on ADE20K validation set

Method ADE20K Cityscapes
Front 38.45% 72.93%
Front+GRN 40.02% 74.65%
Front+LRN 39.79% 74.36%
Front+GRN+LRN 41.12% 75.63%
Front+GRN+LRN+MS 42.60% 77.16%
Front+FC-CRF[Chen et al., 2015a] 38.78% 73.47%
Front+MSD[Yu and Koltun, 2016] 39.43% 73.96%

Table 2: Mean IOU of the two refinement networks and other pop-
ular refinement methods on ADE20K and Cityscapes validation set.
Front: front model; MS: multi-scale fusion; FC-CRF: Fully con-
nected CRF; MSD: MS-Dilation.

the fully connected layer, which smoothens the features and
causes loss of many details. To keep more details, we re-
place this global average pooling layer and the fully con-
nected layer with a 3×3 convolutional layer by dilation of
3 to maintain the same size of field-of-view and reduce the
complexity of this layer, similarly with [Chen et al., 2015a].
Moreover, there are 5 downsampling operators in the original
residual network, so that the direct predictions before decon-
volutional layers have a low resolution of 1/32, missing lots
of details. We remove the last two stride operators and em-
ploy the hole algorithm [Chen et al., 2015a] in the 4th and
5th residual blocks, so that we can obtain a higher resolution
of 1/8 and maintain more details.

4 Experiments
4.1 Experimental Settings
We evaluate the proposed two refinement networks on two
challenging scene parsing datasets, i.e. ADE20K dataset
[Zhou et al., 2016] and Cityscapes dataset [Cordts et al.,
2016].

ADE20K Dataset: The ADE20K dataset [Zhou et
al., 2016] is a new large-scale dataset released by Im-
ageNet Large Scale Visual Recognition Challenge 2016
(ILSVRC2016)1. This dataset contains 150 semantic classes
for scene parsing, 20,210 images for training, 2,000 images
for validation and 3,351 images for testing. Pixel-level an-
notations are provided for whole images. The performance
of the proposed two refinement networks is evaluated based
on both pixel-wise accuracy and the Intersection over Union
(IoU) averaged over all the semantic categories.

1http://image-net.org/challenges/LSVRC/2016/index

Input Before LRN After LRN Groundtruth 

Figure 6: Results of LRN on ADE20K validation set

Method Mean IoU
SegNet [Badrinarayanan et al., 2015] 21.64%
Cascade-SegNet [Zhou et al., 2016] 27.51%
Cascade-DilatedNet [Zhou et al., 2016] 34.90%
FCN-8s(VGG-Net) [Long et al., 2015] 29.30%
FCN-8s(ResNet) [Long et al., 2015] 32.51%
DeepLab(VGG-Net) [Chen et al., 2015a] 32.31%
DeepLab(ResNet) [Chen et al., 2015a] 36.64%
MPF-RNN [Jin et al., 2016] 34.63%
Ours (single model) 42.60%
Ours (ensemble 3 models) 44.54%

Table 3: Comparison with other state-of-the-art methods on
ADE20K validation set

Cityscape Dataset: The Cityscapes dataset [Cordts et al.,
2016] contains 5,000 images collected in street scenes from
50 different cities, with high quality pixel-level annotations of
19 semantic classes. There are 2,979 images in training set,
500 images in validation set and 1,525 images in test set. The
images in this dataset have a high resolution of 2048×1024.
Intersection over Union (IoU) averaged over all the categories
is adopted for evaluation. We didn’t use coarse data in our
experiments.

Implementation Details: The front model and the itera-
tive GRN has the same architecture described in Section 3.3
(based on the ResNet-101 structure [He et al., 2016]), while
the LRN utilizes the architecture shown in Table 1. Both the
front model and GRN are initialized with the parameters pre-
trained on the ImageNet classification dataset [Deng et al.,
2009]. We replace the 1000-way ImageNet classifier in the
last layer with a classifier that has the same number of seman-
tic classes of the scene parsing datasets. The LRN is initial-
ized with the scheme illustrated in Section 3.2. We setm = 7
as the size of refinement neighbors for LRN. We decouple
the three components and optimize them one-by-one. The
loss function is the sum of cross-entropy terms for each spa-
tial position in the output, with the unlabeled pixels ignored.
Standard stochastic gradient descent (SGD) with mini-batch
of 4 samples is adopted for training. We use the momentum
of 0.9 and weight decay of 0.0001, the same with settings
during pre-training the classification model [He et al., 2016].
For training the front model, the learning rate is initialized at
0.001 for 30 epochs and then divided by 10 for another 10
epochs. After that, GRN is trained for 20 epochs in total,
including 10 epochs with the learning rate of 0.001 and 10
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Figure 7: Results of GRN on Cityscapes validation set

Input Before LRN After LRN Groundtruth 

Figure 8: Results of LRN on Cityscapes validation set

epochs with the learning rate of 0.0001. Finally, the learning
rate of 0.0001 is implemented to train LRN for 20 epochs.
During training, we randomly crop samples of only 500×500
for ADE20K dataset and 700×700 for Cityscapes dataset due
to the limitation of GPU memory. At test stage, the whole
images are fed into the model to maintain contextual infor-
mation. Data augmentation through horizontal flip and multi-
scale input are also applied in both training and test stages. In
particular, 5 scales ({0.5, 0.75, 1.0, 1.25, 1.5}) are employed
for ADE20K dataset and 4 scales ({0.5, 0.75, 1.0, 1.25}) are
employed for Cityscapes dataset.

Our experiments are implemented based on MXNet plat-
form [Chen et al., 2015b], which is efficient concerning GPU
memory utilization. All of our networks are trained and tested
on four parallel NVIDIA Tesla K40 GPUs.

4.2 Results and Analysis
Results on ADE20K Dataset: We report the evaluation re-
sults of the two refinement networks on ADE20K validation
set in Table 2. In terms of mean IoU, the front model (based
on ResNet-101) achieves 38.45%. Employing GRN individ-
ually with three iterations brings 1.57% improvement, while
employing LRN individually with the proposed initialization
scheme gives 1.34% gain. Besides, employing the GRN and
LRN cascaded architecture yields 2.67% improvement. We
also implement other two popular refinement methods: fully
connected CRF[Chen et al., 2015a] and MS-Dilation [Yu and
Koltun, 2016]. Fully connected CRF only brings 0.33% im-
provement, while the MS-Dilation yields 0.98% gain, slightly
poorer than the proposed two refinement networks. Finally,
multi-scale fusion during testing improves the performance
to 42.60%. Table 3 shows the comparison results with other
state-of-the-art methods. Note that the ADE20K dataset is
released very recently, thus many methods have not reported
their results on this dataset. Compared with other meth-
ods, our single cascaded refinement model (with the front
model based on ResNet-101) achieves 42.60%. We also

Method Mean IoU
FCN-8s [Long et al., 2015] 65.3%
CRF-RNN [Zheng et al., 2015] 62.5%
Dilation10 [Yu and Koltun, 2016] 67.1%
DPN [Liu et al., 2015] 66.8%
LRR-4x [Ghiasi and Fowlkes, 2016] 69.7%
DeepLab [Chen et al., 2015a] 70.4%
Adelaide Context [Lin et al., 2016] 71.6%
Ours (single model) 76.15%
Ours (ensemble 3 models) 77.27%

Table 4: Comparison with other state-of-the-art methods on
Cityscapes test set

train two other cascaded refinement models with ResNet-152
and ResNet-200 based architecture as the front model. The
ensemble of the three models improves the performance to
44.54%, which outperforms previous methods by a substan-
tial margin. We visualize the effect of the two networks. As
shown in Figure 5, the discontinuous areas in stuff and large
objects can be smoothed after GRN. Figure 6 provides the
predictions after employing LRN, which can refine the object
boundaries.

Results on Cityscape Dataset: Table 2 reports the per-
formance of the two refinement networks on Cityscapes val-
idation set. In mean IoU, the front model (based on ResNet-
101) attains 72.93%. Incorporating GRN and LRN individu-
ally yields 1.72% and 1.43% improvement respectively, while
employing the cascaded architecture brings 2.70% improve-
ment. Moreover, multi-scale fusion during testing improves
the performance to 77.16%. By contrast, fully connected
CRF only brings 0.54% improvement, while the MS-Dilation
yields 1.03% gain, slightly poorer than the proposed two re-
finement networks. We give the comparison results with other
state-of-the-art methods on Cityscapes test set in Table 4. Our
single cascaded refinement model (with the front model based
on ResNet-101) achieves 76.15% in terms of mean IoU, sig-
nificantly higher than 71.6% by the published state-of-the-art
algorithms of [Lin et al., 2016]. We also train two other cas-
caded refinement models with ResNet-152 and ResNet-200
based architecture as the front model. The ensemble of the
three models further improves the performance to 77.27%.
As shown in Figure 7, GRN smoothens the discontinuous and
inconsistent areas in stuff. Meanwhile, the LRN refines the
object boundaries and details, as shown in Figure 8.

5 Conclusion
Scene parsing is a significant and challenging task in com-
puter vision. In this paper, we propose two refinement net-
works, which rectify scene parsing predictions globally and
locally. By capturing the global contextual dependencies,
the Global-residual Refinement Network predicts the global
parsing residuals and iteratively refine the inconsistent pars-
ing results. The Local-boundary Refinement Network learns
position-adaptive local propagation coefficients and refines
the object boundaries locally. The two networks can be em-
ployed individually or in a cascading architecture. Experi-
ments show that the proposed two refinement networks sig-
nificantly improve the parsing accuracy and achieve state-of-
the-art on the challenging ADE20K and Cityscapes datasets.
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